Divisor equitably strong non-split divisor equitable domination in graphs

In epidemiology, the spread of diseases can be modelled using graphs, where individuals are nodes, and edges represent potential pathways for disease transmission. A non-split dominating set could help identify key individuals (or groups) whose monitoring or immunization would ensure that the rest o...

Full description

Saved in:
Bibliographic Details
Published inMathematics in applied sciences and engineering Vol. 6; no. 2; pp. 125 - 137
Main Authors G. B., Priyanka, P, Xavier, John, J. Catherine Grace
Format Journal Article
LanguageEnglish
Published Western Libraries 01.06.2025
Subjects
Online AccessGet full text
ISSN2563-1926
2563-1926
DOI10.5206/mase/21259

Cover

Abstract In epidemiology, the spread of diseases can be modelled using graphs, where individuals are nodes, and edges represent potential pathways for disease transmission. A non-split dominating set could help identify key individuals (or groups) whose monitoring or immunization would ensure that the rest of the population (the non-dominated group) remains connected and can be controlled in case of disease spread. This approach has the potential to have a significant impact across various areas of medicine. We present the idea of non-split divisor equitable domination in graphs as a way to optimize medical networks. Let Q be a graph with vertex set R(Q) and edge set E (Q). Two vertices  h and  t  are known as degree divisor equitable if gcd(dQ(h), dQ(t)) = 1. F ⊂ R(Q) is known as divisor equitable dominating set of Q if ∀ h ∈ R\F, ∋ a t ∈ F such that h and t are adjacent and degree divisor equitable. The divisor equitable domination number of a graph γde(Q) of Q is the minimum cardinality of a divisor equitable dominating set of Q. In this paper, we introduce the concept of a non-split divisor equitable dominating set, divisor equitably strong non-split divisor equitable dominating set, and divisor equitable independent set and divisor equitable clique number. It also explores the concepts of a divisor equitable vertex dominating set, complement divisor equitable graph, and divisor equitable vertex cut.
AbstractList In epidemiology, the spread of diseases can be modelled using graphs, where individuals are nodes, and edges represent potential pathways for disease transmission. A non-split dominating set could help identify key individuals (or groups) whose monitoring or immunization would ensure that the rest of the population (the non-dominated group) remains connected and can be controlled in case of disease spread. This approach has the potential to have a significant impact across various areas of medicine. We present the idea of non-split divisor equitable domination in graphs as a way to optimize medical networks. Let Q be a graph with vertex set R(Q) and edge set E (Q). Two vertices  h and  t  are known as degree divisor equitable if gcd(dQ(h), dQ(t)) = 1. F ⊂ R(Q) is known as divisor equitable dominating set of Q if ∀ h ∈ R\F, ∋ a t ∈ F such that h and t are adjacent and degree divisor equitable. The divisor equitable domination number of a graph γde(Q) of Q is the minimum cardinality of a divisor equitable dominating set of Q. In this paper, we introduce the concept of a non-split divisor equitable dominating set, divisor equitably strong non-split divisor equitable dominating set, and divisor equitable independent set and divisor equitable clique number. It also explores the concepts of a divisor equitable vertex dominating set, complement divisor equitable graph, and divisor equitable vertex cut.
Author John, J. Catherine Grace
G. B., Priyanka
P, Xavier
Author_xml – sequence: 1
  givenname: Priyanka
  surname: G. B.
  fullname: G. B., Priyanka
– sequence: 2
  givenname: Xavier
  surname: P
  fullname: P, Xavier
– sequence: 3
  givenname: J. Catherine Grace
  surname: John
  fullname: John, J. Catherine Grace
BookMark eNp9kM9LwzAUgINMcM5d_At6VurS1yZpjjJ_DQZe9BzS9GVmdE1NOmX_vd0mIh48vcfj43vwnZNR61sk5DKjNwwon210xBlkwOQJGQPjeZpJ4KNf-xmZxrimlIIoGRdyTBZ37sNFHxJ837peV80uiX3w7SoZ5GnsGtcn9R8Ek9pvXKt759vEtckq6O4tXpBTq5uI0-85Ia8P9y_zp3T5_LiY3y5TA7LoU1FnCJwzFAWVCLZitrKgGaeWVbnklay50aYobcaRVyzPkZUUmC4KQ62k-YQsjt7a67XqgtvosFNeO3U4-LBSOvTONKiMBWugzOuyhIIxGPzSYibE8N0iisF1fXRt207vPnXT_AgzqvZR1T6qOkQd6KsjbYKPMaD9D_4C68V7Lw
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.5206/mase/21259
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2563-1926
EndPage 137
ExternalDocumentID oai_doaj_org_article_cf2fc283d8824552b399fe1775e7fee7
10.5206/mase/21259
10_5206_mase_21259
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ADTOC
M48
UNPAY
ID FETCH-LOGICAL-c294t-7d1e2665e7409e2fb5fbf2a560f5b396b9d6cac48f16e6b533e58025a44c0f903
IEDL.DBID UNPAY
ISSN 2563-1926
IngestDate Fri Oct 03 12:45:25 EDT 2025
Sun Sep 07 11:09:33 EDT 2025
Wed Oct 01 05:45:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-7d1e2665e7409e2fb5fbf2a560f5b396b9d6cac48f16e6b533e58025a44c0f903
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.5206/mase/21259
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_cf2fc283d8824552b399fe1775e7fee7
unpaywall_primary_10_5206_mase_21259
crossref_primary_10_5206_mase_21259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Mathematics in applied sciences and engineering
PublicationYear 2025
Publisher Western Libraries
Publisher_xml – name: Western Libraries
SSID ssj0002785679
Score 2.2957783
Snippet In epidemiology, the spread of diseases can be modelled using graphs, where individuals are nodes, and edges represent potential pathways for disease...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 125
SubjectTerms Equitable domination, equitable non-split domination, divisor equitable domination, divisor equitable non-split domination
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF2BAIECUL1miq1XHsZ1k5KsqSDBRqVsUfxwqKqWlKaj_nnNSqogBFtbIkp13id-7i_OOkI6JcFfkrmCZdYZJzHuYSWXMtI2UcQ4JAUId8uFR9wfyfqiGjVZf4UxYbQ9cA9e1IMAiBzqUglIpYZBRwUdJonwC3lf_kfM0ayRTL_XnNKWTrPYjVYLr7iuSQhf36WBK2mCgyqh_m2wuJtNi-VmMxw126e2SnZUspJf1cvbIhp_sk7ub0Ucwx6R-tsAU3oyXdB4q188Uc3Y2R_lYUvdjiKfuLZxuCXjT0YRWhtTzAzLo3T5d99mq9QGzIpMlS1zkkTrxHjH_8gKMAgOiQHkCChHQJnPaFlamEGmvDWo2r1KUL4WUlkPG40PSwqX4I0ItvpPAFajIxlKFCoY0EHMDXAuIfNEmF99w5NPa4SLHzCCAlgfQ8gq0NrkKSK1HBFfq6gLGKl_FKv8rVm3SWeP8y1zH_zHXCdkSoVVvVTA5Ja3yfeHPUD-U5rx6VL4AF8vFTw
  priority: 102
  providerName: Directory of Open Access Journals
Title Divisor equitably strong non-split divisor equitable domination in graphs
URI https://doi.org/10.5206/mase/21259
https://doaj.org/article/cf2fc283d8824552b399fe1775e7fee7
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2563-1926
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002785679
  issn: 2563-1926
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2563-1926
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002785679
  issn: 2563-1926
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADDwGivGRBV7d52E4zQmkFSCAGKpUpil-oopRCExAM_HbO6UOlA2LJEF3ky118993Z-QxQlT5GRU-nNFZaUoZ1D5UNFlKhfC61xoRgXR_y5lZcdth1l3dLcDL9F2Zu_Z4Hnqg_YyyvY3jl8RIsC454uwzLndu7swd3ahwXIUWIIsa8owsP_Mo0BSH_Gqzkg2H6-ZH2-3NZpL0Bzen4480jT7U8kzX1tUDN-LeCm7A-AZHkbOz1LSiZwTZcXfTeHZUmMa85Fvyy_0lGrs_9SLDCpyMEmxnRCyKG6Be3F8Z5h_QGpKCvHu1Ap926b17SyUEJVAUxy2ikfYOJlpsIqzUTWMmttEGKYMZyGcZCxlqoVLGG9YUREhGe4Q0EOyljyrOxF-5CGVUxe0AUzmDrcct9FTLu-h1M2tCT1hOB9U1agdOpUZPhmA8jwTrCmSJxpkgKU1Tg3Nl7JuE4rIsbaLlkMiUSZQOrEN1oBPmM8wA1ja3xowjfwxoTVaA689YfY-3_T-wAVgN3dG_RQDmEcvaWmyPEE5k8LupwvN58t44nH9cPLjHL4w
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGdgAOPASI8VIEXLP1kaTrcQymgQTiwCQ4Vc0LTYzxWAeCX4_TdhPsMHGtXMW1G_uzm34GOJU-RkVPpzRWWlKGdQ-VLRZSoXwutcaEYF0f8vpG9Prs6p7fV-B4-i_Mr-_3PPBE8xljeRPDK4-XoCY44u0q1Po3t-0HNzWOi5AiRBEF7-jcDX8yTU7IvwrLk9Fr-vWZDoe_skh3HTrT9YvDI0-NSSYb6nuOmnGxghuwVoJI0i68vgkVM9qCy_PBh6PSJOZtggW_HH6RsetzPxKs8OkYwWZG9JyIIfrFnYVx3iGDEcnpq8fb0O9e3HV6tByUQFUQs4xG2jeYaLmJsFozgZXcShukCGYsl2EsZKyFShVrWV8YIRHhGd5CsJMypjwbe-EOVFEVswtE4Q62HrfcVyHjrt_BpA09aT0RWN-kdTiZGjV5LfgwEqwjnCkSZ4okN0Udzpy9ZxKOwzq_gJZLyi2RKBtYhehGI8hnnAeoaWyNH0X4HNaYqA6nM28tWGvvf2L7sBK40b15A-UAqtn7xBwinsjkUflC_QCwvsm9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divisor+equitably+strong+non-split+divisor+equitable+domination+in+graphs&rft.jtitle=Mathematics+in+applied+sciences+and+engineering&rft.au=Priyanka+G.+B.&rft.au=Xavier+P&rft.au=J.+Catherine+Grace+John&rft.date=2025-06-01&rft.pub=Western+Libraries&rft.eissn=2563-1926&rft.volume=6&rft.issue=2&rft_id=info:doi/10.5206%2Fmase%2F21259&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cf2fc283d8824552b399fe1775e7fee7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2563-1926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2563-1926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2563-1926&client=summon