Assessment on the Diurnal Cycle of Cloud Covers of Fengyun-4A Geostationary Satellite Based on the Manual Observation Data in China

Complicated and regionally representative diurnal cycle characteristics of clouds may introduce some errors into the cloud mask (CLM) algorithm of Geostationary (GEO) meteorological satellite imaging system, which are very difficult to be assessed by using analogous products of fixed-passing polar-o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 61; p. 1
Main Authors Liang, Yongen, Min, Min, Yu, Yu, Wang, Xi, Xia, Pan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2023.3256365

Cover

Abstract Complicated and regionally representative diurnal cycle characteristics of clouds may introduce some errors into the cloud mask (CLM) algorithm of Geostationary (GEO) meteorological satellite imaging system, which are very difficult to be assessed by using analogous products of fixed-passing polar-orbiting satellites. In this investigation, the diurnal cycle of the performance of CLM algorithm of the Advanced Geosynchronous Radiation Imager onboard the China Fengyun-4A satellite (FY-4A/AGRI) is validated by using manually observed cloud covers (CC) at twenty-five ground-based stations in China. The results indicate that the CCs calculated by the FY-4A/AGRI cloud mask algorithm are overestimated at 11:00 BJT (Beijing Time) and 14:00 BJT (around noon) and underestimated at 08:00 BJT and 20:00 BJT (in the morning and evening) at most stations. In summer, compared with other seasons, the cloud covers obtained from the FY-4A/AGRI over northern China and the Tibetan Plateau are much better consistent with the manual observations, but the situation is the opposite in southern China. However, the CC results retrieved at vegetation surface by FY-4A/AGRI show the best and stable performance. Due to that the two independent cloud tests induce most of overestimations, some sensitivity experiments for the CLM algorithm are conducted. The results show that the best improvement effect is achieved after only closing one cloud test using the 3.8 μm band. Many extremely overestimated cloud cover samples (about 56.3%) are eliminated. After that, the FY-4A/AGRI cloud mask product is more reasonable compared with the corresponding infrared and visible imageries.
AbstractList Complicated and regionally representative diurnal cycle characteristics of clouds may introduce some errors into the cloud mask (CLM) algorithm of Geostationary (GEO) meteorological satellite imaging system, which are very difficult to be assessed by using analogous products of fixed-passing polar-orbiting satellites. In this investigation, the diurnal cycle of the performance of CLM algorithm of the Advanced Geosynchronous Radiation Imager onboard the China Fengyun-4A satellite (FY-4A/AGRI) is validated by using manually observed cloud covers (CC) at twenty-five ground-based stations in China. The results indicate that the CCs calculated by the FY-4A/AGRI cloud mask algorithm are overestimated at 11:00 BJT (Beijing Time) and 14:00 BJT (around noon) and underestimated at 08:00 BJT and 20:00 BJT (in the morning and evening) at most stations. In summer, compared with other seasons, the cloud covers obtained from the FY-4A/AGRI over northern China and the Tibetan Plateau are much better consistent with the manual observations, but the situation is the opposite in southern China. However, the CC results retrieved at vegetation surface by FY-4A/AGRI show the best and stable performance. Due to that the two independent cloud tests induce most of overestimations, some sensitivity experiments for the CLM algorithm are conducted. The results show that the best improvement effect is achieved after only closing one cloud test using the 3.8 μm band. Many extremely overestimated cloud cover samples (about 56.3%) are eliminated. After that, the FY-4A/AGRI cloud mask product is more reasonable compared with the corresponding infrared and visible imageries.
Complicated and regionally representative diurnal cycle characteristics of clouds may introduce some errors in the cloud mask (CLM) algorithm of the Geostationary (GEO) meteorological satellite imaging system, which are very difficult to be assessed by using analogous products of fixed-passing polar-orbiting satellites. In this investigation, the diurnal cycle of the performance of the CLM algorithm of the Advanced Geosynchronous Radiation Imager onboard the China Fengyun-4A satellite (FY-4A/AGRI) is validated by using manually observed cloud covers (CC) at 25 ground-based stations in China. The results indicate that the CCs calculated by the FY-4A/AGRI CLM algorithm are overestimated at 11:00 BJT (Beijing Time) and 14:00 BJT (around noon) and underestimated at 08:00 BJT and 20:00 BJT (in the morning and evening) at most stations. In summer, compared with other seasons, the CCs obtained from the FY-4A/AGRI over northern China and the Tibetan Plateau are much better, consistent with the manual observations, but the situation is the opposite in southern China. The CC results retrieved at the vegetation surface by FY-4A/AGRI, however, show the best and stable performance. Because of that, the two independent cloud tests induce most of the overestimations, and some sensitivity experiments for the CLM algorithm are conducted. The results show that the best improvement effect is achieved after only closing one cloud test using the [Formula Omitted] band. Many extremely overestimated CC samples (about 56.3%) are eliminated. After that, the FY-4A/AGRI CLM product is more reasonable compared with the corresponding infrared and visible imageries.
Author Yu, Yu
Liang, Yongen
Min, Min
Xia, Pan
Wang, Xi
Author_xml – sequence: 1
  givenname: Yongen
  surname: Liang
  fullname: Liang, Yongen
  organization: School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Province Key laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University (Guangdong, Zhuhai), Zhuhai, China
– sequence: 2
  givenname: Min
  orcidid: 0000-0003-1519-5069
  surname: Min
  fullname: Min, Min
  organization: School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Province Key laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University (Guangdong, Zhuhai), Zhuhai, China
– sequence: 3
  givenname: Yu
  surname: Yu
  fullname: Yu, Yu
  organization: National Meteorological Information Centre, China Meteorological Administration, Beijing, China
– sequence: 4
  givenname: Xi
  surname: Wang
  fullname: Wang, Xi
  organization: National Satellite Meteorological Center (National Center for Space Weather), Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites and Innovation Center for FengYun Meteorological Satellite (FYSIC), China Meteorological Administration, Beijing, China
– sequence: 5
  givenname: Pan
  surname: Xia
  fullname: Xia, Pan
  organization: School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Province Key laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University (Guangdong, Zhuhai), Zhuhai, China
BookMark eNp9kFFLHDEQx4NY8LR-AMGHgM97nUk2m83jda3XgkWo9nnJZec0siaaZIV77hfvnWeh9KFPw8D_9x_md8wOQwzE2BnCHBHMp7vlj9u5ACHnUqhGNuqAzVCptoKmrg_ZDNA0lWiNOGLHOT8CYK1Qz9ivRc6U8xOFwmPg5YH4pZ9SsCPvNm4kHte8G-M08C6-Usq7_YrC_WYKVb3gS4q52OJjsGnDb22hcfSF-GebafhT-N2Gadt3s8qUXt_C_NIWy33g3YMP9iP7sLZjptP3ecJ-Xn25675W1zfLb93iunLC1KWqtR7sCjUZZ8BJO6xR6ZXWajUIkiioBYvtIBw4AnJNOxgCaWtAUHVLjTxhF_ve5xRfJsqlf4xvr-ZeaAMolTa4TeE-5VLMOdG6f07-aftej9DvXPc71_3Odf_uesvofxjn91pKsn78L3m-Jz0R_XUJmkailL8Btf-O0A
CODEN IGRSD2
CitedBy_id crossref_primary_10_5194_acp_24_14239_2024
crossref_primary_10_5194_essd_16_4949_2024
Cites_doi 10.1175/JTECH1875.1
10.1126/sciadv.aax1874
10.1007/s13351-019-8160-8
10.1175/BAMS-D-21-0328.1
10.1002/joc.7552
10.1109/TGRS.2022.3160450
10.1109/TGRS.2016.2610522
10.1109/TGRS.2022.3140348
10.1029/96JD02663
10.3390/rs13132502
10.1002/2016JD025954
10.1038/nature06594
10.1109/IGARSS39084.2020.9324507
10.1175/2007jtecha1053.1
10.1038/s41598-018-19431-w
10.3390/rs11141703
10.1007/s13351-017-6161-z
10.1109/TGRS.2018.2882803
10.3390/rs70810385
10.5194/acp-23-743-2023
10.1016/j.atmosres.2020.104927
10.1029/92JD01061
10.1016/j.atmosenv.2022.119065
10.1126/science.1065837
10.1175/BAMS-D-15-00230.1
10.1016/j.rse.2019.111616
10.1109/TGRS.2008.2006180
10.1126/sciadv.1700584
10.1175/bams-d-16-0065.1
10.1007/s13351-020-0018-6
10.1029/2020JD032683
10.1109/TGRS.2019.2923247
10.1029/2006GL027088
10.1126/science.aav0566
10.3390/rs11020212
10.1002/2013JD021413
10.1109/TGRS.2002.808301
10.1016/j.atmosres.2014.09.006
10.1029/2021GL097006
10.1080/014311697217332
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3256365
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2023_3256365
10066313
Genre orig-research
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41975031, 41975020 and 42175086
  funderid: 10.13039/501100001809
– fundername: Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai))
  grantid: SML2021SP102
– fundername: Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies
  grantid: 2020B1212060025
– fundername: FengYun Meteorological Satellite Innovation Foundation
  grantid: FY-APP-ZX-2022.0207
– fundername: Basic Science Foundation of Sun Yat-sen University
  grantid: 22qntd1913
– fundername: Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)
  grantid: 311022006
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-477dab17e9c90c3adf157b775bd2e312e80a18d2c0ce0ec68d9e03a4010548e63
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:30:35 EDT 2025
Wed Oct 01 02:57:49 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Wed Aug 27 02:56:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-477dab17e9c90c3adf157b775bd2e312e80a18d2c0ce0ec68d9e03a4010548e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1519-5069
0009-0002-2089-696X
PQID 2790135791
PQPubID 85465
PageCount 1
ParticipantIDs crossref_primary_10_1109_TGRS_2023_3256365
ieee_primary_10066313
proquest_journals_2790135791
crossref_citationtrail_10_1109_TGRS_2023_3256365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
Ackerman (ref9) 1997
ref19
ref18
Heidinger (ref21) 2011
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref43
ref28
ref27
ref29
ref8
ref7
(ref36) 2003
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref42
  doi: 10.1175/JTECH1875.1
– ident: ref4
  doi: 10.1126/sciadv.aax1874
– ident: ref27
  doi: 10.1007/s13351-019-8160-8
– ident: ref38
  doi: 10.1175/BAMS-D-21-0328.1
– ident: ref35
  doi: 10.1002/joc.7552
– ident: ref43
  doi: 10.1109/TGRS.2022.3160450
– ident: ref7
  doi: 10.1109/TGRS.2016.2610522
– ident: ref14
  doi: 10.1109/TGRS.2022.3140348
– ident: ref26
  doi: 10.1029/96JD02663
– ident: ref11
  doi: 10.3390/rs13132502
– ident: ref32
  doi: 10.1002/2016JD025954
– ident: ref5
  doi: 10.1038/nature06594
– ident: ref10
  doi: 10.1109/IGARSS39084.2020.9324507
– ident: ref30
  doi: 10.1175/2007jtecha1053.1
– ident: ref20
  doi: 10.1038/s41598-018-19431-w
– ident: ref28
  doi: 10.3390/rs11141703
– ident: ref15
  doi: 10.1007/s13351-017-6161-z
– ident: ref16
  doi: 10.1109/TGRS.2018.2882803
– start-page: 1
  volume-title: Discriminating clear-sky from cloud with MODIS: Algorithm theoretical basis document (MOD35)
  year: 1997
  ident: ref9
– ident: ref13
  doi: 10.3390/rs70810385
– start-page: 1
  volume-title: NOAA NESDIS center for satellite applications and research algorithm theoretical basis document: ABI cloud mask
  year: 2011
  ident: ref21
– ident: ref24
  doi: 10.5194/acp-23-743-2023
– ident: ref22
  doi: 10.1016/j.atmosres.2020.104927
– ident: ref25
  doi: 10.1029/92JD01061
– ident: ref23
  doi: 10.1016/j.atmosenv.2022.119065
– volume-title: Surface Meteorology. Observation Criterions
  year: 2003
  ident: ref36
– ident: ref1
  doi: 10.1126/science.1065837
– ident: ref17
  doi: 10.1175/BAMS-D-15-00230.1
– ident: ref18
  doi: 10.1016/j.rse.2019.111616
– ident: ref12
  doi: 10.1109/TGRS.2008.2006180
– ident: ref2
  doi: 10.1126/sciadv.1700584
– ident: ref37
  doi: 10.1175/bams-d-16-0065.1
– ident: ref41
  doi: 10.1007/s13351-020-0018-6
– ident: ref29
  doi: 10.1029/2020JD032683
– ident: ref19
  doi: 10.1109/TGRS.2019.2923247
– ident: ref39
  doi: 10.1029/2006GL027088
– ident: ref3
  doi: 10.1126/science.aav0566
– ident: ref34
  doi: 10.3390/rs11020212
– ident: ref33
  doi: 10.1002/2013JD021413
– ident: ref40
  doi: 10.1109/TGRS.2002.808301
– ident: ref31
  doi: 10.1016/j.atmosres.2014.09.006
– ident: ref6
  doi: 10.1029/2021GL097006
– ident: ref8
  doi: 10.1080/014311697217332
SSID ssj0014517
Score 2.4135315
Snippet Complicated and regionally representative diurnal cycle characteristics of clouds may introduce some errors into the cloud mask (CLM) algorithm of...
Complicated and regionally representative diurnal cycle characteristics of clouds may introduce some errors in the cloud mask (CLM) algorithm of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Cloud cover
Cloud mask
Clouds
Diurnal
Diurnal variations
Fengyun-4 geostationary meteorological satellite
Ground stations
Manual observation
Meteorological satellites
Polar orbiting satellites
Satellite imagery
Synchronous satellites
Title Assessment on the Diurnal Cycle of Cloud Covers of Fengyun-4A Geostationary Satellite Based on the Manual Observation Data in China
URI https://ieeexplore.ieee.org/document/10066313
https://www.proquest.com/docview/2790135791
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZNoJAc-kgTumladOgpIFcvW9Zxu2kSCkkhD8jN6DEOIcEuWfuwveaPV5K9y9LQ0psNlhDMyN9IM_N9CH0uNHe1qQXxdW6JZBZIpM0i2oLnMfUok3TC2Xlxei2_3-Q3Y7N66oUBgFR8Bll8TLl837o-XpWFHR4BMmrUbqiyGJq1VikDmbOxN7og4RTBxxQmo_rL1cnFZRZ1wjMREF5EIFkDoaSq8uxXnPDl-DU6X65sKCu5z_rOZu7XH6SN_730N-jVGGni6eAab9ELaHbQ9hr_4A56meo_3fwdepquGDpx2-AQFeKju2GC2SIMx22NZw9t7_Es1nzO43tw8NtF3xA5xSfQzoecvnlc4EuTaD47wF8DRvrlhGcm0p_iH3Z1EYyPTGfwXYOTivcuuj7-djU7JaM-A3Fcy45IpbyxTIF2mjphfM1yZZXKrecgGIeSGlZ67qgDCq4ovQYqjIyinLKEQuyhzaZt4D3CpQyBnPDKBrAMDuNMXZSOcqNLbVnt6QTRpcEqN5KXRw2NhyodYqiuoo2raONqtPEEHa6G_ByYO_718W602dqHg7km6GDpFtW4uecVVyGIErnSbP8vwz6grTj7cFVzgDa7xx4-huCls5-S0_4GgL3p2w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQEQIOFEorFlrwgRNSgl-J4-N2-1igu0h0K_UW-TFBFVWCuslhufLHsZ3sagUCcUskj2NpxpmxZ-b7EHqbK2YrXfHEVZlJBDWQBNisRBlwLKQeRaROmM3z6ZX4eJ1dD83qsRcGAGLxGaThMebyXWO7cFXmd3hwkIGj9n4mhMj6dq1N0kBkdOiOzhN_jmBDEpMS9X5x_uUyDUzhKfc-ngdXsuWGIq_KHz_j6GHOdtF8vba-sORb2rUmtT9-g23878U_RU-GWBOPe-N4hu5BvYcebyEQ7qEHsQLULp-jn-MNRiduauzjQnxy008wWXlx3FR4ctt0Dk9C1ecyvHsT_7rq6kSM8Tk0yz6rr-9W-FJHoM8W8LH3km494UwHAFT82WyugvGJbjW-qXHk8d5HV2eni8k0GRgaEsuUaBMhpdOGSlBWEcu1q2gmjZSZcQw4ZVAQTQvHLLFAwOaFU0C4FoGWUxSQ8wO0Uzc1vEC48PrMuZPGu0tvMlZXeWEJ06pQhlaOjBBZK6y0A3x5YNG4LeMxhqgy6LgMOi4HHY_Qu43I9x6741-D94POtgb26hqhw7VZlMP2XpZM-jCKZ1LRl38Re4MeThezi_Liw_zTK_QofKm_uDlEO-1dB0c-lGnN62jAvwDl2-0o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+on+the+Diurnal+Cycle+of+Cloud+Covers+of+Fengyun-4A+Geostationary+Satellite+Based+on+the+Manual+Observation+Data+in+China&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Liang%2C+Yongen&rft.au=Min%2C+Min&rft.au=Yu%2C+Yu&rft.au=Wang%2C+Xi&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3256365&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon