Low-Frequency Environmental Magnetic Noise Elimination Based on a Neural Network Algorithm for TMR Sensor Arrays
Tunneling magnetoresistance (TMR) sensors have shown the capability of operating in weak magnetic fields. However, the environmental magnetic noise limits their applications in open field detection. This article proposes a novel background noise cancellation method based on a backpropagation (BP) ne...
        Saved in:
      
    
          | Published in | IEEE sensors journal Vol. 24; no. 10; pp. 15994 - 16001 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        15.05.2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1530-437X 1558-1748  | 
| DOI | 10.1109/JSEN.2024.3384749 | 
Cover
| Abstract | Tunneling magnetoresistance (TMR) sensors have shown the capability of operating in weak magnetic fields. However, the environmental magnetic noise limits their applications in open field detection. This article proposes a novel background noise cancellation method based on a backpropagation (BP) neural network for TMR sensor arrays. According to simulation results, the BP-based noise reduction method can eliminate background noise more effectively than the traditional coherence coefficient method. The signal-to-noise ratio (SNR) of the sensor can, thus, be improved by over 20 dB, especially when detecting extremely low SNR signals. This algorithm is demonstrated using a TMR sensor array, which shows a capability of greatly enhancing the sensor array's limit of detection in open field testing. | 
    
|---|---|
| AbstractList | Tunneling magnetoresistance (TMR) sensors have shown the capability of operating in weak magnetic fields. However, the environmental magnetic noise limits their applications in open field detection. This article proposes a novel background noise cancellation method based on a backpropagation (BP) neural network for TMR sensor arrays. According to simulation results, the BP-based noise reduction method can eliminate background noise more effectively than the traditional coherence coefficient method. The signal-to-noise ratio (SNR) of the sensor can, thus, be improved by over 20 dB, especially when detecting extremely low SNR signals. This algorithm is demonstrated using a TMR sensor array, which shows a capability of greatly enhancing the sensor array's limit of detection in open field testing. | 
    
| Author | Wang, Wenxu Dong, Hao Pan, Lindong Li, Baoju Wang, Jiazeng Jiang, Zekun Gao, Junqi Shen, Ying Chen, Jiamin  | 
    
| Author_xml | – sequence: 1 givenname: Junqi orcidid: 0000-0003-0459-3328 surname: Gao fullname: Gao, Junqi organization: Harbin Engineering University, Harbin, China – sequence: 2 givenname: Zekun orcidid: 0009-0002-6268-9483 surname: Jiang fullname: Jiang, Zekun organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China – sequence: 3 givenname: Baoju surname: Li fullname: Li, Baoju organization: 91144 Unit of the People's Liberation Army of China, Qingdao, Shandong, China – sequence: 4 givenname: Ying orcidid: 0000-0002-6465-9029 surname: Shen fullname: Shen, Ying email: shenying@hrbeu.edu.cn organization: Harbin Engineering University, Harbin, China – sequence: 5 givenname: Wenxu surname: Wang fullname: Wang, Wenxu organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China – sequence: 6 givenname: Hao orcidid: 0009-0002-6676-7178 surname: Dong fullname: Dong, Hao organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China – sequence: 7 givenname: Jiazeng surname: Wang fullname: Wang, Jiazeng organization: College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China – sequence: 8 givenname: Lindong surname: Pan fullname: Pan, Lindong organization: Harbin Engineering University, Harbin, China – sequence: 9 givenname: Jiamin orcidid: 0000-0003-0538-5520 surname: Chen fullname: Chen, Jiamin organization: State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China  | 
    
| BookMark | eNp9UMtOwzAQtBBIPD8AiYMlzinr2I7jY0HlpVIkHhK3yIQNGFK72C6of49LOSAOnHZWO7O7M9tk3XmHhOwzGDAG-ujydjQZlFCKAee1UEKvkS0mZV0wJer1JeZQCK4eNsl2jK8ATCuptshs7D-L04Dvc3Ttgo7chw3eTdEl09Mr8-ww2ZZOvI1IR72dWmeS9Y4em4hPNANDJzgPmTzB9OnDGx32zz7Y9DKlnQ_07uqG3qKLGQ5DMIu4SzY600fc-6k75P50dHdyXoyvzy5OhuOiLbVIhWmhqx-FBp5flVijguxAVKIquTLMQG2MVlUJXHaqBpNHlWxzA6CkKRXfIYervbPgs7mYmlc_Dy6fbDhIySoNQmeWWrHa4GMM2DWtTd8OUzC2bxg0y3ibZbzNMt7mJ96sZH-Us2CnJiz-1RysNBYRf_GFltkD_wKD14bh | 
    
| CODEN | ISJEAZ | 
    
| CitedBy_id | crossref_primary_10_1587_elex_22_20250048 crossref_primary_10_1038_s41598_025_91068_y  | 
    
| Cites_doi | 10.1016/j.asoc.2005.06.004 10.1109/LGRS.2021.3053653 10.1109/ICASSP.1993.319550 10.1016/j.sna.2011.08.013 10.1109/MASSW.2019.00043 10.1016/j.neucom.2016.01.093 10.1109/3477.826961 10.1109/TGRS.2011.2164086 10.1016/j.medengphy.2022.103897 10.1016/j.sna.2007.04.018 10.1109/JSEN.2023.3303436 10.1016/j.sna.2009.08.016 10.1007/978-1-4899-0084-5_38 10.1109/TMAG.2008.2006635 10.1088/0957-0233/19/4/045205 10.1016/j.ijleo.2018.07.064 10.1109/TASLP.2021.3120641 10.1088/1361-6501/abd055 10.1109/JSTARS.2012.2213240 10.1063/1.2837659 10.3390/s21020668 10.1088/0953-8984/19/16/165217 10.1109/CISP-BMEI.2017.8302086 10.1088/0957-0233/26/1/015008 10.1088/1742-6596/1584/1/012025 10.1063/1.3357332 10.1016/S0924-4247(02)00351-5 10.1016/j.jappgeo.2010.07.001 10.1109/JSEN.2023.3303673  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| DOI | 10.1109/JSEN.2024.3384749 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Engineering  | 
    
| EISSN | 1558-1748 | 
    
| EndPage | 16001 | 
    
| ExternalDocumentID | 10_1109_JSEN_2024_3384749 10495780  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFB2011600 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation Youth Program grantid: 62101151 – fundername: Shandong Provincial Postdoctoral Science Foundation; Shandong Postdoctoral Science Foundation grantid: SDDX-ZG-202303039 funderid: 10.13039/501100020196 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2021MF106 funderid: 10.13039/501100007129  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c294t-ac0f8b49030015e8e705304646237a1a08aa9762035f780a04665c35f0075a273 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1530-437X | 
    
| IngestDate | Mon Jun 30 10:10:11 EDT 2025 Wed Oct 01 05:06:21 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Wed Aug 27 02:05:26 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-ac0f8b49030015e8e705304646237a1a08aa9762035f780a04665c35f0075a273 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0459-3328 0009-0002-6676-7178 0009-0002-6268-9483 0000-0003-0538-5520 0000-0002-6465-9029  | 
    
| PQID | 3055169049 | 
    
| PQPubID | 75733 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | ieee_primary_10495780 crossref_citationtrail_10_1109_JSEN_2024_3384749 crossref_primary_10_1109_JSEN_2024_3384749 proquest_journals_3055169049  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-05-15 | 
    
| PublicationDateYYYYMMDD | 2024-05-15 | 
    
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE sensors journal | 
    
| PublicationTitleAbbrev | JSEN | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 Hua (ref2) 2012; 43 ref31 ref30 ref11 ref10 ref32 ref1 ref17 ref16 ref19 ref18 Jian (ref22) 2011; 31 Lucas (ref29) 2010 ref24 ref23 ref26 ref25 ref20 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – volume-title: Noise Removal Using Multi-Channel Coherence year: 2010 ident: ref29 – ident: ref19 doi: 10.1016/j.asoc.2005.06.004 – ident: ref9 doi: 10.1109/LGRS.2021.3053653 – ident: ref28 doi: 10.1109/ICASSP.1993.319550 – ident: ref17 doi: 10.1016/j.sna.2011.08.013 – volume: 31 start-page: 13 issue: 7 year: 2011 ident: ref22 article-title: Application of OBF decomposition and BP neural network to magnetic signal detection of a ship publication-title: Marine Electr. Electron. Eng. – ident: ref20 doi: 10.1109/MASSW.2019.00043 – ident: ref24 doi: 10.1016/j.neucom.2016.01.093 – ident: ref25 doi: 10.1109/3477.826961 – ident: ref14 doi: 10.1109/TGRS.2011.2164086 – ident: ref21 doi: 10.1016/j.medengphy.2022.103897 – ident: ref16 doi: 10.1016/j.sna.2007.04.018 – ident: ref26 doi: 10.1109/JSEN.2023.3303436 – ident: ref3 doi: 10.1016/j.sna.2009.08.016 – ident: ref10 doi: 10.1007/978-1-4899-0084-5_38 – ident: ref12 doi: 10.1109/TMAG.2008.2006635 – ident: ref15 doi: 10.1088/0957-0233/19/4/045205 – ident: ref32 doi: 10.1016/j.ijleo.2018.07.064 – ident: ref27 doi: 10.1109/TASLP.2021.3120641 – volume: 43 start-page: 1 year: 2012 ident: ref2 article-title: Characteristics and application of tunnel magnetoresistance (TMR) magnetic sensor publication-title: Magn. Mater. Devices – ident: ref7 doi: 10.1088/1361-6501/abd055 – ident: ref13 doi: 10.1109/JSTARS.2012.2213240 – ident: ref4 doi: 10.1063/1.2837659 – ident: ref5 doi: 10.3390/s21020668 – ident: ref1 doi: 10.1088/0953-8984/19/16/165217 – ident: ref23 doi: 10.1109/CISP-BMEI.2017.8302086 – ident: ref18 doi: 10.1088/0957-0233/26/1/015008 – ident: ref31 doi: 10.1088/1742-6596/1584/1/012025 – ident: ref8 doi: 10.1063/1.3357332 – ident: ref11 doi: 10.1016/S0924-4247(02)00351-5 – ident: ref30 doi: 10.1016/j.jappgeo.2010.07.001 – ident: ref6 doi: 10.1109/JSEN.2023.3303673  | 
    
| SSID | ssj0019757 | 
    
| Score | 2.4064033 | 
    
| Snippet | Tunneling magnetoresistance (TMR) sensors have shown the capability of operating in weak magnetic fields. However, the environmental magnetic noise limits... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 15994 | 
    
| SubjectTerms | Algorithms Back propagation networks Background noise Backpropagation (BP) neural network Coherence Coherence coefficient environmental magnetic noise elimination magnetic sensor array Magnetic sensors Magnetoresistance Magnetoresistivity Noise Noise reduction Sensor arrays Sensors Signal to noise ratio Transfer functions  | 
    
| Title | Low-Frequency Environmental Magnetic Noise Elimination Based on a Neural Network Algorithm for TMR Sensor Arrays | 
    
| URI | https://ieeexplore.ieee.org/document/10495780 https://www.proquest.com/docview/3055169049  | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG-UF_XBT4womj74ZDIsrPvoIxoIIbIHkYS3pds6NOJGxojBv967biDRaHzrsrbZcm3vd7273xFybVqggxRH3tYAr25Mx5Cg5o3QFUrAScmVjs0ZeHZvxPtja1wmq-tcGKWUDj5TDWxqX36Uhgu8KoMdDnDeccFC33Zcu0jWWrsMhKNpPWEHM4Obzrh0YTaZuO0POx6Ygi3eAIOMO8ibuaGEdFWVH0ex1i_dA-KtvqwIK3ltLPKgEX58I23896cfkv0SadJ2sTSOyJZKjsneBv_gMdkpS6A_L0_I7CF9N7pZEVm9pJ2vBDiYZCAnCWY7Ui99mSvamepaYChTegdqMKLQkBSJPqCzV0SW0_Z0kmYv-fMbBWBMnwaPdAg2MzTbWSaX8yoZdTtP9z2jLMdghC3Bc0OGLHYDLuBYAAyhXOXABkbPKCAoRzYlc6UEcNNiphXDn0p4ZVshPCAskQCTTkklSRN1RmiseGwLFQVN5vLAAis8Mq3IsnnYYjFYODXCVvLxw5KrHEtmTH1tszDho0h9FKlfirRGbtZDZgVRx1-dqyiijY6FdGqkvloFfrmX5z5yoqEzkYvzX4ZdkF2cHYMKmladVPJsoS4Bq-TBlV6jn9Tu4d4 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED6h7qHwwEYpWhkbfuAJKcVt7CZ-7KZWHbR5gCL1LXISBxBdg9JUU_frd-ekrGIC8eYoTuLobN93vrvvAM5ciTrICOJtjejoxvUcjWreiX1lFO6UwtjYnEnQG92Ky5mcVcnqNhfGGGODz0ybmtaXn2Txio7KcIUjnPd8tNA_SCGELNO1np0GyrPEnriGuSNcb1Y5MTtcXVzeDAI0BruijSaZ8Ig5c0sN2boq_23GVsMMP0KwGVsZWPLYXhVRO_7zgrbx3YP_BPsV1mT9cnIcwI5ZNGBvi4GwAfWqCPr9-hCextlvZ5iXsdVrNviXAocvmei7BeU7siB7WBo2mNtqYCRV9h0VYcKwoRlRfWDnoIwtZ_35XZY_FPe_GEJjNp1csxu0mrHZz3O9XjbhdjiY_hg5VUEGJ-4qUTg65qkfCYUbA6II4xsPlzD5RhFDebqjua81wpsud2WKf6rxVk_GeEHARCNQOoLaIluYz8BSI9KeMknU4b6IJNrhiSsT2RNxl6do47SAb-QTxhVbORXNmIfWauEqJJGGJNKwEmkLzp8feSqpOt7q3CQRbXUspdOCk80sCKvVvAyJFY3ciUIdv_LYKdRH08k4HP8Mrr7ALn2JQgw68gRqRb4yXxG5FNE3O1__AtEh5Ss | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Frequency+Environmental+Magnetic+Noise+Elimination+Based+on+a+Neural+Network+Algorithm+for+TMR+Sensor+Arrays&rft.jtitle=IEEE+sensors+journal&rft.au=Gao%2C+Junqi&rft.au=Jiang%2C+Zekun&rft.au=Li%2C+Baoju&rft.au=Shen%2C+Ying&rft.date=2024-05-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=24&rft.issue=10&rft.spage=15994&rft.epage=16001&rft_id=info:doi/10.1109%2FJSEN.2024.3384749&rft.externalDocID=10495780 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |