Particle Filter-Based Enhanced Transition Model in Signal for Unsupervised Localization
Unsupervised indoor localization methods have garnered significant attention for their low training costs and minimal active participation requirements. A crucial approach in this field is positioning by synchronization of Wi-Fi signal strength and inertial measurement [received signal strength (RSS...
Saved in:
| Published in | IEEE sensors journal Vol. 24; no. 21; pp. 35845 - 35857 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2024.3439540 |
Cover
| Abstract | Unsupervised indoor localization methods have garnered significant attention for their low training costs and minimal active participation requirements. A crucial approach in this field is positioning by synchronization of Wi-Fi signal strength and inertial measurement [received signal strength (RSS) + inertial measurement unit (IMU)] sequences using mobile devices, which relies on abundant, disparate, and unlabeled RSS + IMU sequences to establish continuous time interval mappings between two signal state spaces for unsupervised positioning. Errors and noise pollution in sensor measurements are the main sources of inaccuracies in unsupervised indoor positioning. Therefore, the development of suitable algorithms to mitigate errors caused by environmental factors is a key research focus. The transitional model in signal space (TMS) represents a notable method based on this model. KF-TMS algorithm reduces Gaussian noise interference on measurements and positioning accuracy when using Kalman filter (KF) in linear system environments. This article introduces the Enhanceded Particle Filter TMS (EPF-TMS) algorithm, which has been designed for nonlinear systems and non-Gaussian environments. The proposed approach addresses the limitations of KF-TMS in terms of practical application scope and accuracy. The EPF-TMS algorithm enhances the mapping between continuous RSS signals and single-step motions through trajectory data augmentation and filter direction matching in the offline phase of EPF-TMS, which improves the robustness and localization accuracy of the model. In addition, this algorithm addresses the limitations of traditional transitional model-based methods through data clustering processes and data dimensionality reduction processing, which are constrained by extensive computational demands and high time complexity. Comparative experiments have demonstrated that the EPF-TMS algorithm has superior precision in both simulated and real-world experiments, effectively minimizing the impact of environmental noise on positioning. Moreover, the EPF-TMS algorithm demonstrates a notable advantage in terms of time efficiency following the completion of the offline processing phase, thereby reducing the overall time required for the localization process. |
|---|---|
| AbstractList | Unsupervised indoor localization methods have garnered significant attention for their low training costs and minimal active participation requirements. A crucial approach in this field is positioning by synchronization of Wi-Fi signal strength and inertial measurement [received signal strength (RSS) + inertial measurement unit (IMU)] sequences using mobile devices, which relies on abundant, disparate, and unlabeled RSS + IMU sequences to establish continuous time interval mappings between two signal state spaces for unsupervised positioning. Errors and noise pollution in sensor measurements are the main sources of inaccuracies in unsupervised indoor positioning. Therefore, the development of suitable algorithms to mitigate errors caused by environmental factors is a key research focus. The transitional model in signal space (TMS) represents a notable method based on this model. KF-TMS algorithm reduces Gaussian noise interference on measurements and positioning accuracy when using Kalman filter (KF) in linear system environments. This article introduces the Enhanceded Particle Filter TMS (EPF-TMS) algorithm, which has been designed for nonlinear systems and non-Gaussian environments. The proposed approach addresses the limitations of KF-TMS in terms of practical application scope and accuracy. The EPF-TMS algorithm enhances the mapping between continuous RSS signals and single-step motions through trajectory data augmentation and filter direction matching in the offline phase of EPF-TMS, which improves the robustness and localization accuracy of the model. In addition, this algorithm addresses the limitations of traditional transitional model-based methods through data clustering processes and data dimensionality reduction processing, which are constrained by extensive computational demands and high time complexity. Comparative experiments have demonstrated that the EPF-TMS algorithm has superior precision in both simulated and real-world experiments, effectively minimizing the impact of environmental noise on positioning. Moreover, the EPF-TMS algorithm demonstrates a notable advantage in terms of time efficiency following the completion of the offline processing phase, thereby reducing the overall time required for the localization process. |
| Author | Shi, Nan Chen, Hailong Shen, Xingfa Wang, Yongcai |
| Author_xml | – sequence: 1 givenname: Hailong surname: Chen fullname: Chen, Hailong email: chenhailong0903@gmail.com organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Xingfa orcidid: 0000-0002-6419-9149 surname: Shen fullname: Shen, Xingfa email: shenxf@hdu.edu.cn organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Yongcai orcidid: 0000-0002-4197-2258 surname: Wang fullname: Wang, Yongcai email: ycw@ruc.edu.cn organization: Information School, Renmin University of China, Beijing, China – sequence: 4 givenname: Nan surname: Shi fullname: Shi, Nan email: 1442113477@qq.com organization: School of Economics and Management, Hangzhou Dianzi University, Hangzhou, China |
| BookMark | eNp9kEtLAzEUhYNUsD5-gOBiwPXUvGYyWWqpL-oD2qK7kMnc0ZQxqclU0F_vjO1CXAgX7lmc7z7OPho47wChY4JHhGB5djub3I8opnzEOJMZxztoSLKsSIngxaDXDKeciec9tB_jEmMiRSaG6OlRh9aaBpJL27QQ0gsdoUom7lU704l50C7a1nqX3PkKmsS6ZGZfnG6S2odk4eJ6BeHD9tDUG93YL927D9FurZsIR9t-gBaXk_n4Op0-XN2Mz6epoZK3qS6xMCVwU-W0lgUVEmMtoShKKfJKSihrUUpZEc5MDpkpNDM0r2pMsxoEK9kBOt3MXQX_vobYqqVfh-68qBihXWGekc5FNi4TfIwBarUK9k2HT0Ww6vNTfX6qz09t8-sY8Ycxtv35rQ3aNv-SJxvSAsCvTTmTjBXsG4S6gG4 |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_3390_rs16234536 |
| Cites_doi | 10.1016/j.neucom.2015.04.011 10.1002/0471221279 10.1109/access.2023.3266874 10.1145/2348543.2348578 10.1145/1067170.1067193 10.1145/1614320.1614350 10.1109/tmc.2007.1025 10.1109/TMC.2014.2320254 10.1145/3328936 10.1145/2632048.2636064 10.1109/ipdps.2008.4536547 10.1109/TrustCom.2012.218 10.1145/2307636.2307655 10.1109/COMST.2019.2911558 10.1109/PERCOM.2010.5466971 10.1109/PERCOM.2003.1192765 10.1145/1859995.1860016 10.1109/tim.2021.3107010 10.1109/infcom.1993.253385 10.1109/IPIN.2013.6817916 10.1145/2370216.2370280 10.1109/TMC.2014.2343636 10.1109/TMC.2011.216 10.1109/access.2023.3301126 10.1109/IITSI.2010.74 10.1109/WPNC.2007.353604 10.1007/978-1-4757-3437-9_19 10.1145/2307636.2307656 10.1109/IPIN.2011.6071925 10.1109/WISP.2009.5286542 10.1109/infcom.2000.832252 10.1109/JSYST.2013.2281257 10.1145/1814433.1814461 10.1109/ICUFN.2017.7993857 10.1061/(ASCE)CP.1943-5487.0000778 10.1145/2025876.2025884 10.1109/access.2018.2830415 10.1016/j.cviu.2022.103618 10.1007/978-3-642-21735-7_44 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2024.3439540 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 35857 |
| ExternalDocumentID | 10_1109_JSEN_2024_3439540 10639338 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62072121 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Zhejiang Province; Zhejiang Provincial Natural Science Foundation grantid: LLSSZ24F020001 funderid: 10.13039/501100004731 – fundername: “Pioneer” and “Leading Goose” Research and Development Program of Zhejiang grantid: 2023C01143 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c294t-ab07cbe4cd62f9827900a9e88b976d99ebf7b99d143c6e5c8a3c26df025fe73b3 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:03:49 EDT 2025 Thu Apr 24 22:52:30 EDT 2025 Wed Oct 01 03:42:39 EDT 2025 Wed Aug 27 03:01:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-ab07cbe4cd62f9827900a9e88b976d99ebf7b99d143c6e5c8a3c26df025fe73b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6419-9149 0000-0002-4197-2258 |
| PQID | 3123120451 |
| PQPubID | 75733 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2024_3439540 crossref_citationtrail_10_1109_JSEN_2024_3439540 proquest_journals_3123120451 ieee_primary_10639338 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 Shlens (ref37) 2014 Ferris (ref35) Karkus (ref43) Ristic (ref18) 2003 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref27 doi: 10.1016/j.neucom.2015.04.011 – ident: ref19 doi: 10.1002/0471221279 – start-page: 2480 volume-title: Proc. 20th Int. Joint Conf. Artif. Intell. ident: ref35 article-title: WiFi-SLAM using Gaussian process latent variable models – ident: ref4 doi: 10.1109/access.2023.3266874 – ident: ref11 doi: 10.1145/2348543.2348578 – ident: ref3 doi: 10.1145/1067170.1067193 – ident: ref14 doi: 10.1145/1614320.1614350 – ident: ref26 doi: 10.1109/tmc.2007.1025 – ident: ref34 doi: 10.1109/TMC.2014.2320254 – ident: ref15 doi: 10.1145/3328936 – ident: ref25 doi: 10.1145/2632048.2636064 – ident: ref1 doi: 10.1109/ipdps.2008.4536547 – ident: ref7 doi: 10.1109/TrustCom.2012.218 – ident: ref36 doi: 10.1145/2307636.2307655 – ident: ref22 doi: 10.1109/COMST.2019.2911558 – ident: ref32 doi: 10.1109/PERCOM.2010.5466971 – ident: ref8 doi: 10.1109/PERCOM.2003.1192765 – ident: ref12 doi: 10.1145/1859995.1860016 – ident: ref16 doi: 10.1109/tim.2021.3107010 – ident: ref30 doi: 10.1109/infcom.1993.253385 – ident: ref41 doi: 10.1109/IPIN.2013.6817916 – ident: ref6 doi: 10.1145/2370216.2370280 – ident: ref31 doi: 10.1109/TMC.2014.2343636 – ident: ref20 doi: 10.1109/TMC.2011.216 – ident: ref17 doi: 10.1109/access.2023.3301126 – ident: ref38 doi: 10.1109/IITSI.2010.74 – ident: ref39 doi: 10.1109/WPNC.2007.353604 – ident: ref42 doi: 10.1007/978-1-4757-3437-9_19 – ident: ref13 doi: 10.1145/2307636.2307656 – ident: ref21 doi: 10.1109/IPIN.2011.6071925 – ident: ref5 doi: 10.1109/WISP.2009.5286542 – year: 2014 ident: ref37 article-title: A tutorial on principal component analysis publication-title: arXiv:1404.1100 – ident: ref2 doi: 10.1109/infcom.2000.832252 – ident: ref9 doi: 10.1109/JSYST.2013.2281257 – ident: ref23 doi: 10.1145/1814433.1814461 – ident: ref33 doi: 10.1109/ICUFN.2017.7993857 – ident: ref10 doi: 10.1061/(ASCE)CP.1943-5487.0000778 – ident: ref40 doi: 10.1145/2025876.2025884 – ident: ref24 doi: 10.1109/access.2018.2830415 – ident: ref28 doi: 10.1016/j.cviu.2022.103618 – start-page: 169 volume-title: Proc. Conf. robot Learn. ident: ref43 article-title: Particle filter networks with application to visual localization – volume-title: Beyond the Kalman Filter: Particle Filters for Tracking Applications year: 2003 ident: ref18 – ident: ref29 doi: 10.1007/978-3-642-21735-7_44 |
| SSID | ssj0019757 |
| Score | 2.4213934 |
| Snippet | Unsupervised indoor localization methods have garnered significant attention for their low training costs and minimal active participation requirements. A... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35845 |
| SubjectTerms | Accuracy Algorithms Background noise Clustering Computational modeling Data augmentation Data models Errors Fingerprint recognition Indoor localization Inertial coordinates inertial navigation Inertial platforms Kalman filters Linear systems Localization Location awareness Noise pollution Nonlinear systems particle filter Phase matching Pollution sources Random noise Sequences Signal strength Synchronism Time measurement Trajectory transition model (TM) Wi-Fi Wireless fidelity |
| Title | Particle Filter-Based Enhanced Transition Model in Signal for Unsupervised Localization |
| URI | https://ieeexplore.ieee.org/document/10639338 https://www.proquest.com/docview/3123120451 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGH6jXNSDH4gRRdODJ5PhPkq3HtVACFFigkRuy9p1QiSDCDvor_dtVwjRaLzt0G5NnrbP8-79ArjyFDN2gCMlZw5NI-4IIXwnEZ4bCIkSP9MJzo991h3S3qg1ssnqJhdGKWWCz1RTPxpffjqThf5Vhicc-RRtqm3YDiNWJmutXQY8NGU98QS7Dg3CkXVhei6_6Q3afTQFfdoMkH_Nj44NEjJdVX5cxYZfOgfQX62sDCt5axZL0ZSf34o2_nvph7BvlSa5LbfGEWypvAp7G_UHq7BjW6CPP47h5cluItKZaA-6c4f8lpJ2PjYxAsSQmonvIrp_2pRMcjKYvOpPoO4lw3xRzPW9oyc9aIK0CZ41GHbaz_ddx3ZdcKTP6RJRckMpFJUp8zMe-SF33YSrKBKoXFLOlchCwXmKQksy1ZJREkifpRmKp0yFgQhOoJLPcnUKJFMJ6gkkPCoVZYolyIVU-nhPyIj6CauDu4IhlrYkue6MMY2NaeLyWCMXa-Rii1wdrtdT5mU9jr8G1zQSGwNLEOrQWIEd2yO7iAPkcE8X5_fOfpl2Drv67WUmYgMqy_dCXaAkWYpLsxW_AIb23Fk |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH7iGAoDN6KcHpiQUnK4TjwCalVKWyFBRbcodhxagUJF0wF-Pc-OW1UgEFsGW7b02f6-l3cBnHuKGTvAkZIzh6YRd4QQvpMIzw2ERImf6QTnbo-1-rQ9qA9ssrrJhVFKmeAzVdOfxpefvsmp_lWGNxz5FG2qZVitU0rrZbrW3GnAQ1PYE--w69AgHFgnpufyy_ZDo4fGoE9rATKw-dWxQEOmr8qPx9gwTHMTerO9lYElL7VpIWry81vZxn9vfgs2rNYkV-Xh2IYlle_A-kIFwh2o2Cbow49deLq3x4g0R9qH7lwjw6WkkQ9NlAAxtGYivIjuoPZKRjl5GD3rJVD5kn4-mY71y6MndTRF2hTPPeg3G483Lcf2XXCkz2mBOLmhFIrKlPkZj_yQu27CVRQJ1C4p50pkoeA8RaklmarLKAmkz9IM5VOmwkAE-7CSv-XqAEimElQUSHlUKsoUS5ANqfTxpZAR9RNWBXcGQyxtUXLdG-M1NsaJy2ONXKyRiy1yVbiYTxmXFTn-GrynkVgYWIJQheMZ2LG9tJM4QBb3dHl-7_CXaWdQaT12O3Hntnd3BGt6pTIv8RhWivepOkGBUohTcyy_ADom36Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Filter-Based+Enhanced+Transition+Model+in+Signal+for+Unsupervised+Localization&rft.jtitle=IEEE+sensors+journal&rft.au=Chen%2C+Hailong&rft.au=Shen%2C+Xingfa&rft.au=Wang%2C+Yongcai&rft.au=Shi%2C+Nan&rft.date=2024-11-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=21&rft.spage=35845&rft.epage=35857&rft_id=info:doi/10.1109%2FJSEN.2024.3439540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3439540 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |