An anisotropic waveform inversion using an optimal transport matching filter objective: an application to an offshore field dataset
Considering the conventional seismic wavelength, and the nature of the Earth layering, seismic waves experience, in many parts of the subsurface, considerable anisotropy, and with the effect of gravity on sedimentation, the anisotropy tends to be of a transversely isotropic with a vertical axis of s...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 61; p. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/TGRS.2023.3271117 |
Cover
Abstract | Considering the conventional seismic wavelength, and the nature of the Earth layering, seismic waves experience, in many parts of the subsurface, considerable anisotropy, and with the effect of gravity on sedimentation, the anisotropy tends to be of a transversely isotropic with a vertical axis of symmetry (VTI) nature. Inverting for such a model of the Earth using waveforms, we face considerable nonlinearity and parameter trade-off. A recently introduced optimal transport of the matching filter (OTMF) provided us with a robust misfit function for reducing cycle-skipping in Full-Waveform Inversion (FWI). We apply a VTI FWI using the OTMF misfit on a field dataset from offshore Australia, comparing its performance to that of conventional FWI using the L2-norm misfit in a variety of circumstances. Due to strong anisotropy in this region, an isotropic inversion though can fit the record, leading to common image gathers with sizable linear moveouts. Thus, in an anisotropic VTI setup, starting the inversion from 3 Hz, both the L2 norm and the OTMF misfit functions can generate a geologically meaningful model, and recover similar anisotropy anomalies. We demonstrate that the OTMF misfit, in some sense, can address the nonlinearity of FWI due to its intrinsic global updating features. Compared to the results from isotropic full-waveform inversion, the improvements in the RTM image and the common image gathers further demonstrate the benefits of including anisotropy in the FWI inversion engine, as well as, the good performance of the OTMF in mitigating cycle-skipping. |
---|---|
AbstractList | Considering the conventional seismic wavelength, and the nature of the Earth layering, seismic waves experience, in many parts of the subsurface, considerable anisotropy, and with the effect of gravity on sedimentation, the anisotropy tends to be of a transversely isotropic with a vertical axis of symmetry (VTI) nature. Inverting for such a model of the Earth using waveforms, we face considerable nonlinearity and parameter trade-off. A recently introduced optimal transport of the matching filter (OTMF) provided us with a robust misfit function for reducing cycle-skipping in Full-Waveform Inversion (FWI). We apply a VTI FWI using the OTMF misfit on a field dataset from offshore Australia, comparing its performance to that of conventional FWI using the L2-norm misfit in a variety of circumstances. Due to strong anisotropy in this region, an isotropic inversion though can fit the record, leading to common image gathers with sizable linear moveouts. Thus, in an anisotropic VTI setup, starting the inversion from 3 Hz, both the L2 norm and the OTMF misfit functions can generate a geologically meaningful model, and recover similar anisotropy anomalies. We demonstrate that the OTMF misfit, in some sense, can address the nonlinearity of FWI due to its intrinsic global updating features. Compared to the results from isotropic full-waveform inversion, the improvements in the RTM image and the common image gathers further demonstrate the benefits of including anisotropy in the FWI inversion engine, as well as, the good performance of the OTMF in mitigating cycle-skipping. Considering the conventional seismic wavelength and the nature of the Earth’s layering, seismic waves experience, in many parts of the subsurface, considerable anisotropy, and with the effect of gravity on sedimentation, the anisotropy tends to be transversely isotropic with a vertical axis of symmetry [vertical transverse isotropy (VTI)] nature. Inverting to such a model of the Earth using waveforms, we face considerable nonlinearity and parameter tradeoff. A recently introduced optimal transport of the matching filter (OTMF) provided us with a robust misfit function for reducing cycle skipping in full-waveform inversion (FWI). We apply a VTI FWI using the OTMF misfit on a field dataset from offshore Australia, comparing its performance to that of conventional FWI using the L2-norm misfit in a variety of circumstances. Due to strong anisotropy in this region, an isotropic inversion can fit the record, leading to common image gathers (CIGs) with sizable linear moveouts. Thus, in an anisotropic VTI setup, starting the inversion from 3 Hz, both the L2-norm and the OTMF misfit functions can generate a geologically meaningful model and recover similar anisotropy anomalies. We demonstrate that the OTMF misfit, in some sense, can address the nonlinearity of FWI due to its intrinsic global updating features. Compared to the results from isotropic FWI, the improvements in the RTM image and the CIGs further demonstrate the benefits of including anisotropy in the FWI inversion engine and the good performance of the OTMF in mitigating cycle skipping. |
Author | Sun, Bingbing Alkhalifah, Tariq |
Author_xml | – sequence: 1 givenname: Bingbing orcidid: 0000-0002-4168-1880 surname: Sun fullname: Sun, Bingbing organization: Physical Sciences and Engineering, King Abdullah University of Science and Technology, Saudi Arabia – sequence: 2 givenname: Tariq surname: Alkhalifah fullname: Alkhalifah, Tariq organization: Physical Sciences and Engineering, King Abdullah University of Science and Technology, Saudi Arabia |
BookMark | eNp9kM1KAzEYRYNUsFYfQHARcD01yfxkxl0pWoWCoHU9ZNIvNmWajElace2Lm2m7EBeuEsi5N9xzjgbGGkDoipIxpaS6XcxeXseMsHScMk4p5SdoSPO8TEiRZQM0JLQqElZW7Ayde78mhGY55UP0PTFYGO1tcLbTEn-KHSjrNlibHTivrcFbr817hLDtgt6IFgcnjO-sC3gjglz1r0q3ARy2zRpk0Du463nRda2WIvQlwe4blPIr6yDy0C7xUgThIVygUyVaD5fHc4TeHu4X08dk_jx7mk7miWRVFpJULXOqyqaQhUo5K-PYpmRMqngVUinFl0AkyUpZQdmogkYdPJMFqFRwnjXpCN0cejtnP7bgQ722W2filzUrozJWkSKPFD9Q0lnvHaha6rAfEXfrtqak7o3XvfG6N14fjcck_ZPsXBTmvv7NXB8yGgB-8ZHmjKY_iG2Rkg |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3394893 crossref_primary_10_1109_TGRS_2024_3406763 |
Cites_doi | 10.1190/geo2013-0291.1 10.1190/geo2018-0347.1 10.1190/geo2015-0387.1 10.1190/tle35030235.1 10.3997/2214-4609.201801028 10.3997/2214-4609.201402310 10.1137/17M111328X 10.1093/gji/ggu492 10.1111/j.1365-246X.2009.04429.x 10.1190/1.1444468 10.1111/j.1365-246X.2011.04970.x 10.1126/science.1241514 10.1093/gji/ggy121 10.1137/S1052623497318992 10.1190/tle35020146.1 10.1093/gji/ggw202 10.1190/1.1444815 10.1093/gji/ggs132 10.1190/geo2017-0790.1 10.1190/1.1443880 10.4310/CMS.2014.v12.n5.a7 10.1190/1.3627773 10.1093/gji/ggt118 10.1111/j.1365-246X.2010.04681.x 10.1111/j.1365-2478.2008.00704.x 10.1190/geo2017-0213.1 10.1093/gji/ggx442 10.1029/2001GL013831 10.1093/gji/ggw485 10.1190/geo2018-0413.1 10.1029/92JB00235 10.3997/2214-4609.201900878 10.3997/2214-4609.201900637 10.1190/segam2018-2995285.1 10.1190/1.1443888 10.1190/geo2012-0203.1 10.1190/1.2966096 10.1190/1.1441754 10.1093/gji/ggu334 10.1190/geo2018-0595.1 10.1111/j.1365-246X.2011.05209.x 10.1029/98JB02467 10.1016/j.epsl.2009.12.003 10.1029/91JB01890 10.1190/geo2012-0338.1 10.1190/geo2017-0264.1 10.1190/geo2013-0366.1 10.1029/96JB03729 10.1111/j.1365-246X.2008.03783.x 10.1093/gji/ggy113 10.1093/gji/ggw356 10.1046/j.1365-2478.2001.00279.x 10.1111/j.1365-246X.2004.02509.x 10.1111/j.1365-246X.2006.03191.x 10.4310/CMS.2016.v14.n8.a9 10.1190/geo2016-0301.1 10.1190/1.1443081 10.1190/geo2017-0807.1 10.1111/1365-2478.12483 10.3997/2214-4609.201411190 10.1111/j.1365-246X.2012.05447.x 10.1190/geo2018-0146.1 10.1190/1.1444175 10.1016/j.epsl.2013.02.022 10.1190/tle38030179.1 10.1190/1.3627688 10.3389/feart.2022.1011825 10.1190/1.3627775 10.1093/gji/ggv513 10.1093/gji/ggz435 10.1016/j.pepi.2018.12.001 10.1111/j.1365-246X.2009.04368.x 10.1093/gji/ggz444 10.1190/geo2014-0461.1 10.1190/tle36010060.1 10.1093/gji/ggu025 10.1016/0031-9201(82)90111-X 10.1190/geo2016-0663.1 10.1190/geo2017-0775.1 10.1190/segam2017-17700260.1 10.1093/gji/ggw014 10.1190/1.1442051 10.1190/tle38030185.1 10.1111/1365-2478.12345 10.1190/1.1451454 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2023.3271117 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TGRS_2023_3271117 10109721 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 Y6R 5VS AAYXX AETIX AGSQL AI. AIBXA CITATION EJD H~9 IBMZZ ICLAB IFJZH VH1 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c294t-3fd51f8b6c6f3728023b822cf280acfff7de0c048c9e8bf6120274c6ef3a774b3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:26:37 EDT 2025 Wed Oct 01 02:57:51 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Wed Aug 27 02:56:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-3fd51f8b6c6f3728023b822cf280acfff7de0c048c9e8bf6120274c6ef3a774b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4168-1880 |
PQID | 2811729065 |
PQPubID | 85465 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_TGRS_2023_3271117 ieee_primary_10109721 proquest_journals_2811729065 crossref_citationtrail_10_1109_TGRS_2023_3271117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 bozdag (ref8) 2020; 220 ref51 ref50 bleistein (ref2) 2013 ref46 aghamiry (ref91) 2019 ref45 ref89 ref48 ref47 ref42 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref82 tsvankin (ref25) 2012 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref1 ref39 ref38 vandebogert (ref86) 2017 ref70 ref73 ref72 alkhalifah (ref76) 2000; 65 ref24 ref68 ref23 ref67 ref26 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 cheng (ref90) 2013 villani (ref71) 2003; 58 ref60 ref62 ref61 |
References_xml | – ident: ref66 doi: 10.1190/geo2013-0291.1 – ident: ref69 doi: 10.1190/geo2018-0347.1 – ident: ref57 doi: 10.1190/geo2015-0387.1 – year: 2013 ident: ref90 article-title: Multi-parameter full-waveform inversion for acoustic VTI medium with surface seismic data publication-title: AGU Fall Meeting Abstracts – ident: ref13 doi: 10.1190/tle35030235.1 – ident: ref67 doi: 10.3997/2214-4609.201801028 – ident: ref77 doi: 10.3997/2214-4609.201402310 – ident: ref88 doi: 10.1137/17M111328X – ident: ref7 doi: 10.1093/gji/ggu492 – ident: ref35 doi: 10.1111/j.1365-246X.2009.04429.x – ident: ref15 doi: 10.1190/1.1444468 – ident: ref47 doi: 10.1111/j.1365-246X.2011.04970.x – ident: ref23 doi: 10.1126/science.1241514 – ident: ref11 doi: 10.1093/gji/ggy121 – ident: ref85 doi: 10.1137/S1052623497318992 – ident: ref19 doi: 10.1190/tle35020146.1 – ident: ref43 doi: 10.1093/gji/ggw202 – volume: 65 start-page: 1239 year: 2000 ident: ref76 article-title: An acoustic wave equation for anisotropic media publication-title: Geophysics doi: 10.1190/1.1444815 – ident: ref46 doi: 10.1093/gji/ggs132 – ident: ref40 doi: 10.1190/geo2017-0790.1 – ident: ref82 doi: 10.1190/1.1443880 – ident: ref70 doi: 10.4310/CMS.2014.v12.n5.a7 – ident: ref56 doi: 10.1190/1.3627773 – ident: ref37 doi: 10.1093/gji/ggt118 – ident: ref55 doi: 10.1111/j.1365-246X.2010.04681.x – ident: ref54 doi: 10.1111/j.1365-2478.2008.00704.x – ident: ref80 doi: 10.1190/geo2017-0213.1 – ident: ref44 doi: 10.1093/gji/ggx442 – ident: ref51 doi: 10.1029/2001GL013831 – ident: ref81 doi: 10.1093/gji/ggw485 – ident: ref75 doi: 10.1190/geo2018-0413.1 – ident: ref16 doi: 10.1029/92JB00235 – ident: ref65 doi: 10.3997/2214-4609.201900878 – ident: ref60 doi: 10.3997/2214-4609.201900637 – ident: ref64 doi: 10.1190/segam2018-2995285.1 – ident: ref29 doi: 10.1190/1.1443888 – ident: ref38 doi: 10.1190/geo2012-0203.1 – year: 2013 ident: ref2 publication-title: Mathematics of Multidimensional Seismic Imaging Migration and Inversion – ident: ref18 doi: 10.1190/1.2966096 – year: 2019 ident: ref91 article-title: Implementing bound constraints and total-variation regularization in extended full waveform inversion with the alternating direction method of multiplier: Application to large contrast media publication-title: Geophys J Int – ident: ref1 doi: 10.1190/1.1441754 – ident: ref26 doi: 10.1093/gji/ggu334 – ident: ref59 doi: 10.1190/geo2018-0595.1 – ident: ref31 doi: 10.1111/j.1365-246X.2011.05209.x – ident: ref17 doi: 10.1029/98JB02467 – ident: ref36 doi: 10.1016/j.epsl.2009.12.003 – ident: ref24 doi: 10.1029/91JB01890 – ident: ref34 doi: 10.1190/geo2012-0338.1 – ident: ref63 doi: 10.1190/geo2017-0264.1 – ident: ref42 doi: 10.1190/geo2013-0366.1 – ident: ref45 doi: 10.1029/96JB03729 – ident: ref10 doi: 10.1111/j.1365-246X.2008.03783.x – ident: ref39 doi: 10.1093/gji/ggy113 – ident: ref49 doi: 10.1093/gji/ggw356 – ident: ref87 doi: 10.1046/j.1365-2478.2001.00279.x – ident: ref52 doi: 10.1111/j.1365-246X.2004.02509.x – ident: ref4 doi: 10.1111/j.1365-246X.2006.03191.x – ident: ref72 doi: 10.4310/CMS.2016.v14.n8.a9 – ident: ref58 doi: 10.1190/geo2016-0301.1 – ident: ref50 doi: 10.1190/1.1443081 – volume: 58 start-page: 1 year: 2003 ident: ref71 article-title: Topics in optimal transportation, graduate studies in mathematics publication-title: Amer Math Soc – ident: ref73 doi: 10.1190/geo2017-0807.1 – ident: ref84 doi: 10.1111/1365-2478.12483 – ident: ref78 doi: 10.3997/2214-4609.201411190 – ident: ref6 doi: 10.1111/j.1365-246X.2012.05447.x – ident: ref14 doi: 10.1190/geo2018-0146.1 – year: 2012 ident: ref25 publication-title: Seismic Signatures and Analysis of Reflection Data in Anisotropic Media – ident: ref30 doi: 10.1190/1.1444175 – ident: ref22 doi: 10.1016/j.epsl.2013.02.022 – ident: ref3 doi: 10.1190/tle38030179.1 – ident: ref32 doi: 10.1190/1.3627688 – ident: ref68 doi: 10.3389/feart.2022.1011825 – ident: ref41 doi: 10.1190/1.3627775 – ident: ref33 doi: 10.1093/gji/ggv513 – ident: ref12 doi: 10.1093/gji/ggz435 – ident: ref27 doi: 10.1016/j.pepi.2018.12.001 – ident: ref5 doi: 10.1111/j.1365-246X.2009.04368.x – volume: 220 start-page: 661 year: 2020 ident: ref8 article-title: Double-difference measurements in global full-waveform inversions publication-title: Geophys J Int doi: 10.1093/gji/ggz444 – ident: ref48 doi: 10.1190/geo2014-0461.1 – ident: ref20 doi: 10.1190/tle36010060.1 – ident: ref53 doi: 10.1093/gji/ggu025 – ident: ref9 doi: 10.1016/0031-9201(82)90111-X – ident: ref62 doi: 10.1190/geo2016-0663.1 – ident: ref89 doi: 10.1190/geo2017-0775.1 – year: 2017 ident: ref86 publication-title: Method of Quadratic Interpolation – ident: ref21 doi: 10.1190/segam2017-17700260.1 – ident: ref61 doi: 10.1093/gji/ggw014 – ident: ref28 doi: 10.1190/1.1442051 – ident: ref74 doi: 10.1190/tle38030185.1 – ident: ref79 doi: 10.1111/1365-2478.12345 – ident: ref83 doi: 10.1190/1.1451454 |
SSID | ssj0014517 |
Score | 2.4261348 |
Snippet | Considering the conventional seismic wavelength, and the nature of the Earth layering, seismic waves experience, in many parts of the subsurface, considerable... Considering the conventional seismic wavelength and the nature of the Earth’s layering, seismic waves experience, in many parts of the subsurface, considerable... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Anisotropic magnetoresistance Anisotropy Anomalies Data models Datasets Filtering theory Frequency measurement full-waveform inversion Geologic measurements Gravitational effects Gravity Gravity effects Isotropy Matched filters Matching matching filter Nonlinear systems Nonlinearity Offshore optimal transport P-waves Seismic waves Transport Velocity measurement Waveforms Wavelength |
Title | An anisotropic waveform inversion using an optimal transport matching filter objective: an application to an offshore field dataset |
URI | https://ieeexplore.ieee.org/document/10109721 https://www.proquest.com/docview/2811729065 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT90wDLcGEtJ24GtMPGAoh50mtXuv6Ve4IcSHduCwgcStatx4e2NrEe0DiSv_OHbah942De2Wg2MlcuLY8c82wIc0KnFcVWUgSYtBnJMJDDvOgdaVrgwRP-kebXGenl3Gn6-SqyFZ3efCOOc8-MyFMvSx_KrBmXyV8Q2f-GozS7CUZaZP1noOGcTJZMiNTgP2IqIhhMkzPl2cfvkaSp_wUEcZX-7st0fId1X5SxX79-VkDc7nK-thJdfhrLMhPvxRtPG_l74Oq4OlqQ77o7EBr1y9CW8W6g9uworHf2L7Fh4Pa1XW07bpbpubKar78s6JOaum9V3_o6YEIf-NiVTDWuYXc-7mddEVW70ekqloKsF31dgfvR49EPqFGLnqGs-BqP3OO1AeP6cEpdq6bgsuT44vjs6CoT9DgJGJu0BTlUwotymmpKXNVaQt2xtIPCyRiLLKjZFVBBqXW2JbSnxgTB3pkq1Oq9_Bct3UbhtUPkGbJkjWIMYJlSZLSJN2uUuZS6VHMJ4LrMCheLn00PhZeCdmbAqRcSEyLgYZj-Dj85SbvnLHS8RbIrMFwl5cI9ibH4tiuNxtEUlyrpTJT3b-MW0XXgv3_qtmD5a725l7z8ZLZ_f9oX0CfTDtPw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLZKEaIcSimtWNrSOXBCStjN5NlbVbVdoOwBtlJvUcYZw_JIqiZbJK788dqTbLWAirjNwTOZyB6PPf5sA7yMgwKHZVl4krTohSllXsaOs6d1qcuMiK90h7aYxOPz8O1FdNEnq7tcGGutA59ZX4Yull_WOJenMj7hI1dt5h7cj9itSLp0rdugQRiN-uzo2GM_IuiDmDzn9fT0w0dfOoX7Okj4eCe_XUOur8pfytjdMCePYbLYWwcs-erPW-Pjzz_KNv735jdgvbc11WEnHE9gxVab8GipAuEmPHAIUGyewq_DShXVrKnbq_pyhupHcW3FoFWz6rp7U1OCkf_ERKpmPfOdV24XldEV270OlKloJuF3VZsvnSY9EPqlKLlqa7cCUfOZ_0A5BJ0SnGpj2y04PzmeHo29vkODh0EWtp6mMhpRamKMSUujq0AbtjiQeFggESWlHSIrCcxsaoitKfGCMbakC7Y7jd6G1aqu7DNQ6QhNHCGZDDGMqMiSiDRpm9qYVyn1AIYLhuXYly-XLhrfcufGDLNceJwLj_OexwN4dTvlsqvd8S_iLeHZEmHHrgHsLsQi7493kweSniuF8qPnd0zbh4fj6fuz_OzN5N0OrMmXuoebXVhtr-Z2j02Z1rxwAnwDFW7wkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+anisotropic+waveform+inversion+using+an+optimal+transport+matching+filter+objective%3A+an+application+to+an+offshore+field+dataset&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Sun%2C+Bingbing&rft.au=Alkhalifah%2C+Tariq&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3271117&rft.externalDocID=10109721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |