Low-Frequency Environmental Magnetic Noise Elimination Based on a Neural Network Algorithm for TMR Sensor Arrays

Tunneling magnetoresistance (TMR) sensors have shown the capability of operating in weak magnetic fields. However, the environmental magnetic noise limits their applications in open field detection. This article proposes a novel background noise cancellation method based on a backpropagation (BP) ne...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 10; pp. 15994 - 16001
Main Authors Gao, Junqi, Jiang, Zekun, Li, Baoju, Shen, Ying, Wang, Wenxu, Dong, Hao, Wang, Jiazeng, Pan, Lindong, Chen, Jiamin
Format Journal Article
LanguageEnglish
Published New York IEEE 15.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3384749

Cover

Abstract Tunneling magnetoresistance (TMR) sensors have shown the capability of operating in weak magnetic fields. However, the environmental magnetic noise limits their applications in open field detection. This article proposes a novel background noise cancellation method based on a backpropagation (BP) neural network for TMR sensor arrays. According to simulation results, the BP-based noise reduction method can eliminate background noise more effectively than the traditional coherence coefficient method. The signal-to-noise ratio (SNR) of the sensor can, thus, be improved by over 20 dB, especially when detecting extremely low SNR signals. This algorithm is demonstrated using a TMR sensor array, which shows a capability of greatly enhancing the sensor array's limit of detection in open field testing.
AbstractList Tunneling magnetoresistance (TMR) sensors have shown the capability of operating in weak magnetic fields. However, the environmental magnetic noise limits their applications in open field detection. This article proposes a novel background noise cancellation method based on a backpropagation (BP) neural network for TMR sensor arrays. According to simulation results, the BP-based noise reduction method can eliminate background noise more effectively than the traditional coherence coefficient method. The signal-to-noise ratio (SNR) of the sensor can, thus, be improved by over 20 dB, especially when detecting extremely low SNR signals. This algorithm is demonstrated using a TMR sensor array, which shows a capability of greatly enhancing the sensor array's limit of detection in open field testing.
Author Wang, Wenxu
Dong, Hao
Pan, Lindong
Li, Baoju
Wang, Jiazeng
Jiang, Zekun
Gao, Junqi
Shen, Ying
Chen, Jiamin
Author_xml – sequence: 1
  givenname: Junqi
  orcidid: 0000-0003-0459-3328
  surname: Gao
  fullname: Gao, Junqi
  organization: Harbin Engineering University, Harbin, China
– sequence: 2
  givenname: Zekun
  orcidid: 0009-0002-6268-9483
  surname: Jiang
  fullname: Jiang, Zekun
  organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China
– sequence: 3
  givenname: Baoju
  surname: Li
  fullname: Li, Baoju
  organization: 91144 Unit of the People's Liberation Army of China, Qingdao, Shandong, China
– sequence: 4
  givenname: Ying
  orcidid: 0000-0002-6465-9029
  surname: Shen
  fullname: Shen, Ying
  email: shenying@hrbeu.edu.cn
  organization: Harbin Engineering University, Harbin, China
– sequence: 5
  givenname: Wenxu
  surname: Wang
  fullname: Wang, Wenxu
  organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China
– sequence: 6
  givenname: Hao
  orcidid: 0009-0002-6676-7178
  surname: Dong
  fullname: Dong, Hao
  organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China
– sequence: 7
  givenname: Jiazeng
  surname: Wang
  fullname: Wang, Jiazeng
  organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China
– sequence: 8
  givenname: Lindong
  surname: Pan
  fullname: Pan, Lindong
  organization: Harbin Engineering University, Harbin, China
– sequence: 9
  givenname: Jiamin
  orcidid: 0000-0003-0538-5520
  surname: Chen
  fullname: Chen, Jiamin
  organization: State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
BookMark eNp9UMtOwzAQtBBIPD8AiYMlzinr2I7jY0HlpVIkHhK3yIQNGFK72C6of49LOSAOnHZWO7O7M9tk3XmHhOwzGDAG-ujydjQZlFCKAee1UEKvkS0mZV0wJer1JeZQCK4eNsl2jK8ATCuptshs7D-L04Dvc3Ttgo7chw3eTdEl09Mr8-ww2ZZOvI1IR72dWmeS9Y4em4hPNANDJzgPmTzB9OnDGx32zz7Y9DKlnQ_07uqG3qKLGQ5DMIu4SzY600fc-6k75P50dHdyXoyvzy5OhuOiLbVIhWmhqx-FBp5flVijguxAVKIquTLMQG2MVlUJXHaqBpNHlWxzA6CkKRXfIYervbPgs7mYmlc_Dy6fbDhIySoNQmeWWrHa4GMM2DWtTd8OUzC2bxg0y3ibZbzNMt7mJ96sZH-Us2CnJiz-1RysNBYRf_GFltkD_wKD14bh
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1587_elex_22_20250048
crossref_primary_10_1038_s41598_025_91068_y
Cites_doi 10.1016/j.asoc.2005.06.004
10.1109/LGRS.2021.3053653
10.1109/ICASSP.1993.319550
10.1016/j.sna.2011.08.013
10.1109/MASSW.2019.00043
10.1016/j.neucom.2016.01.093
10.1109/3477.826961
10.1109/TGRS.2011.2164086
10.1016/j.medengphy.2022.103897
10.1016/j.sna.2007.04.018
10.1109/JSEN.2023.3303436
10.1016/j.sna.2009.08.016
10.1007/978-1-4899-0084-5_38
10.1109/TMAG.2008.2006635
10.1088/0957-0233/19/4/045205
10.1016/j.ijleo.2018.07.064
10.1109/TASLP.2021.3120641
10.1088/1361-6501/abd055
10.1109/JSTARS.2012.2213240
10.1063/1.2837659
10.3390/s21020668
10.1088/0953-8984/19/16/165217
10.1109/CISP-BMEI.2017.8302086
10.1088/0957-0233/26/1/015008
10.1088/1742-6596/1584/1/012025
10.1063/1.3357332
10.1016/S0924-4247(02)00351-5
10.1016/j.jappgeo.2010.07.001
10.1109/JSEN.2023.3303673
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3384749
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 16001
ExternalDocumentID 10_1109_JSEN_2024_3384749
10495780
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFB2011600
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation Youth Program
  grantid: 62101151
– fundername: Shandong Provincial Postdoctoral Science Foundation; Shandong Postdoctoral Science Foundation
  grantid: SDDX-ZG-202303039
  funderid: 10.13039/501100020196
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021MF106
  funderid: 10.13039/501100007129
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-ac0f8b49030015e8e705304646237a1a08aa9762035f780a04665c35f0075a273
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:10:11 EDT 2025
Wed Oct 01 05:06:21 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Wed Aug 27 02:05:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-ac0f8b49030015e8e705304646237a1a08aa9762035f780a04665c35f0075a273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0459-3328
0009-0002-6676-7178
0009-0002-6268-9483
0000-0003-0538-5520
0000-0002-6465-9029
PQID 3055169049
PQPubID 75733
PageCount 8
ParticipantIDs ieee_primary_10495780
crossref_citationtrail_10_1109_JSEN_2024_3384749
crossref_primary_10_1109_JSEN_2024_3384749
proquest_journals_3055169049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Hua (ref2) 2012; 43
ref31
ref30
ref11
ref10
ref32
ref1
ref17
ref16
ref19
ref18
Jian (ref22) 2011; 31
Lucas (ref29) 2010
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – volume-title: Noise Removal Using Multi-Channel Coherence
  year: 2010
  ident: ref29
– ident: ref19
  doi: 10.1016/j.asoc.2005.06.004
– ident: ref9
  doi: 10.1109/LGRS.2021.3053653
– ident: ref28
  doi: 10.1109/ICASSP.1993.319550
– ident: ref17
  doi: 10.1016/j.sna.2011.08.013
– volume: 31
  start-page: 13
  issue: 7
  year: 2011
  ident: ref22
  article-title: Application of OBF decomposition and BP neural network to magnetic signal detection of a ship
  publication-title: Marine Electr. Electron. Eng.
– ident: ref20
  doi: 10.1109/MASSW.2019.00043
– ident: ref24
  doi: 10.1016/j.neucom.2016.01.093
– ident: ref25
  doi: 10.1109/3477.826961
– ident: ref14
  doi: 10.1109/TGRS.2011.2164086
– ident: ref21
  doi: 10.1016/j.medengphy.2022.103897
– ident: ref16
  doi: 10.1016/j.sna.2007.04.018
– ident: ref26
  doi: 10.1109/JSEN.2023.3303436
– ident: ref3
  doi: 10.1016/j.sna.2009.08.016
– ident: ref10
  doi: 10.1007/978-1-4899-0084-5_38
– ident: ref12
  doi: 10.1109/TMAG.2008.2006635
– ident: ref15
  doi: 10.1088/0957-0233/19/4/045205
– ident: ref32
  doi: 10.1016/j.ijleo.2018.07.064
– ident: ref27
  doi: 10.1109/TASLP.2021.3120641
– volume: 43
  start-page: 1
  year: 2012
  ident: ref2
  article-title: Characteristics and application of tunnel magnetoresistance (TMR) magnetic sensor
  publication-title: Magn. Mater. Devices
– ident: ref7
  doi: 10.1088/1361-6501/abd055
– ident: ref13
  doi: 10.1109/JSTARS.2012.2213240
– ident: ref4
  doi: 10.1063/1.2837659
– ident: ref5
  doi: 10.3390/s21020668
– ident: ref1
  doi: 10.1088/0953-8984/19/16/165217
– ident: ref23
  doi: 10.1109/CISP-BMEI.2017.8302086
– ident: ref18
  doi: 10.1088/0957-0233/26/1/015008
– ident: ref31
  doi: 10.1088/1742-6596/1584/1/012025
– ident: ref8
  doi: 10.1063/1.3357332
– ident: ref11
  doi: 10.1016/S0924-4247(02)00351-5
– ident: ref30
  doi: 10.1016/j.jappgeo.2010.07.001
– ident: ref6
  doi: 10.1109/JSEN.2023.3303673
SSID ssj0019757
Score 2.4064033
Snippet Tunneling magnetoresistance (TMR) sensors have shown the capability of operating in weak magnetic fields. However, the environmental magnetic noise limits...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15994
SubjectTerms Algorithms
Back propagation networks
Background noise
Backpropagation (BP) neural network
Coherence
Coherence coefficient
environmental magnetic noise elimination
magnetic sensor array
Magnetic sensors
Magnetoresistance
Magnetoresistivity
Noise
Noise reduction
Sensor arrays
Sensors
Signal to noise ratio
Transfer functions
Title Low-Frequency Environmental Magnetic Noise Elimination Based on a Neural Network Algorithm for TMR Sensor Arrays
URI https://ieeexplore.ieee.org/document/10495780
https://www.proquest.com/docview/3055169049
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG-UF_XBT4womj74ZDIsrPvoIxoIIbIHkYS3pds6NOJGxojBv967biDRaHzrsrbZcm3vd7273xFybVqggxRH3tYAr25Mx5Cg5o3QFUrAScmVjs0ZeHZvxPtja1wmq-tcGKWUDj5TDWxqX36Uhgu8KoMdDnDeccFC33Zcu0jWWrsMhKNpPWEHM4Obzrh0YTaZuO0POx6Ygi3eAIOMO8ibuaGEdFWVH0ex1i_dA-KtvqwIK3ltLPKgEX58I23896cfkv0SadJ2sTSOyJZKjsneBv_gMdkpS6A_L0_I7CF9N7pZEVm9pJ2vBDiYZCAnCWY7Ui99mSvamepaYChTegdqMKLQkBSJPqCzV0SW0_Z0kmYv-fMbBWBMnwaPdAg2MzTbWSaX8yoZdTtP9z2jLMdghC3Bc0OGLHYDLuBYAAyhXOXABkbPKCAoRzYlc6UEcNNiphXDn0p4ZVshPCAskQCTTkklSRN1RmiseGwLFQVN5vLAAis8Mq3IsnnYYjFYODXCVvLxw5KrHEtmTH1tszDho0h9FKlfirRGbtZDZgVRx1-dqyiijY6FdGqkvloFfrmX5z5yoqEzkYvzX4ZdkF2cHYMKmladVPJsoS4Bq-TBlV6jn9Tu4d4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED6h7qHwwEYpWhkbfuAJKcVt7CZ-7KZWHbR5gCL1LXISBxBdg9JUU_frd-ekrGIC8eYoTuLobN93vrvvAM5ciTrICOJtjejoxvUcjWreiX1lFO6UwtjYnEnQG92Ky5mcVcnqNhfGGGODz0ybmtaXn2Txio7KcIUjnPd8tNA_SCGELNO1np0GyrPEnriGuSNcb1Y5MTtcXVzeDAI0BruijSaZ8Ig5c0sN2boq_23GVsMMP0KwGVsZWPLYXhVRO_7zgrbx3YP_BPsV1mT9cnIcwI5ZNGBvi4GwAfWqCPr9-hCextlvZ5iXsdVrNviXAocvmei7BeU7siB7WBo2mNtqYCRV9h0VYcKwoRlRfWDnoIwtZ_35XZY_FPe_GEJjNp1csxu0mrHZz3O9XjbhdjiY_hg5VUEGJ-4qUTg65qkfCYUbA6II4xsPlzD5RhFDebqjua81wpsud2WKf6rxVk_GeEHARCNQOoLaIluYz8BSI9KeMknU4b6IJNrhiSsT2RNxl6do47SAb-QTxhVbORXNmIfWauEqJJGGJNKwEmkLzp8feSqpOt7q3CQRbXUspdOCk80sCKvVvAyJFY3ciUIdv_LYKdRH08k4HP8Mrr7ALn2JQgw68gRqRb4yXxG5FNE3O1__AtEh5Ss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Frequency+Environmental+Magnetic+Noise+Elimination+Based+on+a+Neural+Network+Algorithm+for+TMR+Sensor+Arrays&rft.jtitle=IEEE+sensors+journal&rft.au=Gao%2C+Junqi&rft.au=Jiang%2C+Zekun&rft.au=Li%2C+Baoju&rft.au=Shen%2C+Ying&rft.date=2024-05-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=24&rft.issue=10&rft.spage=15994&rft.epage=16001&rft_id=info:doi/10.1109%2FJSEN.2024.3384749&rft.externalDocID=10495780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon