Privacy-preserving federated semi-supervised learning for battery life prediction amid data scarcity
Accurate prediction of remaining useful life (RUL) is essential for effective battery management and lifespan optimisation. While recent machine learning approaches offer promising results, their development relies heavily on abundant degradation data with RUL labels, which requires costly run-to-fa...
Saved in:
Published in | Journal of energy storage Vol. 128; p. 117152 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
30.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-152X |
DOI | 10.1016/j.est.2025.117152 |
Cover
Abstract | Accurate prediction of remaining useful life (RUL) is essential for effective battery management and lifespan optimisation. While recent machine learning approaches offer promising results, their development relies heavily on abundant degradation data with RUL labels, which requires costly run-to-failure tests lasting years. Although massive degradation data are available from millions of batteries in laboratories and in service, access to such data is often restricted due to privacy concerns. Additionally, they usually suffer from quality issues, particularly the absence of RUL labels. To address these issues, we propose a federated-based semi-supervised learning framework enabling collaborative training among diverse battery users that own limited degradation data with RUL labels. This method not only enhances battery RUL prediction by effectively utilising low-cost routine operational data without RUL labels but also protects data privacy across battery users through secure model parameter aggregation. The proposed method is validated on two battery degradation datasets comprising 40 batteries cycled over 24,900 times. Comparative evaluations against federated learning (FL), semi-supervised learning (SSL), and supervised learning (SL) methods are conducted to highlight the effectiveness of our method. Results show that the FL, SSL, and SL methods achieve root mean squared errors (RMSEs) of 27.1, 33.8, and 40.1 cycles, respectively. In contrast, the proposed method achieves an RMSE of 21.3 cycles, resulting in reductions of 21.4 %, 37.0 %, and 46.9 %. This work underscores the potential of federated semi-supervised learning as a practical solution for accurate RUL prediction with reduced battery tests while addressing privacy concerns.
•A semi-supervised learning (SSL) framework combined with a federated learning (FL) approach for battery RUL prediction.•Collaborations are enabled among the battery users without disclosing their data privacy.•The method allows varying amounts of test data and diverse numbers of battery users.•The model’s performance is rationalised by visualising the correlation between extracted features and battery degradation. |
---|---|
AbstractList | Accurate prediction of remaining useful life (RUL) is essential for effective battery management and lifespan optimisation. While recent machine learning approaches offer promising results, their development relies heavily on abundant degradation data with RUL labels, which requires costly run-to-failure tests lasting years. Although massive degradation data are available from millions of batteries in laboratories and in service, access to such data is often restricted due to privacy concerns. Additionally, they usually suffer from quality issues, particularly the absence of RUL labels. To address these issues, we propose a federated-based semi-supervised learning framework enabling collaborative training among diverse battery users that own limited degradation data with RUL labels. This method not only enhances battery RUL prediction by effectively utilising low-cost routine operational data without RUL labels but also protects data privacy across battery users through secure model parameter aggregation. The proposed method is validated on two battery degradation datasets comprising 40 batteries cycled over 24,900 times. Comparative evaluations against federated learning (FL), semi-supervised learning (SSL), and supervised learning (SL) methods are conducted to highlight the effectiveness of our method. Results show that the FL, SSL, and SL methods achieve root mean squared errors (RMSEs) of 27.1, 33.8, and 40.1 cycles, respectively. In contrast, the proposed method achieves an RMSE of 21.3 cycles, resulting in reductions of 21.4 %, 37.0 %, and 46.9 %. This work underscores the potential of federated semi-supervised learning as a practical solution for accurate RUL prediction with reduced battery tests while addressing privacy concerns.
•A semi-supervised learning (SSL) framework combined with a federated learning (FL) approach for battery RUL prediction.•Collaborations are enabled among the battery users without disclosing their data privacy.•The method allows varying amounts of test data and diverse numbers of battery users.•The model’s performance is rationalised by visualising the correlation between extracted features and battery degradation. |
ArticleNumber | 117152 |
Author | Ma, Liang Tian, Jinpeng Zhang, Tieling Guo, Qinghua Chung, Chi-yung |
Author_xml | – sequence: 1 givenname: Liang surname: Ma fullname: Ma, Liang organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia – sequence: 2 givenname: Jinpeng surname: Tian fullname: Tian, Jinpeng email: jinpeng.tian@polyu.edu.hk organization: Department of Electrical and Electronic Engineering and Research Centre for Grid Modernisation, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China – sequence: 3 givenname: Tieling surname: Zhang fullname: Zhang, Tieling email: tieling@uow.edu.au organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia – sequence: 4 givenname: Qinghua surname: Guo fullname: Guo, Qinghua organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia – sequence: 5 givenname: Chi-yung surname: Chung fullname: Chung, Chi-yung organization: Department of Electrical and Electronic Engineering and Research Centre for Grid Modernisation, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China |
BookMark | eNp9kM1OwzAMgHMYEmPsAbjlBVri_mStOKGJP2kSHEDiFrmOizJt7ZSESX17MsaZk23Zn2V_V2I2jAMLcQMqBwX6dptziHmhijoHWEFdzMS8KOsiS-nnpViGsFUqDdYArZ4L--bdEWnKDp4D-6MbvmTPlj1GtjLw3mXh-3BqhFTvGP3wOzJ62WGM7Ce5cz3LhFtH0Y2DxL2z0mJEGQg9uThdi4sed4GXf3EhPh4f3tfP2eb16WV9v8moaKuYaQVYY4Udal03tqxa5rYg1TZaY6961XbUWACmVUMlaF1BaTuyqlNcIvXlQsB5L_kxBM-9OXi3Rz8ZUOZkx2xNsmNOdszZTmLuzgynw46OvQnkeKD0jmeKxo7uH_oH2Xxzlg |
Cites_doi | 10.1016/j.apenergy.2023.122555 10.1038/s41467-022-29837-w 10.1145/3654662 10.1109/TVT.2018.2805189 10.1016/j.est.2024.112947 10.1016/j.apenergy.2023.122356 10.1016/j.apenergy.2024.124713 10.1016/j.est.2024.115097 10.1109/ACCESS.2020.3019477 10.1038/s41560-019-0356-8 10.1016/j.eswa.2023.121892 10.1016/j.est.2023.107868 10.1149/1945-7111/abdafb 10.1016/j.compag.2024.109758 10.1016/j.energy.2022.123556 10.1109/TPEL.2024.3434751 10.1016/j.ensm.2021.12.044 10.1016/j.ensm.2022.10.030 10.1016/j.egyr.2024.04.039 10.1016/j.jpowsour.2019.226830 10.1016/j.apenergy.2023.122325 10.1016/j.joule.2020.01.013 10.1126/science.1253292 10.1016/j.ensm.2022.05.007 10.1016/j.jechem.2023.12.043 10.1016/j.est.2024.113172 10.1016/j.egyai.2024.100458 10.1016/j.est.2024.114287 10.1016/j.etran.2023.100270 10.1109/JIOT.2024.3433460 10.1016/j.jechem.2021.12.004 10.1016/j.egyr.2023.10.030 10.1016/j.est.2024.114134 10.1016/j.apenergy.2021.118134 10.1016/j.etran.2019.100005 10.1016/j.jechem.2024.06.017 10.1007/s11704-023-3282-7 10.1016/j.apenergy.2024.125169 10.17977/um018v2i12019p41-46 10.1016/j.rser.2022.112282 10.1016/j.est.2024.114822 10.1109/TIM.2021.3055791 10.1016/j.est.2024.114153 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.est.2025.117152 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_est_2025_117152 S2352152X25018651 |
GroupedDBID | --M 0R~ 457 4G. 6I. 7-5 AAEDT AAEDW AAFTH AAHCO AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP AXJTR BELTK BJAXD BKOJK BLXMC BNPGV EBS EFJIC EFKBS FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSH SSR SST SSZ T5K ~G- AAYXX CITATION EJD |
ID | FETCH-LOGICAL-c294t-601a5a4aba6658d349ee92c09866af0f09bc8d11ec78c3166413dbcd0b0e3acf3 |
IEDL.DBID | AIKHN |
ISSN | 2352-152X |
IngestDate | Thu Jul 03 08:41:14 EDT 2025 Sat Jul 19 17:10:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Federated learning Remaining useful life Semi-supervised learning |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-601a5a4aba6658d349ee92c09866af0f09bc8d11ec78c3166413dbcd0b0e3acf3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2352152X25018651 |
ParticipantIDs | crossref_primary_10_1016_j_est_2025_117152 elsevier_sciencedirect_doi_10_1016_j_est_2025_117152 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-30 |
PublicationDateYYYYMMDD | 2025-08-30 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Journal of energy storage |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hossain Lipu, Rahman, Mansor, Rahman, Ansari, Fuad, Hannan (bb0105) 2024; 98 Sanz-Gorrachategui, Pastor-Flores, Pajovic, Wang, Orlik, Bernal-Ruiz, Bono-Nuez, Artal-Sevil (bb0115) 2021; 70 Liu, Hou, Ahmed, Mao, Feng, Chen (bb0160) 2024; 358 López, Fontenla-Romero, Hernández-Pereira, Guijarro-Berdiñas, Blanco-Seijo, Fernandez-Paz (bb0185) 2024 Jia, Li, Zhao, Wang, Wang, Liu (bb0200) 2024; 97 Yao, Chen, Sun, Gao, Yu, Gao, Li, Zhang (bb0010) 2024 Zhang, Li (bb0130) 2022; 161 Liu, Zou, Wang, Chen, Huang, Zhang, Zhang, Peng (bb0055) 2024 Wang, Yan, Rong, Yuan, Jiang, Han, Sui, Jin, Li (bb0235) 2024; 56 Zhu, Wang, Huang, Bhushan Gopaluni, Cao, Heere, Mühlbauer, Mereacre, Dai, Liu, Senyshyn, Wei, Knapp, Ehrenberg (bb0250) 2022; 13 Guo, Zhang, He, Tao, Zhang, Liu, Li, Tian, Shen, Chung (bb0045) 2025 Han, Yue, Yang, Zhou, Yu (bb0180) 2024; 39 Lu, Xiong, Tian, Wang, Hsu, Tsou, Sun, Li (bb0155) 2022; 50 Bjorck, Gomes, Selman, Weinberger (bb0240) 2018 Li, Zhao, Miah, Niu (bb0145) 2023; 10 Deng, Bae, Denlinger, Miller (bb0005) 2020; 4 You, Zhu, Wang, Jiang, Wei, Dai (bb0040) 2023; 18 Reza, Mannan, Mansor, Ker, Mahlia, Hannan (bb0065) 2024; 11 Wang, Wang, Tansey, Liu, Delaney, Quan (bb0020) 2025; 229 Li, Lyv, Gao, Li, Zhu (bb0220) 2025; 19 Palacín, de Guibert (bb0035) 2016; 351 Ma, Tian, Zhang, Guo, Hu (bb0170) 2024; 91 Lin, Xu, Shi, Mei (bb0080) 2022; 247 Severson, Attia, Jin, Perkins, Jiang, Yang, Chen, Aykol, Herring, Fraggedakis, Bazant, Harris, Chueh, Braatz (bb0050) 2019; 4 Altinpulluk, Altinpulluk, Ramanan, Paulson, Qiu, Babinec, Yildirim (bb0175) 2024; 5 Xia, Yu, Chen (bb0075) 2024; 102 Fan, Wu, Zhao, Mo (bb0230) 2024; 356 Xie, Wang, Zhang, Takyi-Aninakwa, Fernandez, Blaabjerg (bb0070) 2024; 97 Liu, Zhang, Chen, Zhu, Yan, Huang, Peng (bb0140) 2022; 68 Shi, An, Du, Ding, Jia, Li, Zhang (bb0030) 2025; 108 Guo, He, Li, Zhou, Zhang, Liu, Yang (bb0015) 2024; 103 Lu, Xiong, Tian, Wang, Hsu, Tsou, Sun, Li (bb0060) 2022; 50 Jais, Ismail, Nisa (bb0245) 2019; 2 Hsu, Xiong, Chen, Li, Tsou (bb0125) 2022; 306 Ye, Wang, Yan, Wei, Lian, Zhao, Zhu (bb0205) 2024; 238 Zhao, Zhang, Zhang, Zhang, Zhang, Zhang (bb0135) 2025; 379 Liu, Zheng, Shi, Tong, Zhang (bb0210) 2024; 18 Xu, Lin, Xie, Hu (bb0090) 2022; 45 Han, Lu, Zheng, Feng, Li, Li, Ouyang (bb0025) 2019; 1 Garrick, Gao, Yang, Koch (bb0085) 2021; 168 Diao, Saxena, Pecht (bb0100) 2019; 435 Zhao, Zhang, Zhang, Zhang, Zhang, Zhang (bb0110) 2024; 358 Ma, Jiang, Hu, Chen (bb0165) 2025; 381 He, Li, Liu, Liu, Guo, Du, Li, Sun, Ming (bb0120) 2023; 70 Huang, Li, Peng, Tang, Ye (bb0190) 2024; 11 Zhang, Wang, Ruan, Zhang (bb0195) 2024; 102 Saldana, Martin, Zamora, Asensio, Onederra, Gonzalez (bb0095) 2020; 8 Lin, Xu, Mei (bb0215) 2023; 54 Liu, Ding, Cai, Luo, Yao, Wang (bb0225) 2025; 106 Zhang, Xiong, He, Pecht (bb0150) 2018; 67 Guo (10.1016/j.est.2025.117152_bb0015) 2024; 103 Li (10.1016/j.est.2025.117152_bb0145) 2023; 10 Wang (10.1016/j.est.2025.117152_bb0235) 2024; 56 Xie (10.1016/j.est.2025.117152_bb0070) 2024; 97 Palacín (10.1016/j.est.2025.117152_bb0035) 2016; 351 Shi (10.1016/j.est.2025.117152_bb0030) 2025; 108 Zhao (10.1016/j.est.2025.117152_bb0110) 2024; 358 Guo (10.1016/j.est.2025.117152_bb0045) 2025 Han (10.1016/j.est.2025.117152_bb0025) 2019; 1 Lin (10.1016/j.est.2025.117152_bb0080) 2022; 247 Wang (10.1016/j.est.2025.117152_bb0020) 2025; 229 Hossain Lipu (10.1016/j.est.2025.117152_bb0105) 2024; 98 Bjorck (10.1016/j.est.2025.117152_bb0240) 2018 Reza (10.1016/j.est.2025.117152_bb0065) 2024; 11 Xu (10.1016/j.est.2025.117152_bb0090) 2022; 45 Liu (10.1016/j.est.2025.117152_bb0140) 2022; 68 Hsu (10.1016/j.est.2025.117152_bb0125) 2022; 306 Liu (10.1016/j.est.2025.117152_bb0210) 2024; 18 Lu (10.1016/j.est.2025.117152_bb0060) 2022; 50 Han (10.1016/j.est.2025.117152_bb0180) 2024; 39 Severson (10.1016/j.est.2025.117152_bb0050) 2019; 4 He (10.1016/j.est.2025.117152_bb0120) 2023; 70 Garrick (10.1016/j.est.2025.117152_bb0085) 2021; 168 Saldana (10.1016/j.est.2025.117152_bb0095) 2020; 8 Zhao (10.1016/j.est.2025.117152_bb0135) 2025; 379 Ye (10.1016/j.est.2025.117152_bb0205) 2024; 238 Huang (10.1016/j.est.2025.117152_bb0190) 2024; 11 Ma (10.1016/j.est.2025.117152_bb0165) 2025; 381 Li (10.1016/j.est.2025.117152_bb0220) 2025; 19 You (10.1016/j.est.2025.117152_bb0040) 2023; 18 Ma (10.1016/j.est.2025.117152_bb0170) 2024; 91 Xia (10.1016/j.est.2025.117152_bb0075) 2024; 102 Lu (10.1016/j.est.2025.117152_bb0155) 2022; 50 Lin (10.1016/j.est.2025.117152_bb0215) 2023; 54 Altinpulluk (10.1016/j.est.2025.117152_bb0175) 2024; 5 Jia (10.1016/j.est.2025.117152_bb0200) 2024; 97 Jais (10.1016/j.est.2025.117152_bb0245) 2019; 2 Zhu (10.1016/j.est.2025.117152_bb0250) 2022; 13 Zhang (10.1016/j.est.2025.117152_bb0195) 2024; 102 Zhang (10.1016/j.est.2025.117152_bb0130) 2022; 161 Yao (10.1016/j.est.2025.117152_bb0010) 2024 Diao (10.1016/j.est.2025.117152_bb0100) 2019; 435 López (10.1016/j.est.2025.117152_bb0185) 2024 Sanz-Gorrachategui (10.1016/j.est.2025.117152_bb0115) 2021; 70 Liu (10.1016/j.est.2025.117152_bb0225) 2025; 106 Deng (10.1016/j.est.2025.117152_bb0005) 2020; 4 Liu (10.1016/j.est.2025.117152_bb0160) 2024; 358 Liu (10.1016/j.est.2025.117152_bb0055) 2024 Zhang (10.1016/j.est.2025.117152_bb0150) 2018; 67 Fan (10.1016/j.est.2025.117152_bb0230) 2024; 356 |
References_xml | – volume: 108 year: 2025 ident: bb0030 article-title: Experimental study on the degradation characteristics and mechanism of lithium-ion batteries under mild mechanical deformation publication-title: J. Energy Storage – volume: 5 year: 2024 ident: bb0175 article-title: Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems publication-title: Cell Rep. Phys. Sci. – volume: 50 start-page: 139 year: 2022 end-page: 151 ident: bb0155 article-title: Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning publication-title: Energy Storage Mater. – year: 2018 ident: bb0240 article-title: Understanding batch normalization publication-title: Adv. Neural Inf. Process. Syst – volume: 50 start-page: 139 year: 2022 end-page: 151 ident: bb0060 article-title: Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning publication-title: Energy Storage Mater. – volume: 19 year: 2025 ident: bb0220 article-title: A co-estimation framework of state of health and remaining useful life for lithium-ion batteries using the semi-supervised learning algorithm publication-title: Energy AI – volume: 91 start-page: 512 year: 2024 end-page: 521 ident: bb0170 article-title: Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning publication-title: J. Energy Chem. – volume: 106 year: 2025 ident: bb0225 article-title: A battery SOH estimation method based on entropy domain features and semi-supervised learning under limited sample conditions publication-title: J. Energy Storage – volume: 103 year: 2024 ident: bb0015 article-title: Aging mechanisms of cylindrical NCA/Si-graphite battery with high specific energy under dynamic driving cycles publication-title: J. Energy Storage – volume: 8 start-page: 155576 year: 2020 end-page: 155589 ident: bb0095 article-title: Empirical electrical and degradation model for electric vehicle batteries publication-title: IEEE Access – volume: 11 start-page: 4824 year: 2024 end-page: 4848 ident: bb0065 article-title: Recent advancement of remaining useful life prediction of lithium-ion battery in electric vehicle applications: a review of modelling mechanisms, network configurations, factors, and outstanding issues publication-title: Energy Rep. – volume: 2 start-page: 41 year: 2019 end-page: 46 ident: bb0245 article-title: Adam optimization algorithm for wide and deep neural network publication-title: Knowl. Eng. Data Sci. – volume: 98 year: 2024 ident: bb0105 article-title: Data driven health and life prognosis management of supercapacitor and lithium-ion battery storage systems: developments, implementation aspects, limitations, and future directions publication-title: J. Energy Storage – start-page: 1 year: 2025 end-page: 12 ident: bb0045 article-title: Robust health monitoring for lithium-ion batteries under guidance of proxy labels: a deep multi-task learning approach publication-title: IEEE Trans. Power Electron. – volume: 70 year: 2023 ident: bb0120 article-title: Research progress and application of deep learning in remaining useful life, state of health and battery thermal management of lithium batteries publication-title: J. Energy Storage – volume: 1 year: 2019 ident: bb0025 article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle publication-title: eTransportation – year: 2024 ident: bb0055 article-title: Interpretable learning of accelerated aging in lithium metal batteries publication-title: J. Am. Chem. Soc. – volume: 306 year: 2022 ident: bb0125 article-title: Deep neural network battery life and voltage prediction by using data of one cycle only publication-title: Appl. Energy – year: 2024 ident: bb0010 article-title: Identifying the lithium bond and lithium ionic bond in electrolytes publication-title: Chem – volume: 379 year: 2025 ident: bb0135 article-title: Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization publication-title: Appl. Energy – volume: 39 start-page: 15085 year: 2024 end-page: 15100 ident: bb0180 article-title: Source-free dynamic weighted federated transfer learning for state-of-health estimation of lithium-ion batteries with data privacy publication-title: IEEE Trans. Power Electron. – volume: 68 start-page: 548 year: 2022 end-page: 555 ident: bb0140 article-title: A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries publication-title: J. Energy Chem. – volume: 356 year: 2024 ident: bb0230 article-title: Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance publication-title: Appl. Energy – volume: 13 start-page: 2261 year: 2022 ident: bb0250 article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation publication-title: Nat. Commun. – volume: 18 year: 2023 ident: bb0040 article-title: Nonlinear aging knee-point prediction for lithium-ion batteries faced with different application scenarios publication-title: ETransportation – volume: 358 year: 2024 ident: bb0110 article-title: Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning publication-title: Appl. Energy – start-page: 565 year: 2024 end-page: 571 ident: bb0185 article-title: RUL prediction of lithium-ion batteries using a federated and homomorphically encrypted learning method publication-title: Proc. 39th ACM/SIGAPP Symp. Appl. Comput., ACM, New York, NY, USA – volume: 435 year: 2019 ident: bb0100 article-title: Accelerated cycle life testing and capacity degradation modeling of LiCoO publication-title: J. Power Sources – volume: 45 start-page: 952 year: 2022 end-page: 968 ident: bb0090 article-title: Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification publication-title: Energy Storage Mater. – volume: 161 year: 2022 ident: bb0130 article-title: Prognostics and health management of lithium-ion battery using deep learning methods: a review publication-title: Renew. Sust. Energ. Rev. – volume: 4 start-page: 383 year: 2019 end-page: 391 ident: bb0050 article-title: Data-driven prediction of battery cycle life before capacity degradation publication-title: Nat. Energy – volume: 351 year: 2016 ident: bb0035 article-title: Why do batteries fail? publication-title: Science (80-. ) – volume: 11 start-page: 36895 year: 2024 end-page: 36906 ident: bb0190 article-title: Personalized federated transfer learning for cycle-life prediction of lithium-ion batteries in heterogeneous clients with data privacy protection publication-title: IEEE Internet Things J. – volume: 102 year: 2024 ident: bb0195 article-title: A federated transfer learning approach for lithium-ion battery lifespan early prediction considering privacy preservation publication-title: J. Energy Storage – volume: 97 start-page: 630 year: 2024 end-page: 649 ident: bb0070 article-title: A review of data-driven whole-life state of health prediction for lithium-ion batteries: data preprocessing, aging characteristics, algorithms, and future challenges publication-title: J. Energy Chem. – volume: 168 year: 2021 ident: bb0085 article-title: Modeling electrochemical transport within a three-electrode system publication-title: J. Electrochem. Soc. – volume: 97 year: 2024 ident: bb0200 article-title: CNN-DBLSTM: a long-term remaining life prediction framework for lithium-ion battery with small number of samples publication-title: J. Energy Storage – volume: 56 year: 2024 ident: bb0235 article-title: Multi-scale simulation of complex systems: a perspective of integrating knowledge and data publication-title: ACM Comput. Surv. – volume: 10 start-page: 3629 year: 2023 end-page: 3638 ident: bb0145 article-title: Remaining useful life prediction of lithium-ion batteries via an EIS based deep learning approach publication-title: Energy Rep. – volume: 238 year: 2024 ident: bb0205 article-title: Enhanced robust capacity estimation of lithium-ion batteries with unlabeled dataset and semi-supervised machine learning publication-title: Expert Syst. Appl. – volume: 67 start-page: 5695 year: 2018 end-page: 5705 ident: bb0150 article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. – volume: 229 year: 2025 ident: bb0020 article-title: An interpretable approach combining Shapley additive explanations and LightGBM based on data augmentation for improving wheat yield estimates publication-title: Comput. Electron. Agric. – volume: 4 start-page: 511 year: 2020 end-page: 515 ident: bb0005 article-title: Electric vehicles batteries: requirements and challenges publication-title: Joule – volume: 247 year: 2022 ident: bb0080 article-title: Constant current charging time based fast state-of-health estimation for lithium-ion batteries publication-title: Energy – volume: 54 start-page: 85 year: 2023 end-page: 97 ident: bb0215 article-title: Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data publication-title: Energy Storage Mater. – volume: 381 year: 2025 ident: bb0165 article-title: A review of physics-informed machine learning for building energy modeling publication-title: Appl. Energy – volume: 70 start-page: 1 year: 2021 end-page: 10 ident: bb0115 article-title: Remaining useful life estimation for LFP cells in second-life applications publication-title: IEEE Trans. Instrum. Meas. – volume: 102 year: 2024 ident: bb0075 article-title: SOH and RUL prediction of lithium batteries based on fusions of RLOESS filtered electrochemical and thermal features by bidirectional gated recurrent unit network publication-title: J. Energy Storage – volume: 358 year: 2024 ident: bb0160 article-title: A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments publication-title: Appl. Energy – volume: 18 year: 2024 ident: bb0210 article-title: A survey on federated learning: a perspective from multi-party computation publication-title: Front. Comput. Sci. – volume: 358 year: 2024 ident: 10.1016/j.est.2025.117152_bb0160 article-title: A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.122555 – volume: 13 start-page: 2261 year: 2022 ident: 10.1016/j.est.2025.117152_bb0250 article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation publication-title: Nat. Commun. doi: 10.1038/s41467-022-29837-w – volume: 56 year: 2024 ident: 10.1016/j.est.2025.117152_bb0235 article-title: Multi-scale simulation of complex systems: a perspective of integrating knowledge and data publication-title: ACM Comput. Surv. doi: 10.1145/3654662 – volume: 5 year: 2024 ident: 10.1016/j.est.2025.117152_bb0175 article-title: Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems publication-title: Cell Rep. Phys. Sci. – volume: 67 start-page: 5695 year: 2018 ident: 10.1016/j.est.2025.117152_bb0150 article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2805189 – volume: 97 year: 2024 ident: 10.1016/j.est.2025.117152_bb0200 article-title: CNN-DBLSTM: a long-term remaining life prediction framework for lithium-ion battery with small number of samples publication-title: J. Energy Storage doi: 10.1016/j.est.2024.112947 – start-page: 565 year: 2024 ident: 10.1016/j.est.2025.117152_bb0185 article-title: RUL prediction of lithium-ion batteries using a federated and homomorphically encrypted learning method – volume: 356 year: 2024 ident: 10.1016/j.est.2025.117152_bb0230 article-title: Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.122356 – volume: 379 year: 2025 ident: 10.1016/j.est.2025.117152_bb0135 article-title: Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.124713 – volume: 108 year: 2025 ident: 10.1016/j.est.2025.117152_bb0030 article-title: Experimental study on the degradation characteristics and mechanism of lithium-ion batteries under mild mechanical deformation publication-title: J. Energy Storage doi: 10.1016/j.est.2024.115097 – volume: 8 start-page: 155576 year: 2020 ident: 10.1016/j.est.2025.117152_bb0095 article-title: Empirical electrical and degradation model for electric vehicle batteries publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019477 – volume: 4 start-page: 383 year: 2019 ident: 10.1016/j.est.2025.117152_bb0050 article-title: Data-driven prediction of battery cycle life before capacity degradation publication-title: Nat. Energy doi: 10.1038/s41560-019-0356-8 – volume: 238 year: 2024 ident: 10.1016/j.est.2025.117152_bb0205 article-title: Enhanced robust capacity estimation of lithium-ion batteries with unlabeled dataset and semi-supervised machine learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121892 – volume: 70 year: 2023 ident: 10.1016/j.est.2025.117152_bb0120 article-title: Research progress and application of deep learning in remaining useful life, state of health and battery thermal management of lithium batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107868 – volume: 168 year: 2021 ident: 10.1016/j.est.2025.117152_bb0085 article-title: Modeling electrochemical transport within a three-electrode system publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abdafb – volume: 229 year: 2025 ident: 10.1016/j.est.2025.117152_bb0020 article-title: An interpretable approach combining Shapley additive explanations and LightGBM based on data augmentation for improving wheat yield estimates publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.109758 – volume: 247 year: 2022 ident: 10.1016/j.est.2025.117152_bb0080 article-title: Constant current charging time based fast state-of-health estimation for lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2022.123556 – volume: 39 start-page: 15085 year: 2024 ident: 10.1016/j.est.2025.117152_bb0180 article-title: Source-free dynamic weighted federated transfer learning for state-of-health estimation of lithium-ion batteries with data privacy publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2024.3434751 – volume: 45 start-page: 952 year: 2022 ident: 10.1016/j.est.2025.117152_bb0090 article-title: Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.12.044 – volume: 54 start-page: 85 year: 2023 ident: 10.1016/j.est.2025.117152_bb0215 article-title: Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.10.030 – volume: 11 start-page: 4824 year: 2024 ident: 10.1016/j.est.2025.117152_bb0065 article-title: Recent advancement of remaining useful life prediction of lithium-ion battery in electric vehicle applications: a review of modelling mechanisms, network configurations, factors, and outstanding issues publication-title: Energy Rep. doi: 10.1016/j.egyr.2024.04.039 – volume: 435 year: 2019 ident: 10.1016/j.est.2025.117152_bb0100 article-title: Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226830 – volume: 358 year: 2024 ident: 10.1016/j.est.2025.117152_bb0110 article-title: Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.122325 – volume: 4 start-page: 511 year: 2020 ident: 10.1016/j.est.2025.117152_bb0005 article-title: Electric vehicles batteries: requirements and challenges publication-title: Joule doi: 10.1016/j.joule.2020.01.013 – volume: 351 issue: 6273 year: 2016 ident: 10.1016/j.est.2025.117152_bb0035 article-title: Why do batteries fail? publication-title: Science (80-. ) doi: 10.1126/science.1253292 – start-page: 1 year: 2025 ident: 10.1016/j.est.2025.117152_bb0045 article-title: Robust health monitoring for lithium-ion batteries under guidance of proxy labels: a deep multi-task learning approach publication-title: IEEE Trans. Power Electron. – volume: 50 start-page: 139 year: 2022 ident: 10.1016/j.est.2025.117152_bb0060 article-title: Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.05.007 – volume: 91 start-page: 512 year: 2024 ident: 10.1016/j.est.2025.117152_bb0170 article-title: Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.12.043 – volume: 98 year: 2024 ident: 10.1016/j.est.2025.117152_bb0105 article-title: Data driven health and life prognosis management of supercapacitor and lithium-ion battery storage systems: developments, implementation aspects, limitations, and future directions publication-title: J. Energy Storage doi: 10.1016/j.est.2024.113172 – year: 2024 ident: 10.1016/j.est.2025.117152_bb0055 article-title: Interpretable learning of accelerated aging in lithium metal batteries publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 139 year: 2022 ident: 10.1016/j.est.2025.117152_bb0155 article-title: Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.05.007 – volume: 19 year: 2025 ident: 10.1016/j.est.2025.117152_bb0220 article-title: A co-estimation framework of state of health and remaining useful life for lithium-ion batteries using the semi-supervised learning algorithm publication-title: Energy AI doi: 10.1016/j.egyai.2024.100458 – volume: 103 year: 2024 ident: 10.1016/j.est.2025.117152_bb0015 article-title: Aging mechanisms of cylindrical NCA/Si-graphite battery with high specific energy under dynamic driving cycles publication-title: J. Energy Storage doi: 10.1016/j.est.2024.114287 – volume: 18 year: 2023 ident: 10.1016/j.est.2025.117152_bb0040 article-title: Nonlinear aging knee-point prediction for lithium-ion batteries faced with different application scenarios publication-title: ETransportation doi: 10.1016/j.etran.2023.100270 – volume: 11 start-page: 36895 year: 2024 ident: 10.1016/j.est.2025.117152_bb0190 article-title: Personalized federated transfer learning for cycle-life prediction of lithium-ion batteries in heterogeneous clients with data privacy protection publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2024.3433460 – year: 2024 ident: 10.1016/j.est.2025.117152_bb0010 article-title: Identifying the lithium bond and lithium ionic bond in electrolytes publication-title: Chem – volume: 68 start-page: 548 year: 2022 ident: 10.1016/j.est.2025.117152_bb0140 article-title: A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.12.004 – volume: 10 start-page: 3629 year: 2023 ident: 10.1016/j.est.2025.117152_bb0145 article-title: Remaining useful life prediction of lithium-ion batteries via an EIS based deep learning approach publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.10.030 – volume: 102 year: 2024 ident: 10.1016/j.est.2025.117152_bb0075 article-title: SOH and RUL prediction of lithium batteries based on fusions of RLOESS filtered electrochemical and thermal features by bidirectional gated recurrent unit network publication-title: J. Energy Storage doi: 10.1016/j.est.2024.114134 – volume: 306 year: 2022 ident: 10.1016/j.est.2025.117152_bb0125 article-title: Deep neural network battery life and voltage prediction by using data of one cycle only publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118134 – volume: 1 year: 2019 ident: 10.1016/j.est.2025.117152_bb0025 article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle publication-title: eTransportation doi: 10.1016/j.etran.2019.100005 – volume: 97 start-page: 630 year: 2024 ident: 10.1016/j.est.2025.117152_bb0070 article-title: A review of data-driven whole-life state of health prediction for lithium-ion batteries: data preprocessing, aging characteristics, algorithms, and future challenges publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2024.06.017 – volume: 18 year: 2024 ident: 10.1016/j.est.2025.117152_bb0210 article-title: A survey on federated learning: a perspective from multi-party computation publication-title: Front. Comput. Sci. doi: 10.1007/s11704-023-3282-7 – volume: 381 year: 2025 ident: 10.1016/j.est.2025.117152_bb0165 article-title: A review of physics-informed machine learning for building energy modeling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.125169 – volume: 2 start-page: 41 year: 2019 ident: 10.1016/j.est.2025.117152_bb0245 article-title: Adam optimization algorithm for wide and deep neural network publication-title: Knowl. Eng. Data Sci. doi: 10.17977/um018v2i12019p41-46 – volume: 161 year: 2022 ident: 10.1016/j.est.2025.117152_bb0130 article-title: Prognostics and health management of lithium-ion battery using deep learning methods: a review publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2022.112282 – volume: 106 year: 2025 ident: 10.1016/j.est.2025.117152_bb0225 article-title: A battery SOH estimation method based on entropy domain features and semi-supervised learning under limited sample conditions publication-title: J. Energy Storage doi: 10.1016/j.est.2024.114822 – year: 2018 ident: 10.1016/j.est.2025.117152_bb0240 article-title: Understanding batch normalization – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.est.2025.117152_bb0115 article-title: Remaining useful life estimation for LFP cells in second-life applications publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3055791 – volume: 102 year: 2024 ident: 10.1016/j.est.2025.117152_bb0195 article-title: A federated transfer learning approach for lithium-ion battery lifespan early prediction considering privacy preservation publication-title: J. Energy Storage doi: 10.1016/j.est.2024.114153 |
SSID | ssj0001651196 |
Score | 2.327647 |
Snippet | Accurate prediction of remaining useful life (RUL) is essential for effective battery management and lifespan optimisation. While recent machine learning... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 117152 |
SubjectTerms | Federated learning Lithium-ion batteries Remaining useful life Semi-supervised learning |
Title | Privacy-preserving federated semi-supervised learning for battery life prediction amid data scarcity |
URI | https://dx.doi.org/10.1016/j.est.2025.117152 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 2352-152X databaseCode: ACRLP dateStart: 20150601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001651196 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 2352-152X databaseCode: AIKHN dateStart: 20150601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001651196 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 2352-152X databaseCode: AKRWK dateStart: 20150601 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001651196 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lvehBfGJ9kYMnIXQ3m6S7x1KUqlgELfS25Ckr9kF3K_TfO9kHVtCLx2x2YPmSnfkmM5lB6BpMLFA2HRAF_gRhuh-RmBpDIqciyWKXqLJn5NNYjCbsYcqnLTRs7sL4tMpa91c6vdTW9ZNejWZvmWW9FwrcAazPlPqadMJfo-5QsPbggXUG94-j8fdRi_DBsqrNHKfEyzTxzTLTC9QvOIqU-wBmyOnvFmrL6tzto72aLuJB9UUHqGXnh2h3q4jgETLPq-xT6g3xKa3-z5-_YedLRACLNDi3s4zk66WfyGFcd4mAVxYrrMrimhv8kTmLQdxk5S0HLGeZwT53FOfa9xoqNsdocnf7OhyRuncC0TRhBQE_S3LJpJICOIaJWGJtQnWQxEJIF7ggUTo2YWh1P9ZRKAQYM6O0CVRgI6lddILa88XcniIcWlg0DrOcOwbeneoLpyRLlKQ2sYHpopsGr3RZlchIm9yx9xTATT24aQVuF7EG0fTHOqegwv8WO_uf2Dna8aPyDDi4QO1itbaXQCIKdVVvki-aC8bL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB6kPagHccW6zsGTMDSZzEyToxRL3Iqghd7CrBKxC20U-u99kwUV9OIxmTwI3yTfe2_ehtAFqFgw2XRAFPgThOleRGJqDImciiSLXaLKmZEPQ5GO2O2Yj9dQv6mF8WmVNfdXnF6ydX2nW6PZned594mC7QDaZ0x9Tzrhy6jbjAMnt1D76uYuHX4dtQgfLKvGzHFKvEwT3ywzvYB-wVGk3AcwQ05_11DftM5gG23V5iK-qt5oB63Z6S7a_NZEcA-Zx0X-IfWK-JRW_-dPX7DzLSLAijR4aSc5Wb7P_cISruspEfDIbIFV2Vxzhd9yZzGIm7yscsBykhvsc0fxUvtZQ8VqH40G18_9lNSzE4imCSsI-FmSSyaVFGBjmIgl1iZUB0kshHSBCxKlYxOGVvdiHYVCAHBGaROowEZSu-gAtaazqT1EOLSwaRxWOXcMvDvVE05JlihJbWID00GXDV7ZvGqRkTW5Y68ZgJt5cLMK3A5iDaLZj33OgML_Fjv6n9g5Wk-fH-6z-5vh3THa8CvleXBwglrF4t2egkFRqLP6g_kE_mfJrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-preserving+federated+semi-supervised+learning+for+battery+life+prediction+amid+data+scarcity&rft.jtitle=Journal+of+energy+storage&rft.au=Ma%2C+Liang&rft.au=Tian%2C+Jinpeng&rft.au=Zhang%2C+Tieling&rft.au=Guo%2C+Qinghua&rft.date=2025-08-30&rft.issn=2352-152X&rft.volume=128&rft.spage=117152&rft_id=info:doi/10.1016%2Fj.est.2025.117152&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_est_2025_117152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |