Privacy-preserving federated semi-supervised learning for battery life prediction amid data scarcity

Accurate prediction of remaining useful life (RUL) is essential for effective battery management and lifespan optimisation. While recent machine learning approaches offer promising results, their development relies heavily on abundant degradation data with RUL labels, which requires costly run-to-fa...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy storage Vol. 128; p. 117152
Main Authors Ma, Liang, Tian, Jinpeng, Zhang, Tieling, Guo, Qinghua, Chung, Chi-yung
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 30.08.2025
Subjects
Online AccessGet full text
ISSN2352-152X
DOI10.1016/j.est.2025.117152

Cover

Abstract Accurate prediction of remaining useful life (RUL) is essential for effective battery management and lifespan optimisation. While recent machine learning approaches offer promising results, their development relies heavily on abundant degradation data with RUL labels, which requires costly run-to-failure tests lasting years. Although massive degradation data are available from millions of batteries in laboratories and in service, access to such data is often restricted due to privacy concerns. Additionally, they usually suffer from quality issues, particularly the absence of RUL labels. To address these issues, we propose a federated-based semi-supervised learning framework enabling collaborative training among diverse battery users that own limited degradation data with RUL labels. This method not only enhances battery RUL prediction by effectively utilising low-cost routine operational data without RUL labels but also protects data privacy across battery users through secure model parameter aggregation. The proposed method is validated on two battery degradation datasets comprising 40 batteries cycled over 24,900 times. Comparative evaluations against federated learning (FL), semi-supervised learning (SSL), and supervised learning (SL) methods are conducted to highlight the effectiveness of our method. Results show that the FL, SSL, and SL methods achieve root mean squared errors (RMSEs) of 27.1, 33.8, and 40.1 cycles, respectively. In contrast, the proposed method achieves an RMSE of 21.3 cycles, resulting in reductions of 21.4 %, 37.0 %, and 46.9 %. This work underscores the potential of federated semi-supervised learning as a practical solution for accurate RUL prediction with reduced battery tests while addressing privacy concerns. •A semi-supervised learning (SSL) framework combined with a federated learning (FL) approach for battery RUL prediction.•Collaborations are enabled among the battery users without disclosing their data privacy.•The method allows varying amounts of test data and diverse numbers of battery users.•The model’s performance is rationalised by visualising the correlation between extracted features and battery degradation.
AbstractList Accurate prediction of remaining useful life (RUL) is essential for effective battery management and lifespan optimisation. While recent machine learning approaches offer promising results, their development relies heavily on abundant degradation data with RUL labels, which requires costly run-to-failure tests lasting years. Although massive degradation data are available from millions of batteries in laboratories and in service, access to such data is often restricted due to privacy concerns. Additionally, they usually suffer from quality issues, particularly the absence of RUL labels. To address these issues, we propose a federated-based semi-supervised learning framework enabling collaborative training among diverse battery users that own limited degradation data with RUL labels. This method not only enhances battery RUL prediction by effectively utilising low-cost routine operational data without RUL labels but also protects data privacy across battery users through secure model parameter aggregation. The proposed method is validated on two battery degradation datasets comprising 40 batteries cycled over 24,900 times. Comparative evaluations against federated learning (FL), semi-supervised learning (SSL), and supervised learning (SL) methods are conducted to highlight the effectiveness of our method. Results show that the FL, SSL, and SL methods achieve root mean squared errors (RMSEs) of 27.1, 33.8, and 40.1 cycles, respectively. In contrast, the proposed method achieves an RMSE of 21.3 cycles, resulting in reductions of 21.4 %, 37.0 %, and 46.9 %. This work underscores the potential of federated semi-supervised learning as a practical solution for accurate RUL prediction with reduced battery tests while addressing privacy concerns. •A semi-supervised learning (SSL) framework combined with a federated learning (FL) approach for battery RUL prediction.•Collaborations are enabled among the battery users without disclosing their data privacy.•The method allows varying amounts of test data and diverse numbers of battery users.•The model’s performance is rationalised by visualising the correlation between extracted features and battery degradation.
ArticleNumber 117152
Author Ma, Liang
Tian, Jinpeng
Zhang, Tieling
Guo, Qinghua
Chung, Chi-yung
Author_xml – sequence: 1
  givenname: Liang
  surname: Ma
  fullname: Ma, Liang
  organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
– sequence: 2
  givenname: Jinpeng
  surname: Tian
  fullname: Tian, Jinpeng
  email: jinpeng.tian@polyu.edu.hk
  organization: Department of Electrical and Electronic Engineering and Research Centre for Grid Modernisation, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
– sequence: 3
  givenname: Tieling
  surname: Zhang
  fullname: Zhang, Tieling
  email: tieling@uow.edu.au
  organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
– sequence: 4
  givenname: Qinghua
  surname: Guo
  fullname: Guo, Qinghua
  organization: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
– sequence: 5
  givenname: Chi-yung
  surname: Chung
  fullname: Chung, Chi-yung
  organization: Department of Electrical and Electronic Engineering and Research Centre for Grid Modernisation, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
BookMark eNp9kM1OwzAMgHMYEmPsAbjlBVri_mStOKGJP2kSHEDiFrmOizJt7ZSESX17MsaZk23Zn2V_V2I2jAMLcQMqBwX6dptziHmhijoHWEFdzMS8KOsiS-nnpViGsFUqDdYArZ4L--bdEWnKDp4D-6MbvmTPlj1GtjLw3mXh-3BqhFTvGP3wOzJ62WGM7Ce5cz3LhFtH0Y2DxL2z0mJEGQg9uThdi4sed4GXf3EhPh4f3tfP2eb16WV9v8moaKuYaQVYY4Udal03tqxa5rYg1TZaY6961XbUWACmVUMlaF1BaTuyqlNcIvXlQsB5L_kxBM-9OXi3Rz8ZUOZkx2xNsmNOdszZTmLuzgynw46OvQnkeKD0jmeKxo7uH_oH2Xxzlg
Cites_doi 10.1016/j.apenergy.2023.122555
10.1038/s41467-022-29837-w
10.1145/3654662
10.1109/TVT.2018.2805189
10.1016/j.est.2024.112947
10.1016/j.apenergy.2023.122356
10.1016/j.apenergy.2024.124713
10.1016/j.est.2024.115097
10.1109/ACCESS.2020.3019477
10.1038/s41560-019-0356-8
10.1016/j.eswa.2023.121892
10.1016/j.est.2023.107868
10.1149/1945-7111/abdafb
10.1016/j.compag.2024.109758
10.1016/j.energy.2022.123556
10.1109/TPEL.2024.3434751
10.1016/j.ensm.2021.12.044
10.1016/j.ensm.2022.10.030
10.1016/j.egyr.2024.04.039
10.1016/j.jpowsour.2019.226830
10.1016/j.apenergy.2023.122325
10.1016/j.joule.2020.01.013
10.1126/science.1253292
10.1016/j.ensm.2022.05.007
10.1016/j.jechem.2023.12.043
10.1016/j.est.2024.113172
10.1016/j.egyai.2024.100458
10.1016/j.est.2024.114287
10.1016/j.etran.2023.100270
10.1109/JIOT.2024.3433460
10.1016/j.jechem.2021.12.004
10.1016/j.egyr.2023.10.030
10.1016/j.est.2024.114134
10.1016/j.apenergy.2021.118134
10.1016/j.etran.2019.100005
10.1016/j.jechem.2024.06.017
10.1007/s11704-023-3282-7
10.1016/j.apenergy.2024.125169
10.17977/um018v2i12019p41-46
10.1016/j.rser.2022.112282
10.1016/j.est.2024.114822
10.1109/TIM.2021.3055791
10.1016/j.est.2024.114153
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.est.2025.117152
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_est_2025_117152
S2352152X25018651
GroupedDBID --M
0R~
457
4G.
6I.
7-5
AAEDT
AAEDW
AAFTH
AAHCO
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EFKBS
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSH
SSR
SST
SSZ
T5K
~G-
AAYXX
CITATION
EJD
ID FETCH-LOGICAL-c294t-601a5a4aba6658d349ee92c09866af0f09bc8d11ec78c3166413dbcd0b0e3acf3
IEDL.DBID AIKHN
ISSN 2352-152X
IngestDate Thu Jul 03 08:41:14 EDT 2025
Sat Jul 19 17:10:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Federated learning
Remaining useful life
Semi-supervised learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-601a5a4aba6658d349ee92c09866af0f09bc8d11ec78c3166413dbcd0b0e3acf3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2352152X25018651
ParticipantIDs crossref_primary_10_1016_j_est_2025_117152
elsevier_sciencedirect_doi_10_1016_j_est_2025_117152
PublicationCentury 2000
PublicationDate 2025-08-30
PublicationDateYYYYMMDD 2025-08-30
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of energy storage
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hossain Lipu, Rahman, Mansor, Rahman, Ansari, Fuad, Hannan (bb0105) 2024; 98
Sanz-Gorrachategui, Pastor-Flores, Pajovic, Wang, Orlik, Bernal-Ruiz, Bono-Nuez, Artal-Sevil (bb0115) 2021; 70
Liu, Hou, Ahmed, Mao, Feng, Chen (bb0160) 2024; 358
López, Fontenla-Romero, Hernández-Pereira, Guijarro-Berdiñas, Blanco-Seijo, Fernandez-Paz (bb0185) 2024
Jia, Li, Zhao, Wang, Wang, Liu (bb0200) 2024; 97
Yao, Chen, Sun, Gao, Yu, Gao, Li, Zhang (bb0010) 2024
Zhang, Li (bb0130) 2022; 161
Liu, Zou, Wang, Chen, Huang, Zhang, Zhang, Peng (bb0055) 2024
Wang, Yan, Rong, Yuan, Jiang, Han, Sui, Jin, Li (bb0235) 2024; 56
Zhu, Wang, Huang, Bhushan Gopaluni, Cao, Heere, Mühlbauer, Mereacre, Dai, Liu, Senyshyn, Wei, Knapp, Ehrenberg (bb0250) 2022; 13
Guo, Zhang, He, Tao, Zhang, Liu, Li, Tian, Shen, Chung (bb0045) 2025
Han, Yue, Yang, Zhou, Yu (bb0180) 2024; 39
Lu, Xiong, Tian, Wang, Hsu, Tsou, Sun, Li (bb0155) 2022; 50
Bjorck, Gomes, Selman, Weinberger (bb0240) 2018
Li, Zhao, Miah, Niu (bb0145) 2023; 10
Deng, Bae, Denlinger, Miller (bb0005) 2020; 4
You, Zhu, Wang, Jiang, Wei, Dai (bb0040) 2023; 18
Reza, Mannan, Mansor, Ker, Mahlia, Hannan (bb0065) 2024; 11
Wang, Wang, Tansey, Liu, Delaney, Quan (bb0020) 2025; 229
Li, Lyv, Gao, Li, Zhu (bb0220) 2025; 19
Palacín, de Guibert (bb0035) 2016; 351
Ma, Tian, Zhang, Guo, Hu (bb0170) 2024; 91
Lin, Xu, Shi, Mei (bb0080) 2022; 247
Severson, Attia, Jin, Perkins, Jiang, Yang, Chen, Aykol, Herring, Fraggedakis, Bazant, Harris, Chueh, Braatz (bb0050) 2019; 4
Altinpulluk, Altinpulluk, Ramanan, Paulson, Qiu, Babinec, Yildirim (bb0175) 2024; 5
Xia, Yu, Chen (bb0075) 2024; 102
Fan, Wu, Zhao, Mo (bb0230) 2024; 356
Xie, Wang, Zhang, Takyi-Aninakwa, Fernandez, Blaabjerg (bb0070) 2024; 97
Liu, Zhang, Chen, Zhu, Yan, Huang, Peng (bb0140) 2022; 68
Shi, An, Du, Ding, Jia, Li, Zhang (bb0030) 2025; 108
Guo, He, Li, Zhou, Zhang, Liu, Yang (bb0015) 2024; 103
Lu, Xiong, Tian, Wang, Hsu, Tsou, Sun, Li (bb0060) 2022; 50
Jais, Ismail, Nisa (bb0245) 2019; 2
Hsu, Xiong, Chen, Li, Tsou (bb0125) 2022; 306
Ye, Wang, Yan, Wei, Lian, Zhao, Zhu (bb0205) 2024; 238
Zhao, Zhang, Zhang, Zhang, Zhang, Zhang (bb0135) 2025; 379
Liu, Zheng, Shi, Tong, Zhang (bb0210) 2024; 18
Xu, Lin, Xie, Hu (bb0090) 2022; 45
Han, Lu, Zheng, Feng, Li, Li, Ouyang (bb0025) 2019; 1
Garrick, Gao, Yang, Koch (bb0085) 2021; 168
Diao, Saxena, Pecht (bb0100) 2019; 435
Zhao, Zhang, Zhang, Zhang, Zhang, Zhang (bb0110) 2024; 358
Ma, Jiang, Hu, Chen (bb0165) 2025; 381
He, Li, Liu, Liu, Guo, Du, Li, Sun, Ming (bb0120) 2023; 70
Huang, Li, Peng, Tang, Ye (bb0190) 2024; 11
Zhang, Wang, Ruan, Zhang (bb0195) 2024; 102
Saldana, Martin, Zamora, Asensio, Onederra, Gonzalez (bb0095) 2020; 8
Lin, Xu, Mei (bb0215) 2023; 54
Liu, Ding, Cai, Luo, Yao, Wang (bb0225) 2025; 106
Zhang, Xiong, He, Pecht (bb0150) 2018; 67
Guo (10.1016/j.est.2025.117152_bb0015) 2024; 103
Li (10.1016/j.est.2025.117152_bb0145) 2023; 10
Wang (10.1016/j.est.2025.117152_bb0235) 2024; 56
Xie (10.1016/j.est.2025.117152_bb0070) 2024; 97
Palacín (10.1016/j.est.2025.117152_bb0035) 2016; 351
Shi (10.1016/j.est.2025.117152_bb0030) 2025; 108
Zhao (10.1016/j.est.2025.117152_bb0110) 2024; 358
Guo (10.1016/j.est.2025.117152_bb0045) 2025
Han (10.1016/j.est.2025.117152_bb0025) 2019; 1
Lin (10.1016/j.est.2025.117152_bb0080) 2022; 247
Wang (10.1016/j.est.2025.117152_bb0020) 2025; 229
Hossain Lipu (10.1016/j.est.2025.117152_bb0105) 2024; 98
Bjorck (10.1016/j.est.2025.117152_bb0240) 2018
Reza (10.1016/j.est.2025.117152_bb0065) 2024; 11
Xu (10.1016/j.est.2025.117152_bb0090) 2022; 45
Liu (10.1016/j.est.2025.117152_bb0140) 2022; 68
Hsu (10.1016/j.est.2025.117152_bb0125) 2022; 306
Liu (10.1016/j.est.2025.117152_bb0210) 2024; 18
Lu (10.1016/j.est.2025.117152_bb0060) 2022; 50
Han (10.1016/j.est.2025.117152_bb0180) 2024; 39
Severson (10.1016/j.est.2025.117152_bb0050) 2019; 4
He (10.1016/j.est.2025.117152_bb0120) 2023; 70
Garrick (10.1016/j.est.2025.117152_bb0085) 2021; 168
Saldana (10.1016/j.est.2025.117152_bb0095) 2020; 8
Zhao (10.1016/j.est.2025.117152_bb0135) 2025; 379
Ye (10.1016/j.est.2025.117152_bb0205) 2024; 238
Huang (10.1016/j.est.2025.117152_bb0190) 2024; 11
Ma (10.1016/j.est.2025.117152_bb0165) 2025; 381
Li (10.1016/j.est.2025.117152_bb0220) 2025; 19
You (10.1016/j.est.2025.117152_bb0040) 2023; 18
Ma (10.1016/j.est.2025.117152_bb0170) 2024; 91
Xia (10.1016/j.est.2025.117152_bb0075) 2024; 102
Lu (10.1016/j.est.2025.117152_bb0155) 2022; 50
Lin (10.1016/j.est.2025.117152_bb0215) 2023; 54
Altinpulluk (10.1016/j.est.2025.117152_bb0175) 2024; 5
Jia (10.1016/j.est.2025.117152_bb0200) 2024; 97
Jais (10.1016/j.est.2025.117152_bb0245) 2019; 2
Zhu (10.1016/j.est.2025.117152_bb0250) 2022; 13
Zhang (10.1016/j.est.2025.117152_bb0195) 2024; 102
Zhang (10.1016/j.est.2025.117152_bb0130) 2022; 161
Yao (10.1016/j.est.2025.117152_bb0010) 2024
Diao (10.1016/j.est.2025.117152_bb0100) 2019; 435
López (10.1016/j.est.2025.117152_bb0185) 2024
Sanz-Gorrachategui (10.1016/j.est.2025.117152_bb0115) 2021; 70
Liu (10.1016/j.est.2025.117152_bb0225) 2025; 106
Deng (10.1016/j.est.2025.117152_bb0005) 2020; 4
Liu (10.1016/j.est.2025.117152_bb0160) 2024; 358
Liu (10.1016/j.est.2025.117152_bb0055) 2024
Zhang (10.1016/j.est.2025.117152_bb0150) 2018; 67
Fan (10.1016/j.est.2025.117152_bb0230) 2024; 356
References_xml – volume: 108
  year: 2025
  ident: bb0030
  article-title: Experimental study on the degradation characteristics and mechanism of lithium-ion batteries under mild mechanical deformation
  publication-title: J. Energy Storage
– volume: 5
  year: 2024
  ident: bb0175
  article-title: Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems
  publication-title: Cell Rep. Phys. Sci.
– volume: 50
  start-page: 139
  year: 2022
  end-page: 151
  ident: bb0155
  article-title: Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning
  publication-title: Energy Storage Mater.
– year: 2018
  ident: bb0240
  article-title: Understanding batch normalization
  publication-title: Adv. Neural Inf. Process. Syst
– volume: 50
  start-page: 139
  year: 2022
  end-page: 151
  ident: bb0060
  article-title: Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning
  publication-title: Energy Storage Mater.
– volume: 19
  year: 2025
  ident: bb0220
  article-title: A co-estimation framework of state of health and remaining useful life for lithium-ion batteries using the semi-supervised learning algorithm
  publication-title: Energy AI
– volume: 91
  start-page: 512
  year: 2024
  end-page: 521
  ident: bb0170
  article-title: Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning
  publication-title: J. Energy Chem.
– volume: 106
  year: 2025
  ident: bb0225
  article-title: A battery SOH estimation method based on entropy domain features and semi-supervised learning under limited sample conditions
  publication-title: J. Energy Storage
– volume: 103
  year: 2024
  ident: bb0015
  article-title: Aging mechanisms of cylindrical NCA/Si-graphite battery with high specific energy under dynamic driving cycles
  publication-title: J. Energy Storage
– volume: 8
  start-page: 155576
  year: 2020
  end-page: 155589
  ident: bb0095
  article-title: Empirical electrical and degradation model for electric vehicle batteries
  publication-title: IEEE Access
– volume: 11
  start-page: 4824
  year: 2024
  end-page: 4848
  ident: bb0065
  article-title: Recent advancement of remaining useful life prediction of lithium-ion battery in electric vehicle applications: a review of modelling mechanisms, network configurations, factors, and outstanding issues
  publication-title: Energy Rep.
– volume: 2
  start-page: 41
  year: 2019
  end-page: 46
  ident: bb0245
  article-title: Adam optimization algorithm for wide and deep neural network
  publication-title: Knowl. Eng. Data Sci.
– volume: 98
  year: 2024
  ident: bb0105
  article-title: Data driven health and life prognosis management of supercapacitor and lithium-ion battery storage systems: developments, implementation aspects, limitations, and future directions
  publication-title: J. Energy Storage
– start-page: 1
  year: 2025
  end-page: 12
  ident: bb0045
  article-title: Robust health monitoring for lithium-ion batteries under guidance of proxy labels: a deep multi-task learning approach
  publication-title: IEEE Trans. Power Electron.
– volume: 70
  year: 2023
  ident: bb0120
  article-title: Research progress and application of deep learning in remaining useful life, state of health and battery thermal management of lithium batteries
  publication-title: J. Energy Storage
– volume: 1
  year: 2019
  ident: bb0025
  article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle
  publication-title: eTransportation
– year: 2024
  ident: bb0055
  article-title: Interpretable learning of accelerated aging in lithium metal batteries
  publication-title: J. Am. Chem. Soc.
– volume: 306
  year: 2022
  ident: bb0125
  article-title: Deep neural network battery life and voltage prediction by using data of one cycle only
  publication-title: Appl. Energy
– year: 2024
  ident: bb0010
  article-title: Identifying the lithium bond and lithium ionic bond in electrolytes
  publication-title: Chem
– volume: 379
  year: 2025
  ident: bb0135
  article-title: Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization
  publication-title: Appl. Energy
– volume: 39
  start-page: 15085
  year: 2024
  end-page: 15100
  ident: bb0180
  article-title: Source-free dynamic weighted federated transfer learning for state-of-health estimation of lithium-ion batteries with data privacy
  publication-title: IEEE Trans. Power Electron.
– volume: 68
  start-page: 548
  year: 2022
  end-page: 555
  ident: bb0140
  article-title: A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries
  publication-title: J. Energy Chem.
– volume: 356
  year: 2024
  ident: bb0230
  article-title: Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance
  publication-title: Appl. Energy
– volume: 13
  start-page: 2261
  year: 2022
  ident: bb0250
  article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation
  publication-title: Nat. Commun.
– volume: 18
  year: 2023
  ident: bb0040
  article-title: Nonlinear aging knee-point prediction for lithium-ion batteries faced with different application scenarios
  publication-title: ETransportation
– volume: 358
  year: 2024
  ident: bb0110
  article-title: Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning
  publication-title: Appl. Energy
– start-page: 565
  year: 2024
  end-page: 571
  ident: bb0185
  article-title: RUL prediction of lithium-ion batteries using a federated and homomorphically encrypted learning method
  publication-title: Proc. 39th ACM/SIGAPP Symp. Appl. Comput., ACM, New York, NY, USA
– volume: 435
  year: 2019
  ident: bb0100
  article-title: Accelerated cycle life testing and capacity degradation modeling of LiCoO
  publication-title: J. Power Sources
– volume: 45
  start-page: 952
  year: 2022
  end-page: 968
  ident: bb0090
  article-title: Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification
  publication-title: Energy Storage Mater.
– volume: 161
  year: 2022
  ident: bb0130
  article-title: Prognostics and health management of lithium-ion battery using deep learning methods: a review
  publication-title: Renew. Sust. Energ. Rev.
– volume: 4
  start-page: 383
  year: 2019
  end-page: 391
  ident: bb0050
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat. Energy
– volume: 351
  year: 2016
  ident: bb0035
  article-title: Why do batteries fail?
  publication-title: Science (80-. )
– volume: 11
  start-page: 36895
  year: 2024
  end-page: 36906
  ident: bb0190
  article-title: Personalized federated transfer learning for cycle-life prediction of lithium-ion batteries in heterogeneous clients with data privacy protection
  publication-title: IEEE Internet Things J.
– volume: 102
  year: 2024
  ident: bb0195
  article-title: A federated transfer learning approach for lithium-ion battery lifespan early prediction considering privacy preservation
  publication-title: J. Energy Storage
– volume: 97
  start-page: 630
  year: 2024
  end-page: 649
  ident: bb0070
  article-title: A review of data-driven whole-life state of health prediction for lithium-ion batteries: data preprocessing, aging characteristics, algorithms, and future challenges
  publication-title: J. Energy Chem.
– volume: 168
  year: 2021
  ident: bb0085
  article-title: Modeling electrochemical transport within a three-electrode system
  publication-title: J. Electrochem. Soc.
– volume: 97
  year: 2024
  ident: bb0200
  article-title: CNN-DBLSTM: a long-term remaining life prediction framework for lithium-ion battery with small number of samples
  publication-title: J. Energy Storage
– volume: 56
  year: 2024
  ident: bb0235
  article-title: Multi-scale simulation of complex systems: a perspective of integrating knowledge and data
  publication-title: ACM Comput. Surv.
– volume: 10
  start-page: 3629
  year: 2023
  end-page: 3638
  ident: bb0145
  article-title: Remaining useful life prediction of lithium-ion batteries via an EIS based deep learning approach
  publication-title: Energy Rep.
– volume: 238
  year: 2024
  ident: bb0205
  article-title: Enhanced robust capacity estimation of lithium-ion batteries with unlabeled dataset and semi-supervised machine learning
  publication-title: Expert Syst. Appl.
– volume: 67
  start-page: 5695
  year: 2018
  end-page: 5705
  ident: bb0150
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
– volume: 229
  year: 2025
  ident: bb0020
  article-title: An interpretable approach combining Shapley additive explanations and LightGBM based on data augmentation for improving wheat yield estimates
  publication-title: Comput. Electron. Agric.
– volume: 4
  start-page: 511
  year: 2020
  end-page: 515
  ident: bb0005
  article-title: Electric vehicles batteries: requirements and challenges
  publication-title: Joule
– volume: 247
  year: 2022
  ident: bb0080
  article-title: Constant current charging time based fast state-of-health estimation for lithium-ion batteries
  publication-title: Energy
– volume: 54
  start-page: 85
  year: 2023
  end-page: 97
  ident: bb0215
  article-title: Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
  publication-title: Energy Storage Mater.
– volume: 381
  year: 2025
  ident: bb0165
  article-title: A review of physics-informed machine learning for building energy modeling
  publication-title: Appl. Energy
– volume: 70
  start-page: 1
  year: 2021
  end-page: 10
  ident: bb0115
  article-title: Remaining useful life estimation for LFP cells in second-life applications
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 102
  year: 2024
  ident: bb0075
  article-title: SOH and RUL prediction of lithium batteries based on fusions of RLOESS filtered electrochemical and thermal features by bidirectional gated recurrent unit network
  publication-title: J. Energy Storage
– volume: 358
  year: 2024
  ident: bb0160
  article-title: A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments
  publication-title: Appl. Energy
– volume: 18
  year: 2024
  ident: bb0210
  article-title: A survey on federated learning: a perspective from multi-party computation
  publication-title: Front. Comput. Sci.
– volume: 358
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0160
  article-title: A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.122555
– volume: 13
  start-page: 2261
  year: 2022
  ident: 10.1016/j.est.2025.117152_bb0250
  article-title: Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29837-w
– volume: 56
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0235
  article-title: Multi-scale simulation of complex systems: a perspective of integrating knowledge and data
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3654662
– volume: 5
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0175
  article-title: Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems
  publication-title: Cell Rep. Phys. Sci.
– volume: 67
  start-page: 5695
  year: 2018
  ident: 10.1016/j.est.2025.117152_bb0150
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2805189
– volume: 97
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0200
  article-title: CNN-DBLSTM: a long-term remaining life prediction framework for lithium-ion battery with small number of samples
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112947
– start-page: 565
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0185
  article-title: RUL prediction of lithium-ion batteries using a federated and homomorphically encrypted learning method
– volume: 356
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0230
  article-title: Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.122356
– volume: 379
  year: 2025
  ident: 10.1016/j.est.2025.117152_bb0135
  article-title: Lithium-ion battery remaining useful life prediction based on interpretable deep learning and network parameter optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.124713
– volume: 108
  year: 2025
  ident: 10.1016/j.est.2025.117152_bb0030
  article-title: Experimental study on the degradation characteristics and mechanism of lithium-ion batteries under mild mechanical deformation
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.115097
– volume: 8
  start-page: 155576
  year: 2020
  ident: 10.1016/j.est.2025.117152_bb0095
  article-title: Empirical electrical and degradation model for electric vehicle batteries
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3019477
– volume: 4
  start-page: 383
  year: 2019
  ident: 10.1016/j.est.2025.117152_bb0050
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0356-8
– volume: 238
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0205
  article-title: Enhanced robust capacity estimation of lithium-ion batteries with unlabeled dataset and semi-supervised machine learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121892
– volume: 70
  year: 2023
  ident: 10.1016/j.est.2025.117152_bb0120
  article-title: Research progress and application of deep learning in remaining useful life, state of health and battery thermal management of lithium batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107868
– volume: 168
  year: 2021
  ident: 10.1016/j.est.2025.117152_bb0085
  article-title: Modeling electrochemical transport within a three-electrode system
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abdafb
– volume: 229
  year: 2025
  ident: 10.1016/j.est.2025.117152_bb0020
  article-title: An interpretable approach combining Shapley additive explanations and LightGBM based on data augmentation for improving wheat yield estimates
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109758
– volume: 247
  year: 2022
  ident: 10.1016/j.est.2025.117152_bb0080
  article-title: Constant current charging time based fast state-of-health estimation for lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123556
– volume: 39
  start-page: 15085
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0180
  article-title: Source-free dynamic weighted federated transfer learning for state-of-health estimation of lithium-ion batteries with data privacy
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2024.3434751
– volume: 45
  start-page: 952
  year: 2022
  ident: 10.1016/j.est.2025.117152_bb0090
  article-title: Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.12.044
– volume: 54
  start-page: 85
  year: 2023
  ident: 10.1016/j.est.2025.117152_bb0215
  article-title: Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.10.030
– volume: 11
  start-page: 4824
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0065
  article-title: Recent advancement of remaining useful life prediction of lithium-ion battery in electric vehicle applications: a review of modelling mechanisms, network configurations, factors, and outstanding issues
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2024.04.039
– volume: 435
  year: 2019
  ident: 10.1016/j.est.2025.117152_bb0100
  article-title: Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226830
– volume: 358
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0110
  article-title: Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.122325
– volume: 4
  start-page: 511
  year: 2020
  ident: 10.1016/j.est.2025.117152_bb0005
  article-title: Electric vehicles batteries: requirements and challenges
  publication-title: Joule
  doi: 10.1016/j.joule.2020.01.013
– volume: 351
  issue: 6273
  year: 2016
  ident: 10.1016/j.est.2025.117152_bb0035
  article-title: Why do batteries fail?
  publication-title: Science (80-. )
  doi: 10.1126/science.1253292
– start-page: 1
  year: 2025
  ident: 10.1016/j.est.2025.117152_bb0045
  article-title: Robust health monitoring for lithium-ion batteries under guidance of proxy labels: a deep multi-task learning approach
  publication-title: IEEE Trans. Power Electron.
– volume: 50
  start-page: 139
  year: 2022
  ident: 10.1016/j.est.2025.117152_bb0060
  article-title: Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.05.007
– volume: 91
  start-page: 512
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0170
  article-title: Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.12.043
– volume: 98
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0105
  article-title: Data driven health and life prognosis management of supercapacitor and lithium-ion battery storage systems: developments, implementation aspects, limitations, and future directions
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.113172
– year: 2024
  ident: 10.1016/j.est.2025.117152_bb0055
  article-title: Interpretable learning of accelerated aging in lithium metal batteries
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 139
  year: 2022
  ident: 10.1016/j.est.2025.117152_bb0155
  article-title: Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.05.007
– volume: 19
  year: 2025
  ident: 10.1016/j.est.2025.117152_bb0220
  article-title: A co-estimation framework of state of health and remaining useful life for lithium-ion batteries using the semi-supervised learning algorithm
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2024.100458
– volume: 103
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0015
  article-title: Aging mechanisms of cylindrical NCA/Si-graphite battery with high specific energy under dynamic driving cycles
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.114287
– volume: 18
  year: 2023
  ident: 10.1016/j.est.2025.117152_bb0040
  article-title: Nonlinear aging knee-point prediction for lithium-ion batteries faced with different application scenarios
  publication-title: ETransportation
  doi: 10.1016/j.etran.2023.100270
– volume: 11
  start-page: 36895
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0190
  article-title: Personalized federated transfer learning for cycle-life prediction of lithium-ion batteries in heterogeneous clients with data privacy protection
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2024.3433460
– year: 2024
  ident: 10.1016/j.est.2025.117152_bb0010
  article-title: Identifying the lithium bond and lithium ionic bond in electrolytes
  publication-title: Chem
– volume: 68
  start-page: 548
  year: 2022
  ident: 10.1016/j.est.2025.117152_bb0140
  article-title: A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.12.004
– volume: 10
  start-page: 3629
  year: 2023
  ident: 10.1016/j.est.2025.117152_bb0145
  article-title: Remaining useful life prediction of lithium-ion batteries via an EIS based deep learning approach
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.10.030
– volume: 102
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0075
  article-title: SOH and RUL prediction of lithium batteries based on fusions of RLOESS filtered electrochemical and thermal features by bidirectional gated recurrent unit network
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.114134
– volume: 306
  year: 2022
  ident: 10.1016/j.est.2025.117152_bb0125
  article-title: Deep neural network battery life and voltage prediction by using data of one cycle only
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118134
– volume: 1
  year: 2019
  ident: 10.1016/j.est.2025.117152_bb0025
  article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle
  publication-title: eTransportation
  doi: 10.1016/j.etran.2019.100005
– volume: 97
  start-page: 630
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0070
  article-title: A review of data-driven whole-life state of health prediction for lithium-ion batteries: data preprocessing, aging characteristics, algorithms, and future challenges
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2024.06.017
– volume: 18
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0210
  article-title: A survey on federated learning: a perspective from multi-party computation
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-023-3282-7
– volume: 381
  year: 2025
  ident: 10.1016/j.est.2025.117152_bb0165
  article-title: A review of physics-informed machine learning for building energy modeling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.125169
– volume: 2
  start-page: 41
  year: 2019
  ident: 10.1016/j.est.2025.117152_bb0245
  article-title: Adam optimization algorithm for wide and deep neural network
  publication-title: Knowl. Eng. Data Sci.
  doi: 10.17977/um018v2i12019p41-46
– volume: 161
  year: 2022
  ident: 10.1016/j.est.2025.117152_bb0130
  article-title: Prognostics and health management of lithium-ion battery using deep learning methods: a review
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2022.112282
– volume: 106
  year: 2025
  ident: 10.1016/j.est.2025.117152_bb0225
  article-title: A battery SOH estimation method based on entropy domain features and semi-supervised learning under limited sample conditions
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.114822
– year: 2018
  ident: 10.1016/j.est.2025.117152_bb0240
  article-title: Understanding batch normalization
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.est.2025.117152_bb0115
  article-title: Remaining useful life estimation for LFP cells in second-life applications
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3055791
– volume: 102
  year: 2024
  ident: 10.1016/j.est.2025.117152_bb0195
  article-title: A federated transfer learning approach for lithium-ion battery lifespan early prediction considering privacy preservation
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.114153
SSID ssj0001651196
Score 2.327647
Snippet Accurate prediction of remaining useful life (RUL) is essential for effective battery management and lifespan optimisation. While recent machine learning...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 117152
SubjectTerms Federated learning
Lithium-ion batteries
Remaining useful life
Semi-supervised learning
Title Privacy-preserving federated semi-supervised learning for battery life prediction amid data scarcity
URI https://dx.doi.org/10.1016/j.est.2025.117152
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 2352-152X
  databaseCode: ACRLP
  dateStart: 20150601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001651196
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 2352-152X
  databaseCode: AIKHN
  dateStart: 20150601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001651196
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 2352-152X
  databaseCode: AKRWK
  dateStart: 20150601
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651196
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lvehBfGJ9kYMnIXQ3m6S7x1KUqlgELfS25Ckr9kF3K_TfO9kHVtCLx2x2YPmSnfkmM5lB6BpMLFA2HRAF_gRhuh-RmBpDIqciyWKXqLJn5NNYjCbsYcqnLTRs7sL4tMpa91c6vdTW9ZNejWZvmWW9FwrcAazPlPqadMJfo-5QsPbggXUG94-j8fdRi_DBsqrNHKfEyzTxzTLTC9QvOIqU-wBmyOnvFmrL6tzto72aLuJB9UUHqGXnh2h3q4jgETLPq-xT6g3xKa3-z5-_YedLRACLNDi3s4zk66WfyGFcd4mAVxYrrMrimhv8kTmLQdxk5S0HLGeZwT53FOfa9xoqNsdocnf7OhyRuncC0TRhBQE_S3LJpJICOIaJWGJtQnWQxEJIF7ggUTo2YWh1P9ZRKAQYM6O0CVRgI6lddILa88XcniIcWlg0DrOcOwbeneoLpyRLlKQ2sYHpopsGr3RZlchIm9yx9xTATT24aQVuF7EG0fTHOqegwv8WO_uf2Dna8aPyDDi4QO1itbaXQCIKdVVvki-aC8bL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB6kPagHccW6zsGTMDSZzEyToxRL3Iqghd7CrBKxC20U-u99kwUV9OIxmTwI3yTfe2_ehtAFqFgw2XRAFPgThOleRGJqDImciiSLXaLKmZEPQ5GO2O2Yj9dQv6mF8WmVNfdXnF6ydX2nW6PZned594mC7QDaZ0x9Tzrhy6jbjAMnt1D76uYuHX4dtQgfLKvGzHFKvEwT3ywzvYB-wVGk3AcwQ05_11DftM5gG23V5iK-qt5oB63Z6S7a_NZEcA-Zx0X-IfWK-JRW_-dPX7DzLSLAijR4aSc5Wb7P_cISruspEfDIbIFV2Vxzhd9yZzGIm7yscsBykhvsc0fxUvtZQ8VqH40G18_9lNSzE4imCSsI-FmSSyaVFGBjmIgl1iZUB0kshHSBCxKlYxOGVvdiHYVCAHBGaROowEZSu-gAtaazqT1EOLSwaRxWOXcMvDvVE05JlihJbWID00GXDV7ZvGqRkTW5Y68ZgJt5cLMK3A5iDaLZj33OgML_Fjv6n9g5Wk-fH-6z-5vh3THa8CvleXBwglrF4t2egkFRqLP6g_kE_mfJrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-preserving+federated+semi-supervised+learning+for+battery+life+prediction+amid+data+scarcity&rft.jtitle=Journal+of+energy+storage&rft.au=Ma%2C+Liang&rft.au=Tian%2C+Jinpeng&rft.au=Zhang%2C+Tieling&rft.au=Guo%2C+Qinghua&rft.date=2025-08-30&rft.issn=2352-152X&rft.volume=128&rft.spage=117152&rft_id=info:doi/10.1016%2Fj.est.2025.117152&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_est_2025_117152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon