An anisotropic waveform inversion using an optimal transport matching filter objective: an application to an offshore field dataset

Considering the conventional seismic wavelength, and the nature of the Earth layering, seismic waves experience, in many parts of the subsurface, considerable anisotropy, and with the effect of gravity on sedimentation, the anisotropy tends to be of a transversely isotropic with a vertical axis of s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 61; p. 1
Main Authors Sun, Bingbing, Alkhalifah, Tariq
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2023.3271117

Cover

Abstract Considering the conventional seismic wavelength, and the nature of the Earth layering, seismic waves experience, in many parts of the subsurface, considerable anisotropy, and with the effect of gravity on sedimentation, the anisotropy tends to be of a transversely isotropic with a vertical axis of symmetry (VTI) nature. Inverting for such a model of the Earth using waveforms, we face considerable nonlinearity and parameter trade-off. A recently introduced optimal transport of the matching filter (OTMF) provided us with a robust misfit function for reducing cycle-skipping in Full-Waveform Inversion (FWI). We apply a VTI FWI using the OTMF misfit on a field dataset from offshore Australia, comparing its performance to that of conventional FWI using the L2-norm misfit in a variety of circumstances. Due to strong anisotropy in this region, an isotropic inversion though can fit the record, leading to common image gathers with sizable linear moveouts. Thus, in an anisotropic VTI setup, starting the inversion from 3 Hz, both the L2 norm and the OTMF misfit functions can generate a geologically meaningful model, and recover similar anisotropy anomalies. We demonstrate that the OTMF misfit, in some sense, can address the nonlinearity of FWI due to its intrinsic global updating features. Compared to the results from isotropic full-waveform inversion, the improvements in the RTM image and the common image gathers further demonstrate the benefits of including anisotropy in the FWI inversion engine, as well as, the good performance of the OTMF in mitigating cycle-skipping.
AbstractList Considering the conventional seismic wavelength, and the nature of the Earth layering, seismic waves experience, in many parts of the subsurface, considerable anisotropy, and with the effect of gravity on sedimentation, the anisotropy tends to be of a transversely isotropic with a vertical axis of symmetry (VTI) nature. Inverting for such a model of the Earth using waveforms, we face considerable nonlinearity and parameter trade-off. A recently introduced optimal transport of the matching filter (OTMF) provided us with a robust misfit function for reducing cycle-skipping in Full-Waveform Inversion (FWI). We apply a VTI FWI using the OTMF misfit on a field dataset from offshore Australia, comparing its performance to that of conventional FWI using the L2-norm misfit in a variety of circumstances. Due to strong anisotropy in this region, an isotropic inversion though can fit the record, leading to common image gathers with sizable linear moveouts. Thus, in an anisotropic VTI setup, starting the inversion from 3 Hz, both the L2 norm and the OTMF misfit functions can generate a geologically meaningful model, and recover similar anisotropy anomalies. We demonstrate that the OTMF misfit, in some sense, can address the nonlinearity of FWI due to its intrinsic global updating features. Compared to the results from isotropic full-waveform inversion, the improvements in the RTM image and the common image gathers further demonstrate the benefits of including anisotropy in the FWI inversion engine, as well as, the good performance of the OTMF in mitigating cycle-skipping.
Considering the conventional seismic wavelength and the nature of the Earth’s layering, seismic waves experience, in many parts of the subsurface, considerable anisotropy, and with the effect of gravity on sedimentation, the anisotropy tends to be transversely isotropic with a vertical axis of symmetry [vertical transverse isotropy (VTI)] nature. Inverting to such a model of the Earth using waveforms, we face considerable nonlinearity and parameter tradeoff. A recently introduced optimal transport of the matching filter (OTMF) provided us with a robust misfit function for reducing cycle skipping in full-waveform inversion (FWI). We apply a VTI FWI using the OTMF misfit on a field dataset from offshore Australia, comparing its performance to that of conventional FWI using the L2-norm misfit in a variety of circumstances. Due to strong anisotropy in this region, an isotropic inversion can fit the record, leading to common image gathers (CIGs) with sizable linear moveouts. Thus, in an anisotropic VTI setup, starting the inversion from 3 Hz, both the L2-norm and the OTMF misfit functions can generate a geologically meaningful model and recover similar anisotropy anomalies. We demonstrate that the OTMF misfit, in some sense, can address the nonlinearity of FWI due to its intrinsic global updating features. Compared to the results from isotropic FWI, the improvements in the RTM image and the CIGs further demonstrate the benefits of including anisotropy in the FWI inversion engine and the good performance of the OTMF in mitigating cycle skipping.
Author Sun, Bingbing
Alkhalifah, Tariq
Author_xml – sequence: 1
  givenname: Bingbing
  orcidid: 0000-0002-4168-1880
  surname: Sun
  fullname: Sun, Bingbing
  organization: Physical Sciences and Engineering, King Abdullah University of Science and Technology, Saudi Arabia
– sequence: 2
  givenname: Tariq
  surname: Alkhalifah
  fullname: Alkhalifah, Tariq
  organization: Physical Sciences and Engineering, King Abdullah University of Science and Technology, Saudi Arabia
BookMark eNp9kM1KAzEYRYNUsFYfQHARcD01yfxkxl0pWoWCoHU9ZNIvNmWajElace2Lm2m7EBeuEsi5N9xzjgbGGkDoipIxpaS6XcxeXseMsHScMk4p5SdoSPO8TEiRZQM0JLQqElZW7Ayde78mhGY55UP0PTFYGO1tcLbTEn-KHSjrNlibHTivrcFbr817hLDtgt6IFgcnjO-sC3gjglz1r0q3ARy2zRpk0Du463nRda2WIvQlwe4blPIr6yDy0C7xUgThIVygUyVaD5fHc4TeHu4X08dk_jx7mk7miWRVFpJULXOqyqaQhUo5K-PYpmRMqngVUinFl0AkyUpZQdmogkYdPJMFqFRwnjXpCN0cejtnP7bgQ722W2filzUrozJWkSKPFD9Q0lnvHaha6rAfEXfrtqak7o3XvfG6N14fjcck_ZPsXBTmvv7NXB8yGgB-8ZHmjKY_iG2Rkg
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2024_3394893
crossref_primary_10_1109_TGRS_2024_3406763
Cites_doi 10.1190/geo2013-0291.1
10.1190/geo2018-0347.1
10.1190/geo2015-0387.1
10.1190/tle35030235.1
10.3997/2214-4609.201801028
10.3997/2214-4609.201402310
10.1137/17M111328X
10.1093/gji/ggu492
10.1111/j.1365-246X.2009.04429.x
10.1190/1.1444468
10.1111/j.1365-246X.2011.04970.x
10.1126/science.1241514
10.1093/gji/ggy121
10.1137/S1052623497318992
10.1190/tle35020146.1
10.1093/gji/ggw202
10.1190/1.1444815
10.1093/gji/ggs132
10.1190/geo2017-0790.1
10.1190/1.1443880
10.4310/CMS.2014.v12.n5.a7
10.1190/1.3627773
10.1093/gji/ggt118
10.1111/j.1365-246X.2010.04681.x
10.1111/j.1365-2478.2008.00704.x
10.1190/geo2017-0213.1
10.1093/gji/ggx442
10.1029/2001GL013831
10.1093/gji/ggw485
10.1190/geo2018-0413.1
10.1029/92JB00235
10.3997/2214-4609.201900878
10.3997/2214-4609.201900637
10.1190/segam2018-2995285.1
10.1190/1.1443888
10.1190/geo2012-0203.1
10.1190/1.2966096
10.1190/1.1441754
10.1093/gji/ggu334
10.1190/geo2018-0595.1
10.1111/j.1365-246X.2011.05209.x
10.1029/98JB02467
10.1016/j.epsl.2009.12.003
10.1029/91JB01890
10.1190/geo2012-0338.1
10.1190/geo2017-0264.1
10.1190/geo2013-0366.1
10.1029/96JB03729
10.1111/j.1365-246X.2008.03783.x
10.1093/gji/ggy113
10.1093/gji/ggw356
10.1046/j.1365-2478.2001.00279.x
10.1111/j.1365-246X.2004.02509.x
10.1111/j.1365-246X.2006.03191.x
10.4310/CMS.2016.v14.n8.a9
10.1190/geo2016-0301.1
10.1190/1.1443081
10.1190/geo2017-0807.1
10.1111/1365-2478.12483
10.3997/2214-4609.201411190
10.1111/j.1365-246X.2012.05447.x
10.1190/geo2018-0146.1
10.1190/1.1444175
10.1016/j.epsl.2013.02.022
10.1190/tle38030179.1
10.1190/1.3627688
10.3389/feart.2022.1011825
10.1190/1.3627775
10.1093/gji/ggv513
10.1093/gji/ggz435
10.1016/j.pepi.2018.12.001
10.1111/j.1365-246X.2009.04368.x
10.1093/gji/ggz444
10.1190/geo2014-0461.1
10.1190/tle36010060.1
10.1093/gji/ggu025
10.1016/0031-9201(82)90111-X
10.1190/geo2016-0663.1
10.1190/geo2017-0775.1
10.1190/segam2017-17700260.1
10.1093/gji/ggw014
10.1190/1.1442051
10.1190/tle38030185.1
10.1111/1365-2478.12345
10.1190/1.1451454
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3271117
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2023_3271117
10109721
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-3fd51f8b6c6f3728023b822cf280acfff7de0c048c9e8bf6120274c6ef3a774b3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:26:37 EDT 2025
Wed Oct 01 02:57:51 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Wed Aug 27 02:56:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-3fd51f8b6c6f3728023b822cf280acfff7de0c048c9e8bf6120274c6ef3a774b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4168-1880
PQID 2811729065
PQPubID 85465
PageCount 1
ParticipantIDs crossref_primary_10_1109_TGRS_2023_3271117
ieee_primary_10109721
proquest_journals_2811729065
crossref_citationtrail_10_1109_TGRS_2023_3271117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
bozdag (ref8) 2020; 220
ref51
ref50
bleistein (ref2) 2013
ref46
aghamiry (ref91) 2019
ref45
ref89
ref48
ref47
ref42
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref82
tsvankin (ref25) 2012
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref1
ref39
ref38
vandebogert (ref86) 2017
ref70
ref73
ref72
alkhalifah (ref76) 2000; 65
ref24
ref68
ref23
ref67
ref26
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
cheng (ref90) 2013
villani (ref71) 2003; 58
ref60
ref62
ref61
References_xml – ident: ref66
  doi: 10.1190/geo2013-0291.1
– ident: ref69
  doi: 10.1190/geo2018-0347.1
– ident: ref57
  doi: 10.1190/geo2015-0387.1
– year: 2013
  ident: ref90
  article-title: Multi-parameter full-waveform inversion for acoustic VTI medium with surface seismic data
  publication-title: AGU Fall Meeting Abstracts
– ident: ref13
  doi: 10.1190/tle35030235.1
– ident: ref67
  doi: 10.3997/2214-4609.201801028
– ident: ref77
  doi: 10.3997/2214-4609.201402310
– ident: ref88
  doi: 10.1137/17M111328X
– ident: ref7
  doi: 10.1093/gji/ggu492
– ident: ref35
  doi: 10.1111/j.1365-246X.2009.04429.x
– ident: ref15
  doi: 10.1190/1.1444468
– ident: ref47
  doi: 10.1111/j.1365-246X.2011.04970.x
– ident: ref23
  doi: 10.1126/science.1241514
– ident: ref11
  doi: 10.1093/gji/ggy121
– ident: ref85
  doi: 10.1137/S1052623497318992
– ident: ref19
  doi: 10.1190/tle35020146.1
– ident: ref43
  doi: 10.1093/gji/ggw202
– volume: 65
  start-page: 1239
  year: 2000
  ident: ref76
  article-title: An acoustic wave equation for anisotropic media
  publication-title: Geophysics
  doi: 10.1190/1.1444815
– ident: ref46
  doi: 10.1093/gji/ggs132
– ident: ref40
  doi: 10.1190/geo2017-0790.1
– ident: ref82
  doi: 10.1190/1.1443880
– ident: ref70
  doi: 10.4310/CMS.2014.v12.n5.a7
– ident: ref56
  doi: 10.1190/1.3627773
– ident: ref37
  doi: 10.1093/gji/ggt118
– ident: ref55
  doi: 10.1111/j.1365-246X.2010.04681.x
– ident: ref54
  doi: 10.1111/j.1365-2478.2008.00704.x
– ident: ref80
  doi: 10.1190/geo2017-0213.1
– ident: ref44
  doi: 10.1093/gji/ggx442
– ident: ref51
  doi: 10.1029/2001GL013831
– ident: ref81
  doi: 10.1093/gji/ggw485
– ident: ref75
  doi: 10.1190/geo2018-0413.1
– ident: ref16
  doi: 10.1029/92JB00235
– ident: ref65
  doi: 10.3997/2214-4609.201900878
– ident: ref60
  doi: 10.3997/2214-4609.201900637
– ident: ref64
  doi: 10.1190/segam2018-2995285.1
– ident: ref29
  doi: 10.1190/1.1443888
– ident: ref38
  doi: 10.1190/geo2012-0203.1
– year: 2013
  ident: ref2
  publication-title: Mathematics of Multidimensional Seismic Imaging Migration and Inversion
– ident: ref18
  doi: 10.1190/1.2966096
– year: 2019
  ident: ref91
  article-title: Implementing bound constraints and total-variation regularization in extended full waveform inversion with the alternating direction method of multiplier: Application to large contrast media
  publication-title: Geophys J Int
– ident: ref1
  doi: 10.1190/1.1441754
– ident: ref26
  doi: 10.1093/gji/ggu334
– ident: ref59
  doi: 10.1190/geo2018-0595.1
– ident: ref31
  doi: 10.1111/j.1365-246X.2011.05209.x
– ident: ref17
  doi: 10.1029/98JB02467
– ident: ref36
  doi: 10.1016/j.epsl.2009.12.003
– ident: ref24
  doi: 10.1029/91JB01890
– ident: ref34
  doi: 10.1190/geo2012-0338.1
– ident: ref63
  doi: 10.1190/geo2017-0264.1
– ident: ref42
  doi: 10.1190/geo2013-0366.1
– ident: ref45
  doi: 10.1029/96JB03729
– ident: ref10
  doi: 10.1111/j.1365-246X.2008.03783.x
– ident: ref39
  doi: 10.1093/gji/ggy113
– ident: ref49
  doi: 10.1093/gji/ggw356
– ident: ref87
  doi: 10.1046/j.1365-2478.2001.00279.x
– ident: ref52
  doi: 10.1111/j.1365-246X.2004.02509.x
– ident: ref4
  doi: 10.1111/j.1365-246X.2006.03191.x
– ident: ref72
  doi: 10.4310/CMS.2016.v14.n8.a9
– ident: ref58
  doi: 10.1190/geo2016-0301.1
– ident: ref50
  doi: 10.1190/1.1443081
– volume: 58
  start-page: 1
  year: 2003
  ident: ref71
  article-title: Topics in optimal transportation, graduate studies in mathematics
  publication-title: Amer Math Soc
– ident: ref73
  doi: 10.1190/geo2017-0807.1
– ident: ref84
  doi: 10.1111/1365-2478.12483
– ident: ref78
  doi: 10.3997/2214-4609.201411190
– ident: ref6
  doi: 10.1111/j.1365-246X.2012.05447.x
– ident: ref14
  doi: 10.1190/geo2018-0146.1
– year: 2012
  ident: ref25
  publication-title: Seismic Signatures and Analysis of Reflection Data in Anisotropic Media
– ident: ref30
  doi: 10.1190/1.1444175
– ident: ref22
  doi: 10.1016/j.epsl.2013.02.022
– ident: ref3
  doi: 10.1190/tle38030179.1
– ident: ref32
  doi: 10.1190/1.3627688
– ident: ref68
  doi: 10.3389/feart.2022.1011825
– ident: ref41
  doi: 10.1190/1.3627775
– ident: ref33
  doi: 10.1093/gji/ggv513
– ident: ref12
  doi: 10.1093/gji/ggz435
– ident: ref27
  doi: 10.1016/j.pepi.2018.12.001
– ident: ref5
  doi: 10.1111/j.1365-246X.2009.04368.x
– volume: 220
  start-page: 661
  year: 2020
  ident: ref8
  article-title: Double-difference measurements in global full-waveform inversions
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggz444
– ident: ref48
  doi: 10.1190/geo2014-0461.1
– ident: ref20
  doi: 10.1190/tle36010060.1
– ident: ref53
  doi: 10.1093/gji/ggu025
– ident: ref9
  doi: 10.1016/0031-9201(82)90111-X
– ident: ref62
  doi: 10.1190/geo2016-0663.1
– ident: ref89
  doi: 10.1190/geo2017-0775.1
– year: 2017
  ident: ref86
  publication-title: Method of Quadratic Interpolation
– ident: ref21
  doi: 10.1190/segam2017-17700260.1
– ident: ref61
  doi: 10.1093/gji/ggw014
– ident: ref28
  doi: 10.1190/1.1442051
– ident: ref74
  doi: 10.1190/tle38030185.1
– ident: ref79
  doi: 10.1111/1365-2478.12345
– ident: ref83
  doi: 10.1190/1.1451454
SSID ssj0014517
Score 2.4261348
Snippet Considering the conventional seismic wavelength, and the nature of the Earth layering, seismic waves experience, in many parts of the subsurface, considerable...
Considering the conventional seismic wavelength and the nature of the Earth’s layering, seismic waves experience, in many parts of the subsurface, considerable...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anisotropic magnetoresistance
Anisotropy
Anomalies
Data models
Datasets
Filtering theory
Frequency measurement
full-waveform inversion
Geologic measurements
Gravitational effects
Gravity
Gravity effects
Isotropy
Matched filters
Matching
matching filter
Nonlinear systems
Nonlinearity
Offshore
optimal transport
P-waves
Seismic waves
Transport
Velocity measurement
Waveforms
Wavelength
Title An anisotropic waveform inversion using an optimal transport matching filter objective: an application to an offshore field dataset
URI https://ieeexplore.ieee.org/document/10109721
https://www.proquest.com/docview/2811729065
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLcGEtJ24GtMPGAoh50mtXuv6Ve4IcSHduCwgcStatx4e2NrEe0DiSv_OHbah942De2Wg2MlcuLY8c82wIc0KnFcVWUgSYtBnJMJDDvOgdaVrgwRP-kebXGenl3Gn6-SqyFZ3efCOOc8-MyFMvSx_KrBmXyV8Q2f-GozS7CUZaZP1noOGcTJZMiNTgP2IqIhhMkzPl2cfvkaSp_wUEcZX-7st0fId1X5SxX79-VkDc7nK-thJdfhrLMhPvxRtPG_l74Oq4OlqQ77o7EBr1y9CW8W6g9uworHf2L7Fh4Pa1XW07bpbpubKar78s6JOaum9V3_o6YEIf-NiVTDWuYXc-7mddEVW70ekqloKsF31dgfvR49EPqFGLnqGs-BqP3OO1AeP6cEpdq6bgsuT44vjs6CoT9DgJGJu0BTlUwotymmpKXNVaQt2xtIPCyRiLLKjZFVBBqXW2JbSnxgTB3pkq1Oq9_Bct3UbhtUPkGbJkjWIMYJlSZLSJN2uUuZS6VHMJ4LrMCheLn00PhZeCdmbAqRcSEyLgYZj-Dj85SbvnLHS8RbIrMFwl5cI9ibH4tiuNxtEUlyrpTJT3b-MW0XXgv3_qtmD5a725l7z8ZLZ_f9oX0CfTDtPw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLZKEaIcSimtWNrSOXBCStjN5NlbVbVdoOwBtlJvUcYZw_JIqiZbJK788dqTbLWAirjNwTOZyB6PPf5sA7yMgwKHZVl4krTohSllXsaOs6d1qcuMiK90h7aYxOPz8O1FdNEnq7tcGGutA59ZX4Yull_WOJenMj7hI1dt5h7cj9itSLp0rdugQRiN-uzo2GM_IuiDmDzn9fT0w0dfOoX7Okj4eCe_XUOur8pfytjdMCePYbLYWwcs-erPW-Pjzz_KNv735jdgvbc11WEnHE9gxVab8GipAuEmPHAIUGyewq_DShXVrKnbq_pyhupHcW3FoFWz6rp7U1OCkf_ERKpmPfOdV24XldEV270OlKloJuF3VZsvnSY9EPqlKLlqa7cCUfOZ_0A5BJ0SnGpj2y04PzmeHo29vkODh0EWtp6mMhpRamKMSUujq0AbtjiQeFggESWlHSIrCcxsaoitKfGCMbakC7Y7jd6G1aqu7DNQ6QhNHCGZDDGMqMiSiDRpm9qYVyn1AIYLhuXYly-XLhrfcufGDLNceJwLj_OexwN4dTvlsqvd8S_iLeHZEmHHrgHsLsQi7493kweSniuF8qPnd0zbh4fj6fuz_OzN5N0OrMmXuoebXVhtr-Z2j02Z1rxwAnwDFW7wkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+anisotropic+waveform+inversion+using+an+optimal+transport+matching+filter+objective%3A+an+application+to+an+offshore+field+dataset&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Sun%2C+Bingbing&rft.au=Alkhalifah%2C+Tariq&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3271117&rft.externalDocID=10109721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon