GENet: A Generic Neural Network for Detecting Various Neurological Disorders From EEG
The global health burden of neurological disorders (NDs) is vast, and they are recognized as major causes of mortality and disability worldwide. Most existing NDs detection methods are disease-specific, which limits an algorithm's cross-disease applicability. A single diagnostic platform can sa...
Saved in:
| Published in | IEEE transactions on cognitive and developmental systems Vol. 16; no. 5; pp. 1829 - 1842 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2379-8920 2379-8939 |
| DOI | 10.1109/TCDS.2024.3386364 |
Cover
| Abstract | The global health burden of neurological disorders (NDs) is vast, and they are recognized as major causes of mortality and disability worldwide. Most existing NDs detection methods are disease-specific, which limits an algorithm's cross-disease applicability. A single diagnostic platform can save time and money over multiple diagnostic systems. There is currently no unified standard platform for diagnosing different types of NDs utilizing electroencephalogram (EEG) signal data. To address this issue, this study aims to develop a generic EEG neural Network (GENet) framework based on a convolutional neural network that can identify various NDs from EEG. The proposed framework consists of several parts: 1) preparing data using channel reduction, resampling, and segmentation for the GENet model; 2) designing and training the GENet model to carry out important features for the classification task; and 3) assessing the proposed model's performance using different signal segment lengths and several training batch sizes and also cross-validating using seven different EEG datasets of six distinct NDs namely schizophrenia, autism spectrum disorder, epilepsy, Parkinson's disease, mild cognitive impairment, and attention-deficit/hyperactivity disorder. In addition, this study also investigates whether the proposed GENet model can identify multiple NDs from EEG. The proposed model achieved much better performance for both binary and multiclass classification compared to state-of-the-art methods. In addition, the proposed model is validated using several ablation studies and layerwise feature visualization, which provide consistency and efficiency to the proposed model. The proposed GENet model will help technologists create standard software for detecting any of these NDs from EEG. |
|---|---|
| AbstractList | The global health burden of neurological disorders (NDs) is vast, and they are recognized as major causes of mortality and disability worldwide. Most existing NDs detection methods are disease-specific, which limits an algorithm's cross-disease applicability. A single diagnostic platform can save time and money over multiple diagnostic systems. There is currently no unified standard platform for diagnosing different types of NDs utilizing electroencephalogram (EEG) signal data. To address this issue, this study aims to develop a generic EEG neural Network (GENet) framework based on a convolutional neural network that can identify various NDs from EEG. The proposed framework consists of several parts: 1) preparing data using channel reduction, resampling, and segmentation for the GENet model; 2) designing and training the GENet model to carry out important features for the classification task; and 3) assessing the proposed model's performance using different signal segment lengths and several training batch sizes and also cross-validating using seven different EEG datasets of six distinct NDs namely schizophrenia, autism spectrum disorder, epilepsy, Parkinson's disease, mild cognitive impairment, and attention-deficit/hyperactivity disorder. In addition, this study also investigates whether the proposed GENet model can identify multiple NDs from EEG. The proposed model achieved much better performance for both binary and multiclass classification compared to state-of-the-art methods. In addition, the proposed model is validated using several ablation studies and layerwise feature visualization, which provide consistency and efficiency to the proposed model. The proposed GENet model will help technologists create standard software for detecting any of these NDs from EEG. |
| Author | Siuly, Siuly Tawhid, Md. Nurul Ahad Wang, Kate Wang, Hua |
| Author_xml | – sequence: 1 givenname: Md. Nurul Ahad orcidid: 0000-0002-6100-4895 surname: Tawhid fullname: Tawhid, Md. Nurul Ahad email: md.tawhid1@live.vu.edu.au organization: Institute for Sustainable Industries & Liveable Cities, Victoria University, Footscray, VIC, Australia – sequence: 2 givenname: Siuly orcidid: 0000-0003-2491-0546 surname: Siuly fullname: Siuly, Siuly email: siuly.siuly@vu.edu.au organization: Institute for Sustainable Industries & Liveable Cities, Victoria University, Footscray, VIC, Australia – sequence: 3 givenname: Kate orcidid: 0000-0001-5208-1090 surname: Wang fullname: Wang, Kate email: kate.wang@rmit.edu.au organization: School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia – sequence: 4 givenname: Hua orcidid: 0000-0002-8465-0996 surname: Wang fullname: Wang, Hua email: hua.wang@vu.edu.au organization: Institute for Sustainable Industries & Liveable Cities, Victoria University, Footscray, VIC, Australia |
| BookMark | eNp9kM9PwjAYhhujiYj8ASYelngG-3NrvREY04TgQfDalK4jxbFi28X43zuEGOPB0_sdnud7k_cKnDeuMQDcIDhCCIr75WT6MsIQ0xEhPCUpPQM9TDIx5IKI858bw0swCGELIUQpyTjNemBV5AsTH5JxUpjGeKuThWm9qruIH86_JZXzydREo6NtNsmr8ta14RtytdtY3aFTG5wvjQ_JzLtdkufFNbioVB3M4JR9sJrly8njcP5cPE3G86HGgsYh4ylUjKG1YgSnqFKEl1pRzLKSi2zNBCSaMa50CStGmFKpoBhSpnhpOMKc9MHd8e_eu_fWhCi3rvVNVykJQhkiKaOso9CR0t6F4E0l997ulP-UCMrDgPIwoDwMKE8Ddk72x9E2qmhdE72y9b_m7dG0xphfTVRQDhH5AngTfYk |
| CODEN | ITCDA4 |
| CitedBy_id | crossref_primary_10_1038_s41598_025_90649_1 crossref_primary_10_1080_21622965_2025_2470438 crossref_primary_10_2478_msr_2025_0002 |
| Cites_doi | 10.1371/journal.pone.0188629 10.1016/j.clinph.2021.01.021 10.1016/j.neucom.2016.08.050 10.1016/j.cmpb.2016.01.017 10.1007/s10462-021-09986-y 10.1049/iet-smt.2018.5358 10.1109/TIM.2018.2838158 10.1371/journal.pone.0253094 10.1016/j.parkreldis.2020.08.001 10.1016/j.apacoust.2021.107941 10.1109/TCDS.2020.2976112 10.1007/978-3-319-47653-7 10.1109/TNSRE.2020.3022715 10.1109/JBHI.2022.3151570 10.1007/978-3-031-15512-3_13 10.1016/j.bspc.2021.102767 10.1109/TIM.2021.3070608 10.1016/j.neucom.2019.04.058 10.1109/TTS.2023.3239526 10.1016/j.bspc.2021.102936 10.1109/MSP.2008.4408441 10.1016/j.neuroimage.2006.09.024 10.1016/j.compbiomed.2022.105311 10.1109/TCDS.2019.2936441 10.18280/ts.370209 10.18502/fbt.v8i2.6515 10.1109/TNSRE.2020.3013429 10.1007/978-3-030-04573-9_4 10.1371/journal.pone.0277555 10.1049/el.2020.2646 10.1088/1741-2552/aace8c 10.1007/s11633-019-1197-4 10.1109/JSEN.2021.3080135 10.1007/978-3-030-90888-1_16 10.1007/s00521-018-3689-5 10.4103/2228-7477.175869 10.1109/TIM.2022.3217515 10.1016/j.neucom.2018.09.071 10.1109/TNSRE.2023.3347032 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCDS.2024.3386364 |
| DatabaseName | Accès Toulouse INP et ENVT - IEEE Xplore ASPP 2005 IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Public Health |
| EISSN | 2379-8939 |
| EndPage | 1842 |
| ExternalDocumentID | 10_1109_TCDS_2024_3386364 10494801 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Australian Research Council grantid: LP170100934 funderid: 10.13039/501100000923 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-5860a551ba53261fa38dca4257d897b5903c558acd0f535aa6942045a8de81283 |
| IEDL.DBID | RIE |
| ISSN | 2379-8920 |
| IngestDate | Mon Jun 30 10:28:29 EDT 2025 Wed Oct 01 01:52:39 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Aug 27 02:30:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-5860a551ba53261fa38dca4257d897b5903c558acd0f535aa6942045a8de81283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2491-0546 0000-0001-5208-1090 0000-0002-8465-0996 0000-0002-6100-4895 |
| PQID | 3117136545 |
| PQPubID | 85513 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_10494801 proquest_journals_3117136545 crossref_primary_10_1109_TCDS_2024_3386364 crossref_citationtrail_10_1109_TCDS_2024_3386364 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cognitive and developmental systems |
| PublicationTitleAbbrev | TCDS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref37 ref14 ref36 ref31 ref30 Van der Maaten (ref44) 2008; 9 ref11 ref33 ref10 (ref1) 2006 (ref2) 2022 ref17 ref39 ref16 ref19 ref18 Goodfellow (ref38) 2016 Alhaddad (ref34) 2012; 4 Roach (ref29) 2021 ref24 ref46 ref23 Pereira (ref32) 2019 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Nasrabadi (ref35) 2020 |
| References_xml | – ident: ref30 doi: 10.1371/journal.pone.0188629 – ident: ref9 doi: 10.1016/j.clinph.2021.01.021 – ident: ref6 doi: 10.1016/j.neucom.2016.08.050 – ident: ref42 doi: 10.1016/j.cmpb.2016.01.017 – ident: ref36 doi: 10.1007/s10462-021-09986-y – ident: ref5 doi: 10.1049/iet-smt.2018.5358 – ident: ref20 doi: 10.1109/TIM.2018.2838158 – ident: ref21 doi: 10.1371/journal.pone.0253094 – ident: ref33 doi: 10.1016/j.parkreldis.2020.08.001 – ident: ref22 doi: 10.1016/j.apacoust.2021.107941 – ident: ref43 doi: 10.1109/TCDS.2020.2976112 – volume-title: Neurological Disorders: Public Health Challenges year: 2006 ident: ref1 – ident: ref16 doi: 10.1007/978-3-319-47653-7 – year: 2021 ident: ref29 article-title: EEG data from basic sensory task in schizophrenia – year: 2020 ident: ref35 article-title: EEG data for adhd / control children publication-title: IEEE Dataport – ident: ref7 doi: 10.1109/TNSRE.2020.3022715 – ident: ref45 doi: 10.1109/JBHI.2022.3151570 – ident: ref17 doi: 10.1007/978-3-031-15512-3_13 – ident: ref11 doi: 10.1016/j.bspc.2021.102767 – ident: ref10 doi: 10.1109/TIM.2021.3070608 – ident: ref15 doi: 10.1016/j.neucom.2019.04.058 – ident: ref18 doi: 10.1109/TTS.2023.3239526 – ident: ref46 doi: 10.1016/j.bspc.2021.102936 – ident: ref3 doi: 10.1109/MSP.2008.4408441 – ident: ref27 doi: 10.1016/j.neuroimage.2006.09.024 – ident: ref13 doi: 10.1016/j.compbiomed.2022.105311 – ident: ref23 doi: 10.1109/TCDS.2019.2936441 – ident: ref37 doi: 10.18280/ts.370209 – ident: ref47 doi: 10.18502/fbt.v8i2.6515 – ident: ref8 doi: 10.1109/TNSRE.2020.3013429 – year: 2022 ident: ref2 article-title: Optimizing brain health across the life course: Who position paper – ident: ref28 doi: 10.1007/978-3-030-04573-9_4 – ident: ref41 doi: 10.1371/journal.pone.0277555 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: ref44 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – ident: ref19 doi: 10.1049/el.2020.2646 – ident: ref26 doi: 10.1088/1741-2552/aace8c – volume: 4 start-page: 45 issue: 2 year: 2012 ident: ref34 article-title: Diagnosis autism by fisher linear discriminant analysis flda via EEG publication-title: Int. J. Bio-Sci. Bio-Technol. – ident: ref4 doi: 10.1007/s11633-019-1197-4 – volume-title: Deep Learning year: 2016 ident: ref38 – ident: ref12 doi: 10.1109/JSEN.2021.3080135 – ident: ref39 doi: 10.1007/978-3-030-90888-1_16 – ident: ref24 doi: 10.1007/s00521-018-3689-5 – ident: ref31 doi: 10.4103/2228-7477.175869 – ident: ref40 doi: 10.1109/TIM.2022.3217515 – ident: ref14 doi: 10.1016/j.neucom.2018.09.071 – ident: ref25 doi: 10.1109/TNSRE.2023.3347032 – year: 2019 ident: ref32 article-title: Resting-state interictal EEG recordings of refractory epilepsy patients |
| SSID | ssj0001637847 |
| Score | 2.3674314 |
| Snippet | The global health burden of neurological disorders (NDs) is vast, and they are recognized as major causes of mortality and disability worldwide. Most existing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1829 |
| SubjectTerms | Ablation Algorithms Artificial neural networks Attention-deficit/hyperactivity disorder Autism autism spectrum disorder (ASD) Brain modeling convolutional neural network (CNN) Convolutional neural networks Diagnostic systems electroencephalogram (EEG) Electroencephalography Epilepsy Feature extraction mild cognitive impairment Neural networks Neurological diseases Neurological disorders Parkinson's disease Public health Resampling Schizophrenia Signal classification State-of-the-art reviews |
| Title | GENet: A Generic Neural Network for Detecting Various Neurological Disorders From EEG |
| URI | https://ieeexplore.ieee.org/document/10494801 https://www.proquest.com/docview/3117136545 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2379-8939 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001637847 issn: 2379-8920 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwuvgigveUAMSCmJHTs2W1VSKiSyQBFbZDuuhKAtoukAv56zk_AUiC3DnWXl_LjPd_cdQkcAcKjRkgeKjAGgSDoONCVRwLVSRLrIn2fnv8r4cBRf3rG7uljd18JYa33yme26Tx_LL2Zm4Z7KYIc7MhNXrbWcCF4Va308qHCaCN9QjNBEBkKSJooZhfL0pn9-DWiQxF3AZJzy-Ms95Bur_DiN_RUzWENZM7kqs-Shuyh117x-42389-zX0WrtbOJetTo20JKdbqJ2bwpAe_KCj7FP__Tv6m00ukgzW57hHvZM1PcGO94O0M6qRHEM3i0-ty7mALcdvgWMPVvMvVBzfuKGynOOB8-zCU7Tiy00GqQ3_WFQ91wIDJFxGTDBQwVelFYMHLtorKgojHIbuxAy0UyG1DAmlCnCMaNMKS5jx2ivRGHBVxB0G7Wms6ndQdhoAvAI9OEIi0nCdeSCoixWMiyKQpoOChsL5KYmJHd9MR5zD0xCmTuj5c5oeW20Djp5V3mq2Dj-Et5yRvgkWP3_Dtpv7JzXG3ae0yhKXMZfzHZ_UdtDK270KpFvH7XK54U9AIek1Id-Ib4B60TXtA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDLDwRpSnB8SAlJL4lZitgpbyykKL2CLbcSUEtIimA_x6zk7CUyC2DHeylfPjPt_ddwjtAcChRksRKDIAgCLpINCURIHQShHpIn-enf8qFd0-O7_lt1Wxuq-Fsdb65DPbdJ8-lp-PzMQ9lcEOd2QmrlprhjPGeFmu9fGkImic-JZihMYySCSp45hRKA97xyfXgAcJawIqE1SwLzeRb63y4zz2l0xnAaX19MrckvvmpNBN8_qNufHf819E85W7iVvl-lhCU3a4jFZaQ4Dajy94H_sEUP-yvoL6p-3UFke4hT0X9Z3BjrkDtNMyVRyDf4tPrIs6wH2HbwBljyZjL1SfoLgm8xzjzvPoEbfbp6uo32n3jrtB1XUhMESyIuCJCBX4UVpxcO2igaJJbpTb2nkiY81lSA3niTJ5OOCUKyUkc5z2KskteAsJXUPTw9HQriNsNAGABPpwiDESCx25sChnSoZ5nkvTQGFtgcxUlOSuM8ZD5qFJKDNntMwZLauM1kAH7ypPJR_HX8KrzgifBMv_30BbtZ2zasuOMxpFscv5Y3zjF7VdNNvtXV1ml2fpxSaacyOVaX1baLp4nthtcE8KveMX5RtkUtsB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GENet%3A+A+Generic+Neural+Network+for+Detecting+Various+Neurological+Disorders+From+EEG&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Tawhid%2C+Md.+Nurul+Ahad&rft.au=Siuly%2C+Siuly&rft.au=Wang%2C+Kate&rft.au=Wang%2C+Hua&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=16&rft.issue=5&rft.spage=1829&rft.epage=1842&rft_id=info:doi/10.1109%2FTCDS.2024.3386364&rft.externalDocID=10494801 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |