Infrared Small Dim Target Detection Under Maritime Near Sea-Sky Line Based on Regional-Division Local Contrast Measure
Infrared (IR) small dim target detection near the sea-sky line (SSL) is crucial for enhancing the early warning capability of maritime vehicles. However, the interferences caused by the strong contrast have not been properly addressed. Consequently, a specially designed algorithm regional-division l...
        Saved in:
      
    
          | Published in | IEEE geoscience and remote sensing letters Vol. 20; pp. 1 - 5 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1545-598X 1558-0571  | 
| DOI | 10.1109/LGRS.2023.3316272 | 
Cover
| Abstract | Infrared (IR) small dim target detection near the sea-sky line (SSL) is crucial for enhancing the early warning capability of maritime vehicles. However, the interferences caused by the strong contrast have not been properly addressed. Consequently, a specially designed algorithm regional-division local contrast measure (RDLCM) that focuses on the detection of IR small dim targets appearing near the SSL is proposed. First, an SSL detection module based on a lightweight convolutional neural network (CNN) is devised to achieve fast pixel-level SSL detection. Then, a set of regional-division windows (RDWs) are designed according to the strong grayscale contrast distribution around the SSL, and through the division of the effective regions, the RDWs could realize the potential extraction and refinement of the IR small dim targets that appear near the SSL. Experiments on three IR image sequences demonstrate that the proposed algorithm achieves the best detection accuracy among the classical and state-of-the-art algorithms in comparison and runs at 44 frames per second (FPS), which could meet real-time requirements. The code and dataset are available at RDLCM. | 
    
|---|---|
| AbstractList | Infrared (IR) small dim target detection near the sea–sky line (SSL) is crucial for enhancing the early warning capability of maritime vehicles. However, the interferences caused by the strong contrast have not been properly addressed. Consequently, a specially designed algorithm regional-division local contrast measure (RDLCM) that focuses on the detection of IR small dim targets appearing near the SSL is proposed. First, an SSL detection module based on a lightweight convolutional neural network (CNN) is devised to achieve fast pixel-level SSL detection. Then, a set of regional-division windows (RDWs) are designed according to the strong grayscale contrast distribution around the SSL, and through the division of the effective regions, the RDWs could realize the potential extraction and refinement of the IR small dim targets that appear near the SSL. Experiments on three IR image sequences demonstrate that the proposed algorithm achieves the best detection accuracy among the classical and state-of-the-art algorithms in comparison and runs at 44 frames per second (FPS), which could meet real-time requirements. The code and dataset are available at RDLCM. | 
    
| Author | Li, Fan Zhao, Jianhui Fu, Jian Tong, Jie Zhang, He  | 
    
| Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0002-7324-4124 surname: Fu fullname: Fu, Jian email: JianFu@buaa.edu.cn organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Fan orcidid: 0000-0002-1128-7559 surname: Li fullname: Li, Fan email: lifan@buaa.edu.cn organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Jianhui orcidid: 0000-0002-5275-4846 surname: Zhao fullname: Zhao, Jianhui email: zhaojianhui@buaa.edu.cn organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China – sequence: 4 givenname: Jie orcidid: 0009-0009-8036-2901 surname: Tong fullname: Tong, Jie email: tongjie@buaa.edu.cn organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China – sequence: 5 givenname: He orcidid: 0000-0002-7280-6746 surname: Zhang fullname: Zhang, He email: zhanghebuaa@163.com organization: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China  | 
    
| BookMark | eNp9kE1LwzAYx4NMcE4_gOAh4LkzSZMmO-rmG3QK1oG3kjZPR2bXziQb7Nvbsh3Eg6fnOfx_z8vvHA2atgGErigZU0omt-nTezZmhMXjOKYJk-wEDakQKiJC0kHfcxGJifo8Q-ferwhhXCk5RLuXpnLagcHZWtc1ntk1_tBuCQHPIEAZbNvgRWPA4bl2Ntg14FfQDmego-xrj1PbAL7XvpvQJd9h2QG6jmZ2Z33Ppm2pazxtm-C0D3gO2m8dXKDTStceLo91hBaPDx_T5yh9e3qZ3qVRySY8RJwBKUxSclMxKEiiKlMVQhlZqkrKUlCldJIYMFQTkJwpQVnBqIl5oWhCWTxCN4e5G9d-b8GHfNVuXXegz5mSjPNYMNql6CFVutZ7B1W-cXat3T6nJO_15r3evNebH_V2jPzDlDboXlf3qK3_Ja8PpAWAX5uY4HQi4x9sWIoL | 
    
| CODEN | IGRSBY | 
    
| CitedBy_id | crossref_primary_10_1109_LGRS_2023_3337899 crossref_primary_10_1109_TGRS_2024_3368099 crossref_primary_10_1016_j_patcog_2025_111372 crossref_primary_10_1109_LGRS_2024_3400514 crossref_primary_10_1038_s41598_024_75654_0 crossref_primary_10_1109_LGRS_2024_3417409 crossref_primary_10_1109_TIM_2025_3545723  | 
    
| Cites_doi | 10.1109/LGRS.2022.3179715 10.1016/j.patcog.2016.04.002 10.1016/j.infrared.2017.08.016 10.1109/TGRS.2018.2818159 10.1016/j.patcog.2009.12.023 10.3390/rs12152455 10.1109/TGRS.2016.2585495 10.1109/LGRS.2016.2519144 10.1109/TPAMI.1987.4767941 10.1109/LGRS.2014.2323236 10.1109/LGRS.2022.3194602 10.3390/s20041237 10.1109/ACCESS.2020.3047736 10.1109/TIM.2019.2893008 10.1007/s11036-021-01752-2 10.3390/rs10122004 10.1109/LGRS.2019.2922347 10.1109/TGRS.2013.2242477 10.1117/12.364049 10.1109/LGRS.2019.2954578 10.1109/TIM.2023.3282656 10.1109/LGRS.2021.3111099 10.1016/j.infrared.2012.08.004 10.1016/j.infrared.2012.06.001 10.1109/LGRS.2018.2790909 10.1109/IGARSS.2016.7729476 10.1109/LGRS.2016.2616416 10.1371/journal.pone.0118432 10.1109/LGRS.2020.3047524 10.1016/j.jphysparis.2003.09.010  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D  | 
    
| DOI | 10.1109/LGRS.2023.3316272 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Geology  | 
    
| EISSN | 1558-0571 | 
    
| EndPage | 5 | 
    
| ExternalDocumentID | 10_1109_LGRS_2023_3316272 10254197  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Aeronautical Science Foundation of China grantid: 20180251003 funderid: 10.13039/501100004750  | 
    
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c294t-42e0bd6c4df2eb068fdfb58d7c8f77c5188a66ded1a0e7428512b21d34b816123 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1545-598X | 
    
| IngestDate | Mon Jun 30 08:37:55 EDT 2025 Thu Apr 24 22:56:18 EDT 2025 Wed Oct 01 04:25:59 EDT 2025 Wed Aug 27 02:50:37 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-42e0bd6c4df2eb068fdfb58d7c8f77c5188a66ded1a0e7428512b21d34b816123 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0009-8036-2901 0000-0002-5275-4846 0000-0002-7324-4124 0000-0002-7280-6746 0000-0002-1128-7559  | 
    
| PQID | 2872443521 | 
    
| PQPubID | 75725 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | crossref_primary_10_1109_LGRS_2023_3316272 ieee_primary_10254197 crossref_citationtrail_10_1109_LGRS_2023_3316272 proquest_journals_2872443521  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230000 2023-00-00 20230101  | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – year: 2023 text: 20230000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE geoscience and remote sensing letters | 
    
| PublicationTitleAbbrev | LGRS | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref32 (ref28) 2023 han (ref23) 2014; 11 ref2 ref1 ref17 ref16 ref19 ref18 howard (ref25) 2017 ref24 ref26 ref20 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref6 doi: 10.1109/LGRS.2022.3179715 – ident: ref18 doi: 10.1016/j.patcog.2016.04.002 – ident: ref19 doi: 10.1016/j.infrared.2017.08.016 – ident: ref21 doi: 10.1109/TGRS.2018.2818159 – ident: ref8 doi: 10.1016/j.patcog.2009.12.023 – ident: ref32 doi: 10.3390/rs12152455 – ident: ref20 doi: 10.1109/TGRS.2016.2585495 – ident: ref12 doi: 10.1109/LGRS.2016.2519144 – ident: ref7 doi: 10.1109/TPAMI.1987.4767941 – volume: 11 start-page: 2168 year: 2014 ident: ref23 article-title: A robust infrared small target detection algorithm based on human visual system publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2014.2323236 – ident: ref17 doi: 10.1109/LGRS.2022.3194602 – ident: ref26 doi: 10.3390/s20041237 – ident: ref29 doi: 10.1109/ACCESS.2020.3047736 – ident: ref1 doi: 10.1109/TIM.2019.2893008 – ident: ref5 doi: 10.1007/s11036-021-01752-2 – ident: ref30 doi: 10.3390/rs10122004 – ident: ref15 doi: 10.1109/LGRS.2019.2922347 – ident: ref14 doi: 10.1109/TGRS.2013.2242477 – ident: ref9 doi: 10.1117/12.364049 – ident: ref16 doi: 10.1109/LGRS.2019.2954578 – ident: ref27 doi: 10.1109/TIM.2023.3282656 – ident: ref2 doi: 10.1109/LGRS.2021.3111099 – ident: ref11 doi: 10.1016/j.infrared.2012.08.004 – ident: ref10 doi: 10.1016/j.infrared.2012.06.001 – ident: ref3 doi: 10.1109/LGRS.2018.2790909 – ident: ref22 doi: 10.1109/IGARSS.2016.7729476 – ident: ref4 doi: 10.1109/LGRS.2016.2616416 – ident: ref31 doi: 10.1371/journal.pone.0118432 – year: 2023 ident: ref28 publication-title: LabelMe – ident: ref13 doi: 10.1109/LGRS.2020.3047524 – year: 2017 ident: ref25 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv 1704 04861 – ident: ref24 doi: 10.1016/j.jphysparis.2003.09.010  | 
    
| SSID | ssj0024887 | 
    
| Score | 2.4251897 | 
    
| Snippet | Infrared (IR) small dim target detection near the sea-sky line (SSL) is crucial for enhancing the early warning capability of maritime vehicles. However, the... Infrared (IR) small dim target detection near the sea–sky line (SSL) is crucial for enhancing the early warning capability of maritime vehicles. However, the...  | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Artificial neural networks Convolutional neural network (CNN) Detection Frames per second Geoscience and remote sensing Gray-scale infrared (IR) small dim target detection Infrared imaging Junctions local contrast measure (LCM) Neural networks Object detection Real-time systems Sea measurements sea-sky line (SSL) Target detection Velocity measurement  | 
    
| Title | Infrared Small Dim Target Detection Under Maritime Near Sea-Sky Line Based on Regional-Division Local Contrast Measure | 
    
| URI | https://ieeexplore.ieee.org/document/10254197 https://www.proquest.com/docview/2872443521  | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJQQXHqWIhYJ84ITkEDuO4xyBpS2ou4duK-0t8mNcqu6maJtFWn49YyfLUyBuOdiRpc_2PDzzfYS8dAX3GoJjIIvApMQ4pRZGMu-FFcoALyHmISdTdXwuP87L-dCsnnphACAVn0EWP9Nbvr9265gqwxOO4Qyvqx2yU2nVN2v9INbTSQ0vugSsrPV8eMLkef365Oh0lkWd8KwouBKV-MUIJVWVP67iZF8O75PpdmV9WclVtu5s5r7-Rtr430t_QO4NniZ902-Nh-QWtHvkziB6_mmzR24fJVXfzSPy5UMbVrESnc6WZrGg48slPUsl4nQMXSrWamlSSKITE1mQlkCneEToDAybXW0oRrRA36JB9BRHnsJFSjCy8WXfuk5PosWkkQlrZW46OukTk_vk_PD92btjNggyMCdq2TEpILdeOemDAJsrHXywpfaV06GqXOR2M0p58NzkgDE3enOIOPeFtJpHnpfHZLe9buEJoSCUReOJMFohg3Ha8YDGEoOdoobS2BHJtwg1bmArj6IZiyZFLXndRFCbCGozgDoir75P-dxTdfxr8H4E6aeBPT4jcrDdB81wmm8ajCrRC0JXlT_9y7Rn5G78e5-bOSC73WoNz9Fb6eyLtEu_AXYU5Lo | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZgCI0XLmOIjgF-4AnJIXYcx3lkK1sHbR_WTupb5MvxmNZmU5cidb9-tpNyFYi3PNiKpc_2ufic70PoncmoleAMAZ45wrmPU0qmOLGWaSYU0BxCHnI0FoMz_nmWz7pm9dgLAwCx-AyS8Bnf8u2VWYVUmT_hPpyhZXEfPcg553nbrvWDWk9GPbzgFJC8lLPuEZOm5Yfh8ekkCUrhSZZRwQr2ixmKuip_XMbRwhw9QePN2trCkstk1ejE3P5G2_jfi3-KHne-Jv7Ybo5n6B7UO2i7kz3_ut5BD4-jru_6Ofp2UrtlqEXHk4Waz3H_YoGnsUgc96GJ5Vo1jhpJeKQCD9IC8NgfEjwBRSaXa-xjWsAH3iRa7EeewnlMMZL-Rdu8jofBZuLAhbVUNw0etanJXXR29Gl6OCCdJAMxrOQN4QxSbYXh1jHQqZDOOp1LWxjpisIEdjclhAVLVQo-6vb-nMec2oxrSQPTywu0VV_V8BJhYEJ781lIoRl3ykhDnTeXPtzJSsiV7qF0g1BlOr7yIJsxr2LckpZVALUKoFYdqD30_vuU65as41-DdwNIPw1s8emh_c0-qLrzfFP5uNL7Qd5ZpXt_mfYWbQ-mo2E1PBl_eYUehT-1mZp9tNUsV_Da-y6NfhN37B2YsegH | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infrared+Small+Dim+Target+Detection+Under+Maritime+Near+Sea-Sky+Line+Based+on+Regional-Division+Local+Contrast+Measure&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Fu%2C+Jian&rft.au=Li%2C+Fan&rft.au=Zhao%2C+Jianhui&rft.au=Tong%2C+Jie&rft.date=2023&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=20&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2023.3316272&rft.externalDocID=10254197 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |