The external photoevaporation of structured protoplanetary disks

Context . The dust in planet-forming disks is known to evolve rapidly through growth and radial drift. In the high irradiation environments of massive star-forming regions where most stars form, external photoevaporation also contributes to rapid dispersal of disks. This raises the question of why w...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 681; p. A84
Main Authors Gárate, Matías, Pinilla, Paola, Haworth, Thomas J., Facchini, Stefano
Format Journal Article
LanguageEnglish
Published 01.01.2024
Online AccessGet full text
ISSN0004-6361
1432-0746
1432-0746
DOI10.1051/0004-6361/202347850

Cover

Abstract Context . The dust in planet-forming disks is known to evolve rapidly through growth and radial drift. In the high irradiation environments of massive star-forming regions where most stars form, external photoevaporation also contributes to rapid dispersal of disks. This raises the question of why we still observe quite high disk dust masses in massive star-forming regions. Aims . We test whether the presence of substructures is enough to explain the survival of the dust component and observed millimeter continuum emission in protoplanetary disks located within massive star-forming regions. We also characterize the dust content removed by the photoevaporative winds. Methods . We performed hydrodynamical simulations (including gas and dust evolution) of protoplanetary disks subject to irradiation fields of F UV = 10 2 , 10 3 , and 10 4 G 0 , with different dust trap configurations. We used the FRIED grid to derive the mass loss rate for each irradiation field and disk properties, and then proceed to measure the evolution of the dust mass over time. For each simulation we estimated the continuum emission at λ = 1.3 mm along with the radii encompassing 90% of the continuum flux, and characterized the dust size distribution entrained in the photoevaporative winds, in addition to the resulting far-ultraviolet (FUV) cross section. Results . Our simulations show that the presence of dust traps can extend the lifetime of the dust component of the disk to a few millionyears if the FUV irradiation is F UV ≲ 10 3 G 0 , but only if the dust traps are located inside the photoevaporative truncation radius. The dust component of a disk will be quickly dispersed if the FUV irradiation is strong (10 4 G 0 ) or if the substructures are located outside the photoevaporation radius. We do find however, that the dust grains entrained with the photoevaporative winds may result in an absorption FUV cross section of σ ≈ 10 −22 cm 2 at early times of evolution (<0.1 Myr), which is enough to trigger a self-shielding effect that reduces the total mass loss rate, and slow down the disk dispersal in a negative feedback loop process.
AbstractList Context . The dust in planet-forming disks is known to evolve rapidly through growth and radial drift. In the high irradiation environments of massive star-forming regions where most stars form, external photoevaporation also contributes to rapid dispersal of disks. This raises the question of why we still observe quite high disk dust masses in massive star-forming regions. Aims . We test whether the presence of substructures is enough to explain the survival of the dust component and observed millimeter continuum emission in protoplanetary disks located within massive star-forming regions. We also characterize the dust content removed by the photoevaporative winds. Methods . We performed hydrodynamical simulations (including gas and dust evolution) of protoplanetary disks subject to irradiation fields of F UV = 10 2 , 10 3 , and 10 4 G 0 , with different dust trap configurations. We used the FRIED grid to derive the mass loss rate for each irradiation field and disk properties, and then proceed to measure the evolution of the dust mass over time. For each simulation we estimated the continuum emission at λ = 1.3 mm along with the radii encompassing 90% of the continuum flux, and characterized the dust size distribution entrained in the photoevaporative winds, in addition to the resulting far-ultraviolet (FUV) cross section. Results . Our simulations show that the presence of dust traps can extend the lifetime of the dust component of the disk to a few millionyears if the FUV irradiation is F UV ≲ 10 3 G 0 , but only if the dust traps are located inside the photoevaporative truncation radius. The dust component of a disk will be quickly dispersed if the FUV irradiation is strong (10 4 G 0 ) or if the substructures are located outside the photoevaporation radius. We do find however, that the dust grains entrained with the photoevaporative winds may result in an absorption FUV cross section of σ ≈ 10 −22 cm 2 at early times of evolution (<0.1 Myr), which is enough to trigger a self-shielding effect that reduces the total mass loss rate, and slow down the disk dispersal in a negative feedback loop process.
Author Gárate, Matías
Haworth, Thomas J.
Facchini, Stefano
Pinilla, Paola
Author_xml – sequence: 1
  givenname: Matías
  surname: Gárate
  fullname: Gárate, Matías
– sequence: 2
  givenname: Paola
  orcidid: 0000-0001-8764-1780
  surname: Pinilla
  fullname: Pinilla, Paola
– sequence: 3
  givenname: Thomas J.
  orcidid: 0000-0002-9593-7618
  surname: Haworth
  fullname: Haworth, Thomas J.
– sequence: 4
  givenname: Stefano
  orcidid: 0000-0003-4689-2684
  surname: Facchini
  fullname: Facchini, Stefano
BookMark eNqNkM1OwzAQhC1UJNLCE3DJC4Suf-LYN1DFn1SJSzlHTmKrARNbtgv07Uko6oED4rQa7XyrnZmj2eAGjdAlhisMJV4CACs45XhJgFBWiRJOUIYZJQVUjM9QdnScoXmML6MkWNAMXW-2OtefSYdB2dxvXXL6XXkXVOrdkDuTxxR2bdoF3eU-jGtv1aCTCvu86-NrPEenRtmoL37mAj3f3W5WD8X66f5xdbMuWiJZKipuCO6EFkJDI3EljDBMilbKpiolYVJqQkouAfOmaxRrmtGFKSEYDHQloQvEDnd3g1f7D2Vt7UP_Nv5RY6inFuopYz1lrI8tjBg9YG1wMQZt_knJX1Tbp-9GUlC9_ZP9AikLcp8
CitedBy_id crossref_primary_10_1051_0004_6361_202451633
crossref_primary_10_3847_1538_4357_ad822b
crossref_primary_10_1051_0004_6361_202451051
crossref_primary_10_3847_1538_4357_ad84df
Cites_doi 10.1051/0004-6361:20077759
10.1051/0004-6361/200912452
10.1093/mnras/stad445
10.1086/301087
10.1093/mnras/stz2545
10.1146/annurev.astro.41.011802.094840
10.1146/annurev.aa.19.090181.001033
10.1093/pasj/59.5.897
10.1086/155591
10.1093/mnras/stad1981
10.1093/mnras/stz2747
10.3847/1538-4357/aac3e2
10.1093/mnras/282.4.1321
10.1088/0004-637X/774/1/9
10.1051/0004-6361/201219315
10.1093/mnras/168.3.603
10.1051/0004-6361/202038087
10.3847/1538-4357/abdb2a
10.3847/1538-4357/acd334
10.1093/mnras/sty2323
10.3847/1538-4357/acd384
10.3847/2041-8213/aaf741
10.3847/1538-4357/ace901
10.1086/527469
10.1093/mnras/stad3054
10.1093/mnras/stz473
10.1088/0004-637X/784/1/82
10.1051/0004-6361/200913403
10.21105/joss.03882
10.1086/175083
10.1016/0019-1035(86)90121-1
10.1086/344437
10.1051/0004-6361/202346135
10.1051/0004-6361/201219262
10.3847/1538-4357/ac29c2
10.1093/mnras/stac3506
10.1093/mnras/180.2.57
10.1093/mnras/199.4.883
10.1051/0004-6361/202243338
10.1051/0004-6361/200913731
10.1093/mnras/stac684
10.1016/j.icarus.2007.07.012
10.3847/1538-4357/834/2/142
10.1086/421989
10.1093/mnras/stw240
10.1051/0004-6361/201118136
10.1051/0004-6361/201118204
10.1029/2007JD009744
10.1016/0019-1035(90)90015-2
10.1086/172786
10.3847/1538-4357/aa6d7c
10.1046/j.1365-8711.2001.04274.x
10.1051/0004-6361/201423708
10.1046/j.1365-8711.2001.04891.x
10.1086/170270
10.1006/icar.1995.1058
10.1093/mnras/stz3528
10.1086/300399
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1051/0004-6361/202347850
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10.1051/0004-6361/202347850
10_1051_0004_6361_202347850
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
ABUFD
ADTOC
UNPAY
ID FETCH-LOGICAL-c294t-76f21d8e88e0b9178f8f498c99b7592499e22569016bdba4bbb91132210f0d523
IEDL.DBID UNPAY
ISSN 0004-6361
1432-0746
IngestDate Sun Oct 26 04:11:11 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Wed Oct 01 04:31:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-76f21d8e88e0b9178f8f498c99b7592499e22569016bdba4bbb91132210f0d523
ORCID 0000-0001-8764-1780
0000-0002-9593-7618
0000-0003-4689-2684
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1051/0004-6361/202347850
ParticipantIDs unpaywall_primary_10_1051_0004_6361_202347850
crossref_primary_10_1051_0004_6361_202347850
crossref_citationtrail_10_1051_0004_6361_202347850
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2024
References Villenave (R56) 2020; 642
Eisner (R19) 2018; 860
Ballering (R6) 2023; 954
Mann (R32) 2014; 784
Shakura (R50) 1973; 24
Weidenschilling (R58) 1977; 180
Mathis (R33) 1977; 217
R22
Drążkowska (R17) 2014; 567
Blandford (R12) 1982; 199
Kounkel (R28) 2017; 834
Scally (R48) 2001; 325
Andrews (R3) 2018; 869
Bally (R7) 1998; 116
Brauer (R13) 2008; 480
Lynden-Bell (R31) 1974; 168
McCullough (R34) 1995; 438
R4
Ohashi (R37) 2023; 951
Haworth (R24) 2018; 481
Winter (R62) 2019; 490
Sellek (R49) 2020; 492
Smoluchowski (R51) 1916; 17
Zubko (R66) 1996; 282
Balbus (R5) 1991; 376
Fatuzzo (R21) 2008; 675
Wilhelm (R60) 2023; 520
Nakagawa (R35) 1986; 67
Powell (R44) 2017; 840
Kunitomo (R29) 2021; 909
Zhang (R65) 2023; 952
Pringle (R45) 1981; 19
Stadler (R52) 2022; 668
Li (R30) 1997; 323
Youdin (R64) 2007; 192
Pinilla (R43) 2012; 538
Hirota (R27) 2007; 59
Birnstiel (R10) 2012; 544
Owen (R40) 2023; 519
Pinilla (R42) 2012; 545
Facchini (R20) 2016; 457
Stammler (R53) 2022; 7
Pascucci (R41) 2023; 534
Adams (R1) 2004; 611
Casassus (R14) 2023; 526
Birnstiel (R11) 2012; 539
Habing (R23) 1968; 19
Haworth (R25) 2023; 526
O’Dell (R36) 1993; 410
Birnstiel (R8) 2009; 503
Draine (R16) 2003; 41
Anderson (R2) 2013; 774
Dubrulle (R18) 1995; 114
Qiao (R46) 2022; 512
Takeuchi (R54) 2002; 581
Winter (R61) 2019; 485
R57
R59
Winter (R63) 2020; 491
Clarke (R15) 2001; 328
Birnstiel (R9) 2010; 513
Henney (R26) 1999; 118
Ohtsuki (R38) 1990; 83
Ricci (R47) 2010; 512
Otter (R39) 2021; 923
van Terwisga (R55) 2023; 673
References_xml – ident: R59
– volume: 480
  start-page: 859
  year: 2008
  ident: R13
  publication-title: A&A
  doi: 10.1051/0004-6361:20077759
– volume: 503
  start-page: L5
  year: 2009
  ident: R8
  publication-title: A&A
  doi: 10.1051/0004-6361/200912452
– volume: 520
  start-page: 5331
  year: 2023
  ident: R60
  publication-title: MNRAS
  doi: 10.1093/mnras/stad445
– volume: 17
  start-page: 557
  year: 1916
  ident: R51
  publication-title: Z. Phys.
– volume: 118
  start-page: 2350
  year: 1999
  ident: R26
  publication-title: AJ
  doi: 10.1086/301087
– volume: 490
  start-page: 5478
  year: 2019
  ident: R62
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2545
– volume: 41
  start-page: 241
  year: 2003
  ident: R16
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.41.011802.094840
– volume: 19
  start-page: 137
  year: 1981
  ident: R45
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.19.090181.001033
– volume: 59
  start-page: 897
  year: 2007
  ident: R27
  publication-title: PASJ
  doi: 10.1093/pasj/59.5.897
– volume: 217
  start-page: 425
  year: 1977
  ident: R33
  publication-title: ApJ
  doi: 10.1086/155591
– volume: 526
  start-page: 1545
  year: 2023
  ident: R14
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1981
– volume: 491
  start-page: 903
  year: 2020
  ident: R63
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2747
– volume: 860
  start-page: 77
  year: 2018
  ident: R19
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac3e2
– volume: 282
  start-page: 1321
  year: 1996
  ident: R66
  publication-title: MNRAS
  doi: 10.1093/mnras/282.4.1321
– volume: 774
  start-page: 9
  year: 2013
  ident: R2
  publication-title: ApJ
  doi: 10.1088/0004-637X/774/1/9
– volume: 545
  start-page: A81
  year: 2012
  ident: R42
  publication-title: A&A
  doi: 10.1051/0004-6361/201219315
– volume: 168
  start-page: 603
  year: 1974
  ident: R31
  publication-title: MNRAS
  doi: 10.1093/mnras/168.3.603
– volume: 323
  start-page: 566
  year: 1997
  ident: R30
  publication-title: A&A
– ident: R22
– volume: 642
  start-page: A164
  year: 2020
  ident: R56
  publication-title: A&A
  doi: 10.1051/0004-6361/202038087
– volume: 909
  start-page: 109
  year: 2021
  ident: R29
  publication-title: ApJ
  doi: 10.3847/1538-4357/abdb2a
– volume: 534
  start-page: 567
  year: 2023
  ident: R41
  publication-title: ASP Conf. Ser.
– volume: 24
  start-page: 337
  year: 1973
  ident: R50
  publication-title: A&A
– volume: 952
  start-page: 108
  year: 2023
  ident: R65
  publication-title: ApJ
  doi: 10.3847/1538-4357/acd334
– volume: 481
  start-page: 452
  year: 2018
  ident: R24
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2323
– volume: 951
  start-page: 8
  year: 2023
  ident: R37
  publication-title: ApJ
  doi: 10.3847/1538-4357/acd384
– volume: 869
  start-page: L41
  year: 2018
  ident: R3
  publication-title: ApJ
  doi: 10.3847/2041-8213/aaf741
– volume: 954
  start-page: 127
  year: 2023
  ident: R6
  publication-title: ApJ
  doi: 10.3847/1538-4357/ace901
– volume: 675
  start-page: 1361
  year: 2008
  ident: R21
  publication-title: ApJ
  doi: 10.1086/527469
– volume: 526
  start-page: 4315
  year: 2023
  ident: R25
  publication-title: MNRAS
  doi: 10.1093/mnras/stad3054
– volume: 485
  start-page: 1489
  year: 2019
  ident: R61
  publication-title: MNRAS
  doi: 10.1093/mnras/stz473
– volume: 784
  start-page: 82
  year: 2014
  ident: R32
  publication-title: ApJ
  doi: 10.1088/0004-637X/784/1/82
– volume: 512
  start-page: A15
  year: 2010
  ident: R47
  publication-title: A&A
  doi: 10.1051/0004-6361/200913403
– volume: 7
  start-page: 3882
  year: 2022
  ident: R53
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.03882
– volume: 438
  start-page: 394
  year: 1995
  ident: R34
  publication-title: ApJ
  doi: 10.1086/175083
– volume: 67
  start-page: 375
  year: 1986
  ident: R35
  publication-title: Icarus
  doi: 10.1016/0019-1035(86)90121-1
– volume: 581
  start-page: 1344
  year: 2002
  ident: R54
  publication-title: ApJ
  doi: 10.1086/344437
– volume: 673
  start-page: A2
  year: 2023
  ident: R55
  publication-title: A&A
  doi: 10.1051/0004-6361/202346135
– volume: 544
  start-page: A79
  year: 2012
  ident: R10
  publication-title: A&A
  doi: 10.1051/0004-6361/201219262
– volume: 923
  start-page: 221
  year: 2021
  ident: R39
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac29c2
– volume: 519
  start-page: 397
  year: 2023
  ident: R40
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3506
– volume: 180
  start-page: 57
  year: 1977
  ident: R58
  publication-title: MNRAS
  doi: 10.1093/mnras/180.2.57
– volume: 199
  start-page: 883
  year: 1982
  ident: R12
  publication-title: MNRAS
  doi: 10.1093/mnras/199.4.883
– volume: 668
  start-page: A104
  year: 2022
  ident: R52
  publication-title: A&A
  doi: 10.1051/0004-6361/202243338
– volume: 513
  start-page: A79
  year: 2010
  ident: R9
  publication-title: A&A
  doi: 10.1051/0004-6361/200913731
– volume: 512
  start-page: 3788
  year: 2022
  ident: R46
  publication-title: MNRAS
  doi: 10.1093/mnras/stac684
– volume: 192
  start-page: 588
  year: 2007
  ident: R64
  publication-title: Icarus
  doi: 10.1016/j.icarus.2007.07.012
– volume: 834
  start-page: 142
  year: 2017
  ident: R28
  publication-title: ApJ
  doi: 10.3847/1538-4357/834/2/142
– volume: 611
  start-page: 360
  year: 2004
  ident: R1
  publication-title: ApJ
  doi: 10.1086/421989
– volume: 457
  start-page: 3593
  year: 2016
  ident: R20
  publication-title: MNRAS
  doi: 10.1093/mnras/stw240
– volume: 539
  start-page: A148
  year: 2012
  ident: R11
  publication-title: A&A
  doi: 10.1051/0004-6361/201118136
– volume: 19
  start-page: 421
  year: 1968
  ident: R23
  publication-title: Bull. Astron. Inst. Netherlands
– volume: 538
  start-page: A114
  year: 2012
  ident: R43
  publication-title: A&A
  doi: 10.1051/0004-6361/201118204
– ident: R57
  doi: 10.1029/2007JD009744
– volume: 83
  start-page: 205
  year: 1990
  ident: R38
  publication-title: Icarus
  doi: 10.1016/0019-1035(90)90015-2
– volume: 410
  start-page: 696
  year: 1993
  ident: R36
  publication-title: ApJ
  doi: 10.1086/172786
– volume: 840
  start-page: 93
  year: 2017
  ident: R44
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa6d7c
– volume: 325
  start-page: 449
  year: 2001
  ident: R48
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04274.x
– volume: 567
  start-page: A38
  year: 2014
  ident: R17
  publication-title: A&A
  doi: 10.1051/0004-6361/201423708
– volume: 328
  start-page: 485
  year: 2001
  ident: R15
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04891.x
– volume: 376
  start-page: 214
  year: 1991
  ident: R5
  publication-title: ApJ
  doi: 10.1086/170270
– volume: 114
  start-page: 237
  year: 1995
  ident: R18
  publication-title: Icarus
  doi: 10.1006/icar.1995.1058
– volume: 492
  start-page: 1279
  year: 2020
  ident: R49
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3528
– ident: R4
– volume: 116
  start-page: 293
  year: 1998
  ident: R7
  publication-title: AJ
  doi: 10.1086/300399
SSID ssj0002183
Score 2.55423
Snippet Context . The dust in planet-forming disks is known to evolve rapidly through growth and radial drift. In the high irradiation environments of massive...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage A84
Title The external photoevaporation of structured protoplanetary disks
URI https://doi.org/10.1051/0004-6361/202347850
UnpaywallVersion publishedVersion
Volume 681
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 1432-0746
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002183
  issn: 0004-6361
  databaseCode: GI~
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UYvTiB2rAD9KD8WTJxrrS3iRGRA-EgyR4WtquiwZkCxsaPPi3266DiDEGb-_w1ixvb-n7vY_fA-CC-46ULQ8jzGmIMHUEYr6QKOQkZJGbz-uabose6Q7ww9AfFjzbZhZmpX7vu2bQACPiEdegdA-3qMHnZeLrwLsEyoNev_1kA1yrlc8SeaafEpMFx9Dvp6zcQ9uzScLn73w8_na5dPbs1HaacxKanpJRY5aJhvz4wdi45nvvg90iyIRt6xUHYENNKqDaTk3aO36dw0uYyzarkVbAVt9Kh-Bauw1cMEPD5DnOYvXGk8JPYBxBSzg7m6oQGo6HODHdshmfzmH4ko7SIzDo3D7edFGxZAHJJsMZapGo6YZUUaocobEbjWiEGZWMiZZvwBlT-pc3a6uICAXHQmgtA2FdJ3JCDWOPQWkST1QVQMmERk-UMiEw5vooJQRXVBHOqSSK10BzYfJAFgzkZhHGOMgr4b5rKuE4MFYLllargavlQ4kl4PhbHS2_5Tr6J__UPwU7WsY2CXMGStrm6lyHJZmog827-8964ZRf0LjTqQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kRfTioyqtL_YgntySNJvN7s0iFvFQerBQT2VfQWlNQpMq9de7m02LFZF6m8NkCZMJO988vgHgioeelFGAEeZUIUw9gVgoJFKcKBb75byu7bbok4chfhyFo4pn287CrNXvQ98OGmBEAuJblB7giFp8XiehCbxroD7sD7rPLsB1WuUsUWD7KTFZcgz9fsraPbQzTzK--ODT6bfLpbfvprbzkpPQ9pRM2vNCtOXnD8bGDd_7AOxVQSbsOq84BFs6aYBmN7dp7_RtAa9hKbusRt4A2wMnHYFb4zZwyQwNs5e0SPU7zyo_gWkMHeHsfKYVtBwPaWa7ZQs-W0D1mk_yYzDs3T_dPaBqyQKSHYYLFJG44yuqKdWeMNiNxjTGjErGRBRacMa0-eXt2ioilOBYCKNlIazvxZ4yMPYE1JI00U0AJRMGPVHKhMCYm6O0EFxTTTinkmjeAp2lyceyYiC3izCm47ISHvq2Eo7H1mrjldVa4Gb1UOYIOP5WR6tvuYn-6T_1z8CukbFLwpyDmrG5vjBhSSEuK3f8At-U0no
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+external+photoevaporation+of+structured+protoplanetary+disks&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=G%C3%A1rate%2C+Mat%C3%ADas&rft.au=Pinilla%2C+Paola&rft.au=Haworth%2C+Thomas+J.&rft.au=Facchini%2C+Stefano&rft.date=2024-01-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=681&rft.spage=A84&rft_id=info:doi/10.1051%2F0004-6361%2F202347850&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202347850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon