GENet: A Generic Neural Network for Detecting Various Neurological Disorders From EEG

The global health burden of neurological disorders (NDs) is vast, and they are recognized as major causes of mortality and disability worldwide. Most existing NDs detection methods are disease-specific, which limits an algorithm's cross-disease applicability. A single diagnostic platform can sa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems Vol. 16; no. 5; pp. 1829 - 1842
Main Authors Tawhid, Md. Nurul Ahad, Siuly, Siuly, Wang, Kate, Wang, Hua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2379-8920
2379-8939
DOI10.1109/TCDS.2024.3386364

Cover

Abstract The global health burden of neurological disorders (NDs) is vast, and they are recognized as major causes of mortality and disability worldwide. Most existing NDs detection methods are disease-specific, which limits an algorithm's cross-disease applicability. A single diagnostic platform can save time and money over multiple diagnostic systems. There is currently no unified standard platform for diagnosing different types of NDs utilizing electroencephalogram (EEG) signal data. To address this issue, this study aims to develop a generic EEG neural Network (GENet) framework based on a convolutional neural network that can identify various NDs from EEG. The proposed framework consists of several parts: 1) preparing data using channel reduction, resampling, and segmentation for the GENet model; 2) designing and training the GENet model to carry out important features for the classification task; and 3) assessing the proposed model's performance using different signal segment lengths and several training batch sizes and also cross-validating using seven different EEG datasets of six distinct NDs namely schizophrenia, autism spectrum disorder, epilepsy, Parkinson's disease, mild cognitive impairment, and attention-deficit/hyperactivity disorder. In addition, this study also investigates whether the proposed GENet model can identify multiple NDs from EEG. The proposed model achieved much better performance for both binary and multiclass classification compared to state-of-the-art methods. In addition, the proposed model is validated using several ablation studies and layerwise feature visualization, which provide consistency and efficiency to the proposed model. The proposed GENet model will help technologists create standard software for detecting any of these NDs from EEG.
AbstractList The global health burden of neurological disorders (NDs) is vast, and they are recognized as major causes of mortality and disability worldwide. Most existing NDs detection methods are disease-specific, which limits an algorithm's cross-disease applicability. A single diagnostic platform can save time and money over multiple diagnostic systems. There is currently no unified standard platform for diagnosing different types of NDs utilizing electroencephalogram (EEG) signal data. To address this issue, this study aims to develop a generic EEG neural Network (GENet) framework based on a convolutional neural network that can identify various NDs from EEG. The proposed framework consists of several parts: 1) preparing data using channel reduction, resampling, and segmentation for the GENet model; 2) designing and training the GENet model to carry out important features for the classification task; and 3) assessing the proposed model's performance using different signal segment lengths and several training batch sizes and also cross-validating using seven different EEG datasets of six distinct NDs namely schizophrenia, autism spectrum disorder, epilepsy, Parkinson's disease, mild cognitive impairment, and attention-deficit/hyperactivity disorder. In addition, this study also investigates whether the proposed GENet model can identify multiple NDs from EEG. The proposed model achieved much better performance for both binary and multiclass classification compared to state-of-the-art methods. In addition, the proposed model is validated using several ablation studies and layerwise feature visualization, which provide consistency and efficiency to the proposed model. The proposed GENet model will help technologists create standard software for detecting any of these NDs from EEG.
Author Siuly, Siuly
Tawhid, Md. Nurul Ahad
Wang, Kate
Wang, Hua
Author_xml – sequence: 1
  givenname: Md. Nurul Ahad
  orcidid: 0000-0002-6100-4895
  surname: Tawhid
  fullname: Tawhid, Md. Nurul Ahad
  email: md.tawhid1@live.vu.edu.au
  organization: Institute for Sustainable Industries & Liveable Cities, Victoria University, Footscray, VIC, Australia
– sequence: 2
  givenname: Siuly
  orcidid: 0000-0003-2491-0546
  surname: Siuly
  fullname: Siuly, Siuly
  email: siuly.siuly@vu.edu.au
  organization: Institute for Sustainable Industries & Liveable Cities, Victoria University, Footscray, VIC, Australia
– sequence: 3
  givenname: Kate
  orcidid: 0000-0001-5208-1090
  surname: Wang
  fullname: Wang, Kate
  email: kate.wang@rmit.edu.au
  organization: School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
– sequence: 4
  givenname: Hua
  orcidid: 0000-0002-8465-0996
  surname: Wang
  fullname: Wang, Hua
  email: hua.wang@vu.edu.au
  organization: Institute for Sustainable Industries & Liveable Cities, Victoria University, Footscray, VIC, Australia
BookMark eNp9kM9PwjAYhhujiYj8ASYelngG-3NrvREY04TgQfDalK4jxbFi28X43zuEGOPB0_sdnud7k_cKnDeuMQDcIDhCCIr75WT6MsIQ0xEhPCUpPQM9TDIx5IKI858bw0swCGELIUQpyTjNemBV5AsTH5JxUpjGeKuThWm9qruIH86_JZXzydREo6NtNsmr8ta14RtytdtY3aFTG5wvjQ_JzLtdkufFNbioVB3M4JR9sJrly8njcP5cPE3G86HGgsYh4ylUjKG1YgSnqFKEl1pRzLKSi2zNBCSaMa50CStGmFKpoBhSpnhpOMKc9MHd8e_eu_fWhCi3rvVNVykJQhkiKaOso9CR0t6F4E0l997ulP-UCMrDgPIwoDwMKE8Ddk72x9E2qmhdE72y9b_m7dG0xphfTVRQDhH5AngTfYk
CODEN ITCDA4
CitedBy_id crossref_primary_10_1038_s41598_025_90649_1
crossref_primary_10_1080_21622965_2025_2470438
crossref_primary_10_2478_msr_2025_0002
Cites_doi 10.1371/journal.pone.0188629
10.1016/j.clinph.2021.01.021
10.1016/j.neucom.2016.08.050
10.1016/j.cmpb.2016.01.017
10.1007/s10462-021-09986-y
10.1049/iet-smt.2018.5358
10.1109/TIM.2018.2838158
10.1371/journal.pone.0253094
10.1016/j.parkreldis.2020.08.001
10.1016/j.apacoust.2021.107941
10.1109/TCDS.2020.2976112
10.1007/978-3-319-47653-7
10.1109/TNSRE.2020.3022715
10.1109/JBHI.2022.3151570
10.1007/978-3-031-15512-3_13
10.1016/j.bspc.2021.102767
10.1109/TIM.2021.3070608
10.1016/j.neucom.2019.04.058
10.1109/TTS.2023.3239526
10.1016/j.bspc.2021.102936
10.1109/MSP.2008.4408441
10.1016/j.neuroimage.2006.09.024
10.1016/j.compbiomed.2022.105311
10.1109/TCDS.2019.2936441
10.18280/ts.370209
10.18502/fbt.v8i2.6515
10.1109/TNSRE.2020.3013429
10.1007/978-3-030-04573-9_4
10.1371/journal.pone.0277555
10.1049/el.2020.2646
10.1088/1741-2552/aace8c
10.1007/s11633-019-1197-4
10.1109/JSEN.2021.3080135
10.1007/978-3-030-90888-1_16
10.1007/s00521-018-3689-5
10.4103/2228-7477.175869
10.1109/TIM.2022.3217515
10.1016/j.neucom.2018.09.071
10.1109/TNSRE.2023.3347032
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2024.3386364
DatabaseName Accès Toulouse INP et ENVT - IEEE Xplore ASPP 2005
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Public Health
EISSN 2379-8939
EndPage 1842
ExternalDocumentID 10_1109_TCDS_2024_3386364
10494801
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  grantid: LP170100934
  funderid: 10.13039/501100000923
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-5860a551ba53261fa38dca4257d897b5903c558acd0f535aa6942045a8de81283
IEDL.DBID RIE
ISSN 2379-8920
IngestDate Mon Jun 30 10:28:29 EDT 2025
Wed Oct 01 01:52:39 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Wed Aug 27 02:30:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-5860a551ba53261fa38dca4257d897b5903c558acd0f535aa6942045a8de81283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2491-0546
0000-0001-5208-1090
0000-0002-8465-0996
0000-0002-6100-4895
PQID 3117136545
PQPubID 85513
PageCount 14
ParticipantIDs ieee_primary_10494801
proquest_journals_3117136545
crossref_primary_10_1109_TCDS_2024_3386364
crossref_citationtrail_10_1109_TCDS_2024_3386364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref37
ref14
ref36
ref31
ref30
Van der Maaten (ref44) 2008; 9
ref11
ref33
ref10
(ref1) 2006
(ref2) 2022
ref17
ref39
ref16
ref19
ref18
Goodfellow (ref38) 2016
Alhaddad (ref34) 2012; 4
Roach (ref29) 2021
ref24
ref46
ref23
Pereira (ref32) 2019
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Nasrabadi (ref35) 2020
References_xml – ident: ref30
  doi: 10.1371/journal.pone.0188629
– ident: ref9
  doi: 10.1016/j.clinph.2021.01.021
– ident: ref6
  doi: 10.1016/j.neucom.2016.08.050
– ident: ref42
  doi: 10.1016/j.cmpb.2016.01.017
– ident: ref36
  doi: 10.1007/s10462-021-09986-y
– ident: ref5
  doi: 10.1049/iet-smt.2018.5358
– ident: ref20
  doi: 10.1109/TIM.2018.2838158
– ident: ref21
  doi: 10.1371/journal.pone.0253094
– ident: ref33
  doi: 10.1016/j.parkreldis.2020.08.001
– ident: ref22
  doi: 10.1016/j.apacoust.2021.107941
– ident: ref43
  doi: 10.1109/TCDS.2020.2976112
– volume-title: Neurological Disorders: Public Health Challenges
  year: 2006
  ident: ref1
– ident: ref16
  doi: 10.1007/978-3-319-47653-7
– year: 2021
  ident: ref29
  article-title: EEG data from basic sensory task in schizophrenia
– year: 2020
  ident: ref35
  article-title: EEG data for adhd / control children
  publication-title: IEEE Dataport
– ident: ref7
  doi: 10.1109/TNSRE.2020.3022715
– ident: ref45
  doi: 10.1109/JBHI.2022.3151570
– ident: ref17
  doi: 10.1007/978-3-031-15512-3_13
– ident: ref11
  doi: 10.1016/j.bspc.2021.102767
– ident: ref10
  doi: 10.1109/TIM.2021.3070608
– ident: ref15
  doi: 10.1016/j.neucom.2019.04.058
– ident: ref18
  doi: 10.1109/TTS.2023.3239526
– ident: ref46
  doi: 10.1016/j.bspc.2021.102936
– ident: ref3
  doi: 10.1109/MSP.2008.4408441
– ident: ref27
  doi: 10.1016/j.neuroimage.2006.09.024
– ident: ref13
  doi: 10.1016/j.compbiomed.2022.105311
– ident: ref23
  doi: 10.1109/TCDS.2019.2936441
– ident: ref37
  doi: 10.18280/ts.370209
– ident: ref47
  doi: 10.18502/fbt.v8i2.6515
– ident: ref8
  doi: 10.1109/TNSRE.2020.3013429
– year: 2022
  ident: ref2
  article-title: Optimizing brain health across the life course: Who position paper
– ident: ref28
  doi: 10.1007/978-3-030-04573-9_4
– ident: ref41
  doi: 10.1371/journal.pone.0277555
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref44
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– ident: ref19
  doi: 10.1049/el.2020.2646
– ident: ref26
  doi: 10.1088/1741-2552/aace8c
– volume: 4
  start-page: 45
  issue: 2
  year: 2012
  ident: ref34
  article-title: Diagnosis autism by fisher linear discriminant analysis flda via EEG
  publication-title: Int. J. Bio-Sci. Bio-Technol.
– ident: ref4
  doi: 10.1007/s11633-019-1197-4
– volume-title: Deep Learning
  year: 2016
  ident: ref38
– ident: ref12
  doi: 10.1109/JSEN.2021.3080135
– ident: ref39
  doi: 10.1007/978-3-030-90888-1_16
– ident: ref24
  doi: 10.1007/s00521-018-3689-5
– ident: ref31
  doi: 10.4103/2228-7477.175869
– ident: ref40
  doi: 10.1109/TIM.2022.3217515
– ident: ref14
  doi: 10.1016/j.neucom.2018.09.071
– ident: ref25
  doi: 10.1109/TNSRE.2023.3347032
– year: 2019
  ident: ref32
  article-title: Resting-state interictal EEG recordings of refractory epilepsy patients
SSID ssj0001637847
Score 2.3674314
Snippet The global health burden of neurological disorders (NDs) is vast, and they are recognized as major causes of mortality and disability worldwide. Most existing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1829
SubjectTerms Ablation
Algorithms
Artificial neural networks
Attention-deficit/hyperactivity disorder
Autism
autism spectrum disorder (ASD)
Brain modeling
convolutional neural network (CNN)
Convolutional neural networks
Diagnostic systems
electroencephalogram (EEG)
Electroencephalography
Epilepsy
Feature extraction
mild cognitive impairment
Neural networks
Neurological diseases
Neurological disorders
Parkinson's disease
Public health
Resampling
Schizophrenia
Signal classification
State-of-the-art reviews
Title GENet: A Generic Neural Network for Detecting Various Neurological Disorders From EEG
URI https://ieeexplore.ieee.org/document/10494801
https://www.proquest.com/docview/3117136545
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2379-8939
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001637847
  issn: 2379-8920
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwuvgigveUAMSCmJHTs2W1VSKiSyQBFbZDuuhKAtoukAv56zk_AUiC3DnWXl_LjPd_cdQkcAcKjRkgeKjAGgSDoONCVRwLVSRLrIn2fnv8r4cBRf3rG7uljd18JYa33yme26Tx_LL2Zm4Z7KYIc7MhNXrbWcCF4Va308qHCaCN9QjNBEBkKSJooZhfL0pn9-DWiQxF3AZJzy-Ms95Bur_DiN_RUzWENZM7kqs-Shuyh117x-42389-zX0WrtbOJetTo20JKdbqJ2bwpAe_KCj7FP__Tv6m00ukgzW57hHvZM1PcGO94O0M6qRHEM3i0-ty7mALcdvgWMPVvMvVBzfuKGynOOB8-zCU7Tiy00GqQ3_WFQ91wIDJFxGTDBQwVelFYMHLtorKgojHIbuxAy0UyG1DAmlCnCMaNMKS5jx2ivRGHBVxB0G7Wms6ndQdhoAvAI9OEIi0nCdeSCoixWMiyKQpoOChsL5KYmJHd9MR5zD0xCmTuj5c5oeW20Djp5V3mq2Dj-Et5yRvgkWP3_Dtpv7JzXG3ae0yhKXMZfzHZ_UdtDK270KpFvH7XK54U9AIek1Id-Ib4B60TXtA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDLDwRpSnB8SAlJL4lZitgpbyykKL2CLbcSUEtIimA_x6zk7CUyC2DHeylfPjPt_ddwjtAcChRksRKDIAgCLpINCURIHQShHpIn-enf8qFd0-O7_lt1Wxuq-Fsdb65DPbdJ8-lp-PzMQ9lcEOd2QmrlprhjPGeFmu9fGkImic-JZihMYySCSp45hRKA97xyfXgAcJawIqE1SwLzeRb63y4zz2l0xnAaX19MrckvvmpNBN8_qNufHf819E85W7iVvl-lhCU3a4jFZaQ4Dajy94H_sEUP-yvoL6p-3UFke4hT0X9Z3BjrkDtNMyVRyDf4tPrIs6wH2HbwBljyZjL1SfoLgm8xzjzvPoEbfbp6uo32n3jrtB1XUhMESyIuCJCBX4UVpxcO2igaJJbpTb2nkiY81lSA3niTJ5OOCUKyUkc5z2KskteAsJXUPTw9HQriNsNAGABPpwiDESCx25sChnSoZ5nkvTQGFtgcxUlOSuM8ZD5qFJKDNntMwZLauM1kAH7ypPJR_HX8KrzgifBMv_30BbtZ2zasuOMxpFscv5Y3zjF7VdNNvtXV1ml2fpxSaacyOVaX1baLp4nthtcE8KveMX5RtkUtsB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GENet%3A+A+Generic+Neural+Network+for+Detecting+Various+Neurological+Disorders+From+EEG&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Tawhid%2C+Md.+Nurul+Ahad&rft.au=Siuly%2C+Siuly&rft.au=Wang%2C+Kate&rft.au=Wang%2C+Hua&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=16&rft.issue=5&rft.spage=1829&rft.epage=1842&rft_id=info:doi/10.1109%2FTCDS.2024.3386364&rft.externalDocID=10494801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon