Defending Against Data Poisoning Attack in Federated Learning With Non-IID Data

Federated learning (FL) is an emerging paradigm that allows participants to collaboratively train deep learning tasks while protecting the privacy of their local data. However, the absence of central server control in distributed environments exposes a vulnerability to data poisoning attacks, where...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computational social systems Vol. 11; no. 2; pp. 2313 - 2325
Main Authors Yin, Chunyong, Zeng, Qingkui
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2329-924X
2373-7476
DOI10.1109/TCSS.2023.3296885

Cover

Abstract Federated learning (FL) is an emerging paradigm that allows participants to collaboratively train deep learning tasks while protecting the privacy of their local data. However, the absence of central server control in distributed environments exposes a vulnerability to data poisoning attacks, where adversaries manipulate the behavior of compromised clients by poisoning local data. In particular, data poisoning attacks against FL can have a drastic impact when the participant's local data is non-independent and identically distributed (non-IID). Most existing defense strategies have demonstrated promising results in mitigating FL poisoning attacks, however, fail to maintain their effectiveness with non-IID data. In this work, we propose an effective defense framework, FL data augmentation (FLDA), which defends against data poisoning attacks through local data mixup on the clients. In addition, to mitigate the non-IID effect by exploiting the limited local data, we propose a gradient detection strategy to reduce the proportion of malicious clients and raise benign clients. Experimental results on datasets show that FLDA can effectively reduce the poisoning success rate and improve the global model training accuracy under poisoning attacks for non-IID data. Furthermore, FLDA can increase the FL accuracy by more than 12% after detecting malicious clients.
AbstractList Federated learning (FL) is an emerging paradigm that allows participants to collaboratively train deep learning tasks while protecting the privacy of their local data. However, the absence of central server control in distributed environments exposes a vulnerability to data poisoning attacks, where adversaries manipulate the behavior of compromised clients by poisoning local data. In particular, data poisoning attacks against FL can have a drastic impact when the participant's local data is non-independent and identically distributed (non-IID). Most existing defense strategies have demonstrated promising results in mitigating FL poisoning attacks, however, fail to maintain their effectiveness with non-IID data. In this work, we propose an effective defense framework, FL data augmentation (FLDA), which defends against data poisoning attacks through local data mixup on the clients. In addition, to mitigate the non-IID effect by exploiting the limited local data, we propose a gradient detection strategy to reduce the proportion of malicious clients and raise benign clients. Experimental results on datasets show that FLDA can effectively reduce the poisoning success rate and improve the global model training accuracy under poisoning attacks for non-IID data. Furthermore, FLDA can increase the FL accuracy by more than 12% after detecting malicious clients.
Author Zeng, Qingkui
Yin, Chunyong
Author_xml – sequence: 1
  givenname: Chunyong
  orcidid: 0000-0001-5764-2432
  surname: Yin
  fullname: Yin, Chunyong
  email: yinchunyong@hotmail.com
  organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Qingkui
  surname: Zeng
  fullname: Zeng, Qingkui
  organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
BookMark eNp9kE1PAjEQhhuDiYj8ABMPm3he7Od2eyQgSkLEBIzemu62i0VssS0H_70scDAePM1kZp55k-cSdJx3BoBrBAcIQXG3HC0WAwwxGRAsirJkZ6CLCSc5p7zotD0WucD07QL0Y1xDCBFmjGPYBfOxaYzT1q2y4UpZF1M2Vkllz95G7w7jlFT9kVmXTYw2QSWjs5lR4bB8tek9e_Iun07HB_AKnDdqE03_VHvgZXK_HD3ms_nDdDSc5TUWNOVCVKqsFBOMEEohbxrIWIlRhZWApKFMV5qxgteYEopZUTdcGaSRIrpASBekB26Pf7fBf-1MTHLtd8HtIyWBBBEhKKT7K3S8qoOPMZhGboP9VOFbIihbdbJVJ1t18qRuz_A_TG2TSta7FJTd_EveHElrjPmVhERJBCc_IYx7hw
CODEN ITCSGL
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107320
crossref_primary_10_1109_JIOT_2024_3462674
crossref_primary_10_1109_TMC_2024_3447087
crossref_primary_10_3390_fi16110415
Cites_doi 10.1186/s40537-019-0197-0
10.1109/DSA52907.2021.00081
10.1109/SP46215.2023.10179362
10.1016/j.future.2022.04.010
10.1109/DSC55868.2022.00014
10.1109/ICASSP39728.2021.9414862
10.1109/TIFS.2022.3212174
10.1145/3538707
10.1109/sp46215.2023.10179336
10.1109/tmc.2022.3173642
10.1007/978-3-031-17143-7_22
10.1109/TC.2022.3169436
10.1007/978-3-030-58951-6_24
10.1109/TII.2022.3156645
10.1109/tetc.2023.3268186
10.1109/MNET.112.2100706
10.1109/JSAC.2021.3118347
10.1109/TII.2022.3172310
10.1109/IJCNN.2017.7966217
10.3390/electronics11152393
10.1109/TNSM.2023.3278838
10.1109/TIFS.2021.3080522
10.1109/TIFS.2022.3169918
10.1109/ICECCME55909.2022.9988067
10.48550/arxiv.1710.09412
10.1109/TIFS.2023.3249568
10.1109/TNSE.2022.3175945
10.1109/MSP.2020.2975749
10.1109/TPDS.2022.3205714
10.1145/3501296
10.1109/CVPRW56347.2022.00383
10.1016/j.iot.2020.100187
10.1109/tnnls.2022.3182979
10.1016/j.cose.2023.103270
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSS.2023.3296885
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2373-7476
EndPage 2325
ExternalDocumentID 10_1109_TCSS_2023_3296885
10198397
Genre orig-research
GrantInformation_xml – fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province
  grantid: KYCX23_1357
– fundername: National Natural Science Foundation of China
  grantid: 61772282
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-99ba8ba595334407ff055821b2a903f45dbd5567c2434256cf7ae1d1a3d611d63
IEDL.DBID RIE
ISSN 2329-924X
IngestDate Mon Jun 30 13:53:49 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Tue Jul 01 00:23:37 EDT 2025
Wed Aug 27 02:17:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-99ba8ba595334407ff055821b2a903f45dbd5567c2434256cf7ae1d1a3d611d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5764-2432
PQID 3031399404
PQPubID 2040411
PageCount 13
ParticipantIDs ieee_primary_10198397
crossref_primary_10_1109_TCSS_2023_3296885
proquest_journals_3031399404
crossref_citationtrail_10_1109_TCSS_2023_3296885
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on computational social systems
PublicationTitleAbbrev TCSS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
Ahmed (ref29) 2022; 26
ref37
ref36
Fang (ref21)
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Krizhevsky (ref45) 2009
Fung (ref47)
Yin (ref14)
ref24
ref46
Ozfatura (ref15) 2022
Blanchard (ref23); 30
ref26
ref25
Jebreel (ref7) 2022
ref20
ref42
ref41
ref43
McMahan (ref40)
ref28
ref8
Panda (ref22)
Sun (ref27); 34
ref9
ref4
ref3
ref6
ref5
Xiao (ref44) 2017
Wang (ref13) 2022
References_xml – ident: ref18
  doi: 10.1186/s40537-019-0197-0
– volume: 30
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Machine learning with adversaries: Byzantine tolerant gradient descent
– ident: ref26
  doi: 10.1109/DSA52907.2021.00081
– ident: ref37
  doi: 10.1109/SP46215.2023.10179362
– ident: ref35
  doi: 10.1016/j.future.2022.04.010
– ident: ref24
  doi: 10.1109/DSC55868.2022.00014
– start-page: 7587
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref22
  article-title: SparseFed: Mitigating model poisoning attacks in federated learning with sparsification
– ident: ref19
  doi: 10.1109/ICASSP39728.2021.9414862
– ident: ref30
  doi: 10.1109/TIFS.2022.3212174
– ident: ref6
  doi: 10.1145/3538707
– ident: ref31
  doi: 10.1109/sp46215.2023.10179336
– year: 2022
  ident: ref7
  article-title: Defending against the label-flipping attack in federated learning
  publication-title: arXiv:2207.01982
– ident: ref12
  doi: 10.1109/tmc.2022.3173642
– ident: ref46
  doi: 10.1007/978-3-031-17143-7_22
– ident: ref41
  doi: 10.1109/TC.2022.3169436
– ident: ref17
  doi: 10.1007/978-3-030-58951-6_24
– start-page: 301
  volume-title: Proc. 23rd Int. Symp. Res. Attacks, Intrusions Defenses
  ident: ref47
  article-title: The limitations of federated learning in Sybil settings
– ident: ref5
  doi: 10.1109/TII.2022.3156645
– start-page: 5650
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref14
  article-title: Byzantine-robust distributed learning: Towards optimal statistical rates
– ident: ref39
  doi: 10.1109/tetc.2023.3268186
– ident: ref42
  doi: 10.1109/MNET.112.2100706
– volume: 34
  start-page: 12613
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: FL-WBC: Enhancing robustness against model poisoning attacks in federated learning from a client perspective
– ident: ref36
  doi: 10.1109/JSAC.2021.3118347
– start-page: 1273
  volume-title: Proc. PMLR
  ident: ref40
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref9
  doi: 10.1109/TII.2022.3172310
– year: 2022
  ident: ref13
  article-title: BRIEF but powerful: Byzantine-robust and privacy-preserving federated learning via model segmentation and secure clustering
  publication-title: arXiv:2208.10161
– ident: ref43
  doi: 10.1109/IJCNN.2017.7966217
– start-page: 1605
  volume-title: Proc. 29th USENIX Secur. Symp.
  ident: ref21
  article-title: Local model poisoning attacks to Byzantine-robust federated learning
– ident: ref11
  doi: 10.3390/electronics11152393
– ident: ref32
  doi: 10.1109/TNSM.2023.3278838
– ident: ref8
  doi: 10.1109/TIFS.2021.3080522
– ident: ref10
  doi: 10.1109/TIFS.2022.3169918
– ident: ref38
  doi: 10.1109/ICECCME55909.2022.9988067
– year: 2022
  ident: ref15
  article-title: Byzantines can also learn from history: Fall of centered clipping in federated learning
  publication-title: arXiv:2208.09894
– ident: ref20
  doi: 10.48550/arxiv.1710.09412
– ident: ref33
  doi: 10.1109/TIFS.2023.3249568
– ident: ref3
  doi: 10.1109/TNSE.2022.3175945
– ident: ref4
  doi: 10.1109/MSP.2020.2975749
– year: 2009
  ident: ref45
  article-title: Learning multiple layers of features from tiny images
– year: 2017
  ident: ref44
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
  publication-title: arXiv:1708.07747
– ident: ref16
  doi: 10.1109/TPDS.2022.3205714
– ident: ref2
  doi: 10.1145/3501296
– volume: 26
  start-page: 973
  issue: 7
  year: 2022
  ident: ref29
  article-title: CCF based system framework in federated learning against data poisoning attacks
  publication-title: J. Appl. Sci. Eng.
– ident: ref34
  doi: 10.1109/CVPRW56347.2022.00383
– ident: ref1
  doi: 10.1016/j.iot.2020.100187
– ident: ref25
  doi: 10.1109/tnnls.2022.3182979
– ident: ref28
  doi: 10.1016/j.cose.2023.103270
SSID ssj0001255720
Score 2.3321106
Snippet Federated learning (FL) is an emerging paradigm that allows participants to collaboratively train deep learning tasks while protecting the privacy of their...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2313
SubjectTerms Clients
Cognitive tasks
Computational modeling
Data augmentation
Data models
data poisoning
Deep learning
Distributed databases
Federated learning
federated learning (FL)
gradient detection
Model accuracy
Servers
Training
Training data
Title Defending Against Data Poisoning Attack in Federated Learning With Non-IID Data
URI https://ieeexplore.ieee.org/document/10198397
https://www.proquest.com/docview/3031399404
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJy_-nDidkoMHFVqbNmmT49gcTnAK23C3kqTpHJNOXHfxrzdJMxmK4q20eSXk5eW9JO_7HgAXHCEhEFNert2LhxGVHtVuyiP6A6FUMcYNGvlhEN-N8f2ETBxY3WJhlFI2-Uz55tHe5WcLuTJHZdrC9RZZO9AaqOl5VoG1Ng5UCEnC9c0lCtjNqDMc-qY8uB-FLKamXPKG77HFVH6swNat9HbBYN2hKptk7q9K4cuPb1yN_-7xHthxASZsVzNiH2yp4gA0KxQudJa8hJeObvrqEDx2Va4stgW2p3ymw0XY5SWHTwuTaGRflyWXczgrYM9QT-joNIOOl3UKn2flCxwsCq_f71rBBhj3bkedO8-VWfBkyHDpMSY4FZyYRFOs93d5HhADnxUhZ0GUY5KJjJA4kSGOtIXHMk-4QhniURYjlMXREagXi0IdA6gSJgk1CwXDhvmNJlGcxZRIIrS0EE0QrBWQSsdBbkphvKZ2LxKw1OgsNTpLnc6a4PpL5K0i4PirccPoYKNhNfxN0FqrOXU2ukwjQ1vJGA7wyS9ip2Bb_90l6rRAvXxfqTMdg5Ti3M69T-mn1VU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH5i5bBdxq9OCwzwYQdAShYndmIfp3ZVy9qC1FbsFtmO01VFKaLphb8e23GnagjELUr8FMvPz-_Zft_3AC4FxlJirsPKuJeQYKZCZtxUSM0HypjmXFg08mSaDRfk8x2982B1h4XRWrvkMx3ZR3eXX27Uzh6VGQs3W2TjQI_gqXH8hLRwrYMjFUrzZH93iWN-Ne_NZpEtEB6lCc-YLZh84H1cOZU_1mDnWAbPYLrvUptPso52jYzUr0dsjf_d5-dw6kNMdN3OiRfwRNcvIWhxuMjb8hZ98ITTH1_Bl76utEO3oOulWJmAEfVFI9DXjU01cq-bRqg1WtVoYMknTHxaIs_MukTfVs09mm7qcDTqO8EuLAY3894w9IUWQpVw0oScS8GkoDbVlJgdXlXF1AJoZSJ4nFaElrKkNMtVQlJj45mqcqFxiUVaZhiXWXoGnXpT63NAOueKMrtUcGK531ieZmXGqKLSSEsZQLxXQKE8C7kthvG9cLuRmBdWZ4XVWeF1FsCnB5EfLQXHvxp3rQ4OGrbDH8DFXs2Ft9JtkVriSs5JTF7_Rew9HA_nk3ExHk1v38CJ-ZNP27mATvNzp9-aiKSR79w8_A0_Gdih
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defending+Against+Data+Poisoning+Attack+in+Federated+Learning+With+Non-IID+Data&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Yin%2C+Chunyong&rft.au=Zeng%2C+Qingkui&rft.date=2024-04-01&rft.pub=IEEE&rft.eissn=2373-7476&rft.volume=11&rft.issue=2&rft.spage=2313&rft.epage=2325&rft_id=info:doi/10.1109%2FTCSS.2023.3296885&rft.externalDocID=10198397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon