Infrared Small Dim Target Detection Under Maritime Near Sea-Sky Line Based on Regional-Division Local Contrast Measure

Infrared (IR) small dim target detection near the sea-sky line (SSL) is crucial for enhancing the early warning capability of maritime vehicles. However, the interferences caused by the strong contrast have not been properly addressed. Consequently, a specially designed algorithm regional-division l...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 20; pp. 1 - 5
Main Authors Fu, Jian, Li, Fan, Zhao, Jianhui, Tong, Jie, Zhang, He
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2023.3316272

Cover

Abstract Infrared (IR) small dim target detection near the sea-sky line (SSL) is crucial for enhancing the early warning capability of maritime vehicles. However, the interferences caused by the strong contrast have not been properly addressed. Consequently, a specially designed algorithm regional-division local contrast measure (RDLCM) that focuses on the detection of IR small dim targets appearing near the SSL is proposed. First, an SSL detection module based on a lightweight convolutional neural network (CNN) is devised to achieve fast pixel-level SSL detection. Then, a set of regional-division windows (RDWs) are designed according to the strong grayscale contrast distribution around the SSL, and through the division of the effective regions, the RDWs could realize the potential extraction and refinement of the IR small dim targets that appear near the SSL. Experiments on three IR image sequences demonstrate that the proposed algorithm achieves the best detection accuracy among the classical and state-of-the-art algorithms in comparison and runs at 44 frames per second (FPS), which could meet real-time requirements. The code and dataset are available at RDLCM.
AbstractList Infrared (IR) small dim target detection near the sea–sky line (SSL) is crucial for enhancing the early warning capability of maritime vehicles. However, the interferences caused by the strong contrast have not been properly addressed. Consequently, a specially designed algorithm regional-division local contrast measure (RDLCM) that focuses on the detection of IR small dim targets appearing near the SSL is proposed. First, an SSL detection module based on a lightweight convolutional neural network (CNN) is devised to achieve fast pixel-level SSL detection. Then, a set of regional-division windows (RDWs) are designed according to the strong grayscale contrast distribution around the SSL, and through the division of the effective regions, the RDWs could realize the potential extraction and refinement of the IR small dim targets that appear near the SSL. Experiments on three IR image sequences demonstrate that the proposed algorithm achieves the best detection accuracy among the classical and state-of-the-art algorithms in comparison and runs at 44 frames per second (FPS), which could meet real-time requirements. The code and dataset are available at RDLCM.
Author Li, Fan
Zhao, Jianhui
Fu, Jian
Tong, Jie
Zhang, He
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0002-7324-4124
  surname: Fu
  fullname: Fu, Jian
  email: JianFu@buaa.edu.cn
  organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Fan
  orcidid: 0000-0002-1128-7559
  surname: Li
  fullname: Li, Fan
  email: lifan@buaa.edu.cn
  organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Jianhui
  orcidid: 0000-0002-5275-4846
  surname: Zhao
  fullname: Zhao, Jianhui
  email: zhaojianhui@buaa.edu.cn
  organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Jie
  orcidid: 0009-0009-8036-2901
  surname: Tong
  fullname: Tong, Jie
  email: tongjie@buaa.edu.cn
  organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: He
  orcidid: 0000-0002-7280-6746
  surname: Zhang
  fullname: Zhang, He
  email: zhanghebuaa@163.com
  organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
BookMark eNp9kE1LwzAYx4NMcE4_gOAh4LkzSZMmO-rmG3QK1oG3kjZPR2bXziQb7Nvbsh3Eg6fnOfx_z8vvHA2atgGErigZU0omt-nTezZmhMXjOKYJk-wEDakQKiJC0kHfcxGJifo8Q-ferwhhXCk5RLuXpnLagcHZWtc1ntk1_tBuCQHPIEAZbNvgRWPA4bl2Ntg14FfQDmego-xrj1PbAL7XvpvQJd9h2QG6jmZ2Z33Ppm2pazxtm-C0D3gO2m8dXKDTStceLo91hBaPDx_T5yh9e3qZ3qVRySY8RJwBKUxSclMxKEiiKlMVQhlZqkrKUlCldJIYMFQTkJwpQVnBqIl5oWhCWTxCN4e5G9d-b8GHfNVuXXegz5mSjPNYMNql6CFVutZ7B1W-cXat3T6nJO_15r3evNebH_V2jPzDlDboXlf3qK3_Ja8PpAWAX5uY4HQi4x9sWIoL
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_LGRS_2023_3337899
crossref_primary_10_1109_TGRS_2024_3368099
crossref_primary_10_1016_j_patcog_2025_111372
crossref_primary_10_1109_LGRS_2024_3400514
crossref_primary_10_1038_s41598_024_75654_0
crossref_primary_10_1109_LGRS_2024_3417409
crossref_primary_10_1109_TIM_2025_3545723
Cites_doi 10.1109/LGRS.2022.3179715
10.1016/j.patcog.2016.04.002
10.1016/j.infrared.2017.08.016
10.1109/TGRS.2018.2818159
10.1016/j.patcog.2009.12.023
10.3390/rs12152455
10.1109/TGRS.2016.2585495
10.1109/LGRS.2016.2519144
10.1109/TPAMI.1987.4767941
10.1109/LGRS.2014.2323236
10.1109/LGRS.2022.3194602
10.3390/s20041237
10.1109/ACCESS.2020.3047736
10.1109/TIM.2019.2893008
10.1007/s11036-021-01752-2
10.3390/rs10122004
10.1109/LGRS.2019.2922347
10.1109/TGRS.2013.2242477
10.1117/12.364049
10.1109/LGRS.2019.2954578
10.1109/TIM.2023.3282656
10.1109/LGRS.2021.3111099
10.1016/j.infrared.2012.08.004
10.1016/j.infrared.2012.06.001
10.1109/LGRS.2018.2790909
10.1109/IGARSS.2016.7729476
10.1109/LGRS.2016.2616416
10.1371/journal.pone.0118432
10.1109/LGRS.2020.3047524
10.1016/j.jphysparis.2003.09.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2023.3316272
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2023_3316272
10254197
Genre orig-research
GrantInformation_xml – fundername: Aeronautical Science Foundation of China
  grantid: 20180251003
  funderid: 10.13039/501100004750
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-42e0bd6c4df2eb068fdfb58d7c8f77c5188a66ded1a0e7428512b21d34b816123
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 08:37:55 EDT 2025
Thu Apr 24 22:56:18 EDT 2025
Wed Oct 01 04:25:59 EDT 2025
Wed Aug 27 02:50:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-42e0bd6c4df2eb068fdfb58d7c8f77c5188a66ded1a0e7428512b21d34b816123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-8036-2901
0000-0002-5275-4846
0000-0002-7324-4124
0000-0002-7280-6746
0000-0002-1128-7559
PQID 2872443521
PQPubID 75725
PageCount 5
ParticipantIDs crossref_primary_10_1109_LGRS_2023_3316272
ieee_primary_10254197
crossref_citationtrail_10_1109_LGRS_2023_3316272
proquest_journals_2872443521
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
(ref28) 2023
han (ref23) 2014; 11
ref2
ref1
ref17
ref16
ref19
ref18
howard (ref25) 2017
ref24
ref26
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/LGRS.2022.3179715
– ident: ref18
  doi: 10.1016/j.patcog.2016.04.002
– ident: ref19
  doi: 10.1016/j.infrared.2017.08.016
– ident: ref21
  doi: 10.1109/TGRS.2018.2818159
– ident: ref8
  doi: 10.1016/j.patcog.2009.12.023
– ident: ref32
  doi: 10.3390/rs12152455
– ident: ref20
  doi: 10.1109/TGRS.2016.2585495
– ident: ref12
  doi: 10.1109/LGRS.2016.2519144
– ident: ref7
  doi: 10.1109/TPAMI.1987.4767941
– volume: 11
  start-page: 2168
  year: 2014
  ident: ref23
  article-title: A robust infrared small target detection algorithm based on human visual system
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2014.2323236
– ident: ref17
  doi: 10.1109/LGRS.2022.3194602
– ident: ref26
  doi: 10.3390/s20041237
– ident: ref29
  doi: 10.1109/ACCESS.2020.3047736
– ident: ref1
  doi: 10.1109/TIM.2019.2893008
– ident: ref5
  doi: 10.1007/s11036-021-01752-2
– ident: ref30
  doi: 10.3390/rs10122004
– ident: ref15
  doi: 10.1109/LGRS.2019.2922347
– ident: ref14
  doi: 10.1109/TGRS.2013.2242477
– ident: ref9
  doi: 10.1117/12.364049
– ident: ref16
  doi: 10.1109/LGRS.2019.2954578
– ident: ref27
  doi: 10.1109/TIM.2023.3282656
– ident: ref2
  doi: 10.1109/LGRS.2021.3111099
– ident: ref11
  doi: 10.1016/j.infrared.2012.08.004
– ident: ref10
  doi: 10.1016/j.infrared.2012.06.001
– ident: ref3
  doi: 10.1109/LGRS.2018.2790909
– ident: ref22
  doi: 10.1109/IGARSS.2016.7729476
– ident: ref4
  doi: 10.1109/LGRS.2016.2616416
– ident: ref31
  doi: 10.1371/journal.pone.0118432
– year: 2023
  ident: ref28
  publication-title: LabelMe
– ident: ref13
  doi: 10.1109/LGRS.2020.3047524
– year: 2017
  ident: ref25
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– ident: ref24
  doi: 10.1016/j.jphysparis.2003.09.010
SSID ssj0024887
Score 2.4251897
Snippet Infrared (IR) small dim target detection near the sea-sky line (SSL) is crucial for enhancing the early warning capability of maritime vehicles. However, the...
Infrared (IR) small dim target detection near the sea–sky line (SSL) is crucial for enhancing the early warning capability of maritime vehicles. However, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Convolutional neural network (CNN)
Detection
Frames per second
Geoscience and remote sensing
Gray-scale
infrared (IR) small dim target detection
Infrared imaging
Junctions
local contrast measure (LCM)
Neural networks
Object detection
Real-time systems
Sea measurements
sea-sky line (SSL)
Target detection
Velocity measurement
Title Infrared Small Dim Target Detection Under Maritime Near Sea-Sky Line Based on Regional-Division Local Contrast Measure
URI https://ieeexplore.ieee.org/document/10254197
https://www.proquest.com/docview/2872443521
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJQQXHqWIhYJ84ITkEDuO4xyBpS2ou4duK-0t8mNcqu6maJtFWn49YyfLUyBuOdiRpc_2PDzzfYS8dAX3GoJjIIvApMQ4pRZGMu-FFcoALyHmISdTdXwuP87L-dCsnnphACAVn0EWP9Nbvr9265gqwxOO4Qyvqx2yU2nVN2v9INbTSQ0vugSsrPV8eMLkef365Oh0lkWd8KwouBKV-MUIJVWVP67iZF8O75PpdmV9WclVtu5s5r7-Rtr430t_QO4NniZ902-Nh-QWtHvkziB6_mmzR24fJVXfzSPy5UMbVrESnc6WZrGg48slPUsl4nQMXSrWamlSSKITE1mQlkCneEToDAybXW0oRrRA36JB9BRHnsJFSjCy8WXfuk5PosWkkQlrZW46OukTk_vk_PD92btjNggyMCdq2TEpILdeOemDAJsrHXywpfaV06GqXOR2M0p58NzkgDE3enOIOPeFtJpHnpfHZLe9buEJoSCUReOJMFohg3Ha8YDGEoOdoobS2BHJtwg1bmArj6IZiyZFLXndRFCbCGozgDoir75P-dxTdfxr8H4E6aeBPT4jcrDdB81wmm8ajCrRC0JXlT_9y7Rn5G78e5-bOSC73WoNz9Fb6eyLtEu_AXYU5Lo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgCI0XLmOIjgF-4AnJIXYcx3lkK1sHbR_WTupb5MvxmNZmU5cidb9-tpNyFYi3PNiKpc_2ufic70PoncmoleAMAZ45wrmPU0qmOLGWaSYU0BxCHnI0FoMz_nmWz7pm9dgLAwCx-AyS8Bnf8u2VWYVUmT_hPpyhZXEfPcg553nbrvWDWk9GPbzgFJC8lLPuEZOm5Yfh8ekkCUrhSZZRwQr2ixmKuip_XMbRwhw9QePN2trCkstk1ejE3P5G2_jfi3-KHne-Jv7Ybo5n6B7UO2i7kz3_ut5BD4-jru_6Ofp2UrtlqEXHk4Waz3H_YoGnsUgc96GJ5Vo1jhpJeKQCD9IC8NgfEjwBRSaXa-xjWsAH3iRa7EeewnlMMZL-Rdu8jofBZuLAhbVUNw0etanJXXR29Gl6OCCdJAMxrOQN4QxSbYXh1jHQqZDOOp1LWxjpisIEdjclhAVLVQo-6vb-nMec2oxrSQPTywu0VV_V8BJhYEJ781lIoRl3ykhDnTeXPtzJSsiV7qF0g1BlOr7yIJsxr2LckpZVALUKoFYdqD30_vuU65as41-DdwNIPw1s8emh_c0-qLrzfFP5uNL7Qd5ZpXt_mfYWbQ-mo2E1PBl_eYUehT-1mZp9tNUsV_Da-y6NfhN37B2YsegH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infrared+Small+Dim+Target+Detection+Under+Maritime+Near+Sea-Sky+Line+Based+on+Regional-Division+Local+Contrast+Measure&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Fu%2C+Jian&rft.au=Li%2C+Fan&rft.au=Zhao%2C+Jianhui&rft.au=Tong%2C+Jie&rft.date=2023&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=20&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2023.3316272&rft.externalDocID=10254197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon