Particle Filter-Based Enhanced Transition Model in Signal for Unsupervised Localization

Unsupervised indoor localization methods have garnered significant attention for their low training costs and minimal active participation requirements. A crucial approach in this field is positioning by synchronization of Wi-Fi signal strength and inertial measurement [received signal strength (RSS...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 21; pp. 35845 - 35857
Main Authors Chen, Hailong, Shen, Xingfa, Wang, Yongcai, Shi, Nan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3439540

Cover

Abstract Unsupervised indoor localization methods have garnered significant attention for their low training costs and minimal active participation requirements. A crucial approach in this field is positioning by synchronization of Wi-Fi signal strength and inertial measurement [received signal strength (RSS) + inertial measurement unit (IMU)] sequences using mobile devices, which relies on abundant, disparate, and unlabeled RSS + IMU sequences to establish continuous time interval mappings between two signal state spaces for unsupervised positioning. Errors and noise pollution in sensor measurements are the main sources of inaccuracies in unsupervised indoor positioning. Therefore, the development of suitable algorithms to mitigate errors caused by environmental factors is a key research focus. The transitional model in signal space (TMS) represents a notable method based on this model. KF-TMS algorithm reduces Gaussian noise interference on measurements and positioning accuracy when using Kalman filter (KF) in linear system environments. This article introduces the Enhanceded Particle Filter TMS (EPF-TMS) algorithm, which has been designed for nonlinear systems and non-Gaussian environments. The proposed approach addresses the limitations of KF-TMS in terms of practical application scope and accuracy. The EPF-TMS algorithm enhances the mapping between continuous RSS signals and single-step motions through trajectory data augmentation and filter direction matching in the offline phase of EPF-TMS, which improves the robustness and localization accuracy of the model. In addition, this algorithm addresses the limitations of traditional transitional model-based methods through data clustering processes and data dimensionality reduction processing, which are constrained by extensive computational demands and high time complexity. Comparative experiments have demonstrated that the EPF-TMS algorithm has superior precision in both simulated and real-world experiments, effectively minimizing the impact of environmental noise on positioning. Moreover, the EPF-TMS algorithm demonstrates a notable advantage in terms of time efficiency following the completion of the offline processing phase, thereby reducing the overall time required for the localization process.
AbstractList Unsupervised indoor localization methods have garnered significant attention for their low training costs and minimal active participation requirements. A crucial approach in this field is positioning by synchronization of Wi-Fi signal strength and inertial measurement [received signal strength (RSS) + inertial measurement unit (IMU)] sequences using mobile devices, which relies on abundant, disparate, and unlabeled RSS + IMU sequences to establish continuous time interval mappings between two signal state spaces for unsupervised positioning. Errors and noise pollution in sensor measurements are the main sources of inaccuracies in unsupervised indoor positioning. Therefore, the development of suitable algorithms to mitigate errors caused by environmental factors is a key research focus. The transitional model in signal space (TMS) represents a notable method based on this model. KF-TMS algorithm reduces Gaussian noise interference on measurements and positioning accuracy when using Kalman filter (KF) in linear system environments. This article introduces the Enhanceded Particle Filter TMS (EPF-TMS) algorithm, which has been designed for nonlinear systems and non-Gaussian environments. The proposed approach addresses the limitations of KF-TMS in terms of practical application scope and accuracy. The EPF-TMS algorithm enhances the mapping between continuous RSS signals and single-step motions through trajectory data augmentation and filter direction matching in the offline phase of EPF-TMS, which improves the robustness and localization accuracy of the model. In addition, this algorithm addresses the limitations of traditional transitional model-based methods through data clustering processes and data dimensionality reduction processing, which are constrained by extensive computational demands and high time complexity. Comparative experiments have demonstrated that the EPF-TMS algorithm has superior precision in both simulated and real-world experiments, effectively minimizing the impact of environmental noise on positioning. Moreover, the EPF-TMS algorithm demonstrates a notable advantage in terms of time efficiency following the completion of the offline processing phase, thereby reducing the overall time required for the localization process.
Author Shi, Nan
Chen, Hailong
Shen, Xingfa
Wang, Yongcai
Author_xml – sequence: 1
  givenname: Hailong
  surname: Chen
  fullname: Chen, Hailong
  email: chenhailong0903@gmail.com
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Xingfa
  orcidid: 0000-0002-6419-9149
  surname: Shen
  fullname: Shen, Xingfa
  email: shenxf@hdu.edu.cn
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
– sequence: 3
  givenname: Yongcai
  orcidid: 0000-0002-4197-2258
  surname: Wang
  fullname: Wang, Yongcai
  email: ycw@ruc.edu.cn
  organization: Information School, Renmin University of China, Beijing, China
– sequence: 4
  givenname: Nan
  surname: Shi
  fullname: Shi, Nan
  email: 1442113477@qq.com
  organization: School of Economics and Management, Hangzhou Dianzi University, Hangzhou, China
BookMark eNp9kEtLAzEUhYNUsD5-gOBiwPXUvGYyWWqpL-oD2qK7kMnc0ZQxqclU0F_vjO1CXAgX7lmc7z7OPho47wChY4JHhGB5djub3I8opnzEOJMZxztoSLKsSIngxaDXDKeciec9tB_jEmMiRSaG6OlRh9aaBpJL27QQ0gsdoUom7lU704l50C7a1nqX3PkKmsS6ZGZfnG6S2odk4eJ6BeHD9tDUG93YL927D9FurZsIR9t-gBaXk_n4Op0-XN2Mz6epoZK3qS6xMCVwU-W0lgUVEmMtoShKKfJKSihrUUpZEc5MDpkpNDM0r2pMsxoEK9kBOt3MXQX_vobYqqVfh-68qBihXWGekc5FNi4TfIwBarUK9k2HT0Ww6vNTfX6qz09t8-sY8Ycxtv35rQ3aNv-SJxvSAsCvTTmTjBXsG4S6gG4
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3390_rs16234536
Cites_doi 10.1016/j.neucom.2015.04.011
10.1002/0471221279
10.1109/access.2023.3266874
10.1145/2348543.2348578
10.1145/1067170.1067193
10.1145/1614320.1614350
10.1109/tmc.2007.1025
10.1109/TMC.2014.2320254
10.1145/3328936
10.1145/2632048.2636064
10.1109/ipdps.2008.4536547
10.1109/TrustCom.2012.218
10.1145/2307636.2307655
10.1109/COMST.2019.2911558
10.1109/PERCOM.2010.5466971
10.1109/PERCOM.2003.1192765
10.1145/1859995.1860016
10.1109/tim.2021.3107010
10.1109/infcom.1993.253385
10.1109/IPIN.2013.6817916
10.1145/2370216.2370280
10.1109/TMC.2014.2343636
10.1109/TMC.2011.216
10.1109/access.2023.3301126
10.1109/IITSI.2010.74
10.1109/WPNC.2007.353604
10.1007/978-1-4757-3437-9_19
10.1145/2307636.2307656
10.1109/IPIN.2011.6071925
10.1109/WISP.2009.5286542
10.1109/infcom.2000.832252
10.1109/JSYST.2013.2281257
10.1145/1814433.1814461
10.1109/ICUFN.2017.7993857
10.1061/(ASCE)CP.1943-5487.0000778
10.1145/2025876.2025884
10.1109/access.2018.2830415
10.1016/j.cviu.2022.103618
10.1007/978-3-642-21735-7_44
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3439540
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 35857
ExternalDocumentID 10_1109_JSEN_2024_3439540
10639338
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072121
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Zhejiang Province; Zhejiang Provincial Natural Science Foundation
  grantid: LLSSZ24F020001
  funderid: 10.13039/501100004731
– fundername: “Pioneer” and “Leading Goose” Research and Development Program of Zhejiang
  grantid: 2023C01143
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-ab07cbe4cd62f9827900a9e88b976d99ebf7b99d143c6e5c8a3c26df025fe73b3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:03:49 EDT 2025
Thu Apr 24 22:52:30 EDT 2025
Wed Oct 01 03:42:39 EDT 2025
Wed Aug 27 03:01:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-ab07cbe4cd62f9827900a9e88b976d99ebf7b99d143c6e5c8a3c26df025fe73b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6419-9149
0000-0002-4197-2258
PQID 3123120451
PQPubID 75733
PageCount 13
ParticipantIDs crossref_primary_10_1109_JSEN_2024_3439540
crossref_citationtrail_10_1109_JSEN_2024_3439540
proquest_journals_3123120451
ieee_primary_10639338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
Shlens (ref37) 2014
Ferris (ref35)
Karkus (ref43)
Ristic (ref18) 2003
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref27
  doi: 10.1016/j.neucom.2015.04.011
– ident: ref19
  doi: 10.1002/0471221279
– start-page: 2480
  volume-title: Proc. 20th Int. Joint Conf. Artif. Intell.
  ident: ref35
  article-title: WiFi-SLAM using Gaussian process latent variable models
– ident: ref4
  doi: 10.1109/access.2023.3266874
– ident: ref11
  doi: 10.1145/2348543.2348578
– ident: ref3
  doi: 10.1145/1067170.1067193
– ident: ref14
  doi: 10.1145/1614320.1614350
– ident: ref26
  doi: 10.1109/tmc.2007.1025
– ident: ref34
  doi: 10.1109/TMC.2014.2320254
– ident: ref15
  doi: 10.1145/3328936
– ident: ref25
  doi: 10.1145/2632048.2636064
– ident: ref1
  doi: 10.1109/ipdps.2008.4536547
– ident: ref7
  doi: 10.1109/TrustCom.2012.218
– ident: ref36
  doi: 10.1145/2307636.2307655
– ident: ref22
  doi: 10.1109/COMST.2019.2911558
– ident: ref32
  doi: 10.1109/PERCOM.2010.5466971
– ident: ref8
  doi: 10.1109/PERCOM.2003.1192765
– ident: ref12
  doi: 10.1145/1859995.1860016
– ident: ref16
  doi: 10.1109/tim.2021.3107010
– ident: ref30
  doi: 10.1109/infcom.1993.253385
– ident: ref41
  doi: 10.1109/IPIN.2013.6817916
– ident: ref6
  doi: 10.1145/2370216.2370280
– ident: ref31
  doi: 10.1109/TMC.2014.2343636
– ident: ref20
  doi: 10.1109/TMC.2011.216
– ident: ref17
  doi: 10.1109/access.2023.3301126
– ident: ref38
  doi: 10.1109/IITSI.2010.74
– ident: ref39
  doi: 10.1109/WPNC.2007.353604
– ident: ref42
  doi: 10.1007/978-1-4757-3437-9_19
– ident: ref13
  doi: 10.1145/2307636.2307656
– ident: ref21
  doi: 10.1109/IPIN.2011.6071925
– ident: ref5
  doi: 10.1109/WISP.2009.5286542
– year: 2014
  ident: ref37
  article-title: A tutorial on principal component analysis
  publication-title: arXiv:1404.1100
– ident: ref2
  doi: 10.1109/infcom.2000.832252
– ident: ref9
  doi: 10.1109/JSYST.2013.2281257
– ident: ref23
  doi: 10.1145/1814433.1814461
– ident: ref33
  doi: 10.1109/ICUFN.2017.7993857
– ident: ref10
  doi: 10.1061/(ASCE)CP.1943-5487.0000778
– ident: ref40
  doi: 10.1145/2025876.2025884
– ident: ref24
  doi: 10.1109/access.2018.2830415
– ident: ref28
  doi: 10.1016/j.cviu.2022.103618
– start-page: 169
  volume-title: Proc. Conf. robot Learn.
  ident: ref43
  article-title: Particle filter networks with application to visual localization
– volume-title: Beyond the Kalman Filter: Particle Filters for Tracking Applications
  year: 2003
  ident: ref18
– ident: ref29
  doi: 10.1007/978-3-642-21735-7_44
SSID ssj0019757
Score 2.4213934
Snippet Unsupervised indoor localization methods have garnered significant attention for their low training costs and minimal active participation requirements. A...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35845
SubjectTerms Accuracy
Algorithms
Background noise
Clustering
Computational modeling
Data augmentation
Data models
Errors
Fingerprint recognition
Indoor localization
Inertial coordinates
inertial navigation
Inertial platforms
Kalman filters
Linear systems
Localization
Location awareness
Noise pollution
Nonlinear systems
particle filter
Phase matching
Pollution sources
Random noise
Sequences
Signal strength
Synchronism
Time measurement
Trajectory
transition model (TM)
Wi-Fi
Wireless fidelity
Title Particle Filter-Based Enhanced Transition Model in Signal for Unsupervised Localization
URI https://ieeexplore.ieee.org/document/10639338
https://www.proquest.com/docview/3123120451
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGH6jXNSDH4gRRdODJ5PhPkq3HtVACFFigkRuy9p1QiSDCDvor_dtVwjRaLzt0G5NnrbP8-79ArjyFDN2gCMlZw5NI-4IIXwnEZ4bCIkSP9MJzo991h3S3qg1ssnqJhdGKWWCz1RTPxpffjqThf5Vhicc-RRtqm3YDiNWJmutXQY8NGU98QS7Dg3CkXVhei6_6Q3afTQFfdoMkH_Nj44NEjJdVX5cxYZfOgfQX62sDCt5axZL0ZSf34o2_nvph7BvlSa5LbfGEWypvAp7G_UHq7BjW6CPP47h5cluItKZaA-6c4f8lpJ2PjYxAsSQmonvIrp_2pRMcjKYvOpPoO4lw3xRzPW9oyc9aIK0CZ41GHbaz_ddx3ZdcKTP6RJRckMpFJUp8zMe-SF33YSrKBKoXFLOlchCwXmKQksy1ZJREkifpRmKp0yFgQhOoJLPcnUKJFMJ6gkkPCoVZYolyIVU-nhPyIj6CauDu4IhlrYkue6MMY2NaeLyWCMXa-Rii1wdrtdT5mU9jr8G1zQSGwNLEOrQWIEd2yO7iAPkcE8X5_fOfpl2Drv67WUmYgMqy_dCXaAkWYpLsxW_AIb23Fk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH7iGAoDN6KcHpiQUnK4TjwCalVKWyFBRbcodhxagUJF0wF-Pc-OW1UgEFsGW7b02f6-l3cBnHuKGTvAkZIzh6YRd4QQvpMIzw2ERImf6QTnbo-1-rQ9qA9ssrrJhVFKmeAzVdOfxpefvsmp_lWGNxz5FG2qZVitU0rrZbrW3GnAQ1PYE--w69AgHFgnpufyy_ZDo4fGoE9rATKw-dWxQEOmr8qPx9gwTHMTerO9lYElL7VpIWry81vZxn9vfgs2rNYkV-Xh2IYlle_A-kIFwh2o2Cbow49deLq3x4g0R9qH7lwjw6WkkQ9NlAAxtGYivIjuoPZKRjl5GD3rJVD5kn4-mY71y6MndTRF2hTPPeg3G483Lcf2XXCkz2mBOLmhFIrKlPkZj_yQu27CVRQJ1C4p50pkoeA8RaklmarLKAmkz9IM5VOmwkAE-7CSv-XqAEimElQUSHlUKsoUS5ANqfTxpZAR9RNWBXcGQyxtUXLdG-M1NsaJy2ONXKyRiy1yVbiYTxmXFTn-GrynkVgYWIJQheMZ2LG9tJM4QBb3dHl-7_CXaWdQaT12O3Hntnd3BGt6pTIv8RhWivepOkGBUohTcyy_ADom36Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Filter-Based+Enhanced+Transition+Model+in+Signal+for+Unsupervised+Localization&rft.jtitle=IEEE+sensors+journal&rft.au=Chen%2C+Hailong&rft.au=Shen%2C+Xingfa&rft.au=Wang%2C+Yongcai&rft.au=Shi%2C+Nan&rft.date=2024-11-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=21&rft.spage=35845&rft.epage=35857&rft_id=info:doi/10.1109%2FJSEN.2024.3439540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3439540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon