Fast SBL for 2-D Joint Super-Resolution ISAR Imaging With Multidwell Observation Based on LC Decomposition of Fourth-Order Toeplitz Tensor

For multifunctional phased array radar systems, inverse synthetic aperture radar (ISAR) imaging typically requires multidwell coherent processing to achieve adequate cross-range resolution. In such cases, the traditional fast Fourier transform (FFT)-based Doppler processing method can result in grat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 17
Main Authors Wang, Yuanyuan, Dai, Fengzhou, Liu, Qian, Liang, Yi, Lu, Xiaofei
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2024.3450705

Cover

Abstract For multifunctional phased array radar systems, inverse synthetic aperture radar (ISAR) imaging typically requires multidwell coherent processing to achieve adequate cross-range resolution. In such cases, the traditional fast Fourier transform (FFT)-based Doppler processing method can result in grating lobes in the cross-range dimension. Additionally, the range resolution is insufficient when the radar transmission bandwidth is relatively narrow. To address these two issues, this article proposes a fast sparse Bayesian learning (SBL)/iterative Wiener filter (IWF)-based 2-D joint super-resolution ISAR imaging method, which enhances the resolution in both range and cross-range dimensions while suppressing grating lobes. The proposed fast SBL and IWF algorithms incorporate the lower-triangular-Toeplitz-cyclic (LC) decomposition of the unfolded fourth-order Toeplitz tensor of the covariance matrix. Except for the LC decomposition, all operations utilize the FFT, allowing for efficient, precise, and memory-efficient processing of two types of multidwell observations. Furthermore, during image reconstruction, the target's rotational velocity is estimated using the minimum entropy criterion, thereby achieving range-variant autofocus and 2-D super-resolution ISAR imaging. Finally, simulated and measured data are employed to validate the effectiveness of the proposed algorithms.
AbstractList For multifunctional phased array radar systems, inverse synthetic aperture radar (ISAR) imaging typically requires multidwell coherent processing to achieve adequate cross-range resolution. In such cases, the traditional fast Fourier transform (FFT)-based Doppler processing method can result in grating lobes in the cross-range dimension. Additionally, the range resolution is insufficient when the radar transmission bandwidth is relatively narrow. To address these two issues, this article proposes a fast sparse Bayesian learning (SBL)/iterative Wiener filter (IWF)-based 2-D joint super-resolution ISAR imaging method, which enhances the resolution in both range and cross-range dimensions while suppressing grating lobes. The proposed fast SBL and IWF algorithms incorporate the lower-triangular-Toeplitz-cyclic (LC) decomposition of the unfolded fourth-order Toeplitz tensor of the covariance matrix. Except for the LC decomposition, all operations utilize the FFT, allowing for efficient, precise, and memory-efficient processing of two types of multidwell observations. Furthermore, during image reconstruction, the target's rotational velocity is estimated using the minimum entropy criterion, thereby achieving range-variant autofocus and 2-D super-resolution ISAR imaging. Finally, simulated and measured data are employed to validate the effectiveness of the proposed algorithms.
Author Wang, Yuanyuan
Lu, Xiaofei
Liang, Yi
Dai, Fengzhou
Liu, Qian
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Wang
  fullname: Wang, Yuanyuan
  email: yyw97@stu.xidian.edu.cn
  organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China
– sequence: 2
  givenname: Fengzhou
  orcidid: 0000-0003-2166-2516
  surname: Dai
  fullname: Dai, Fengzhou
  email: fzdai@xidian.edu.cn
  organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China
– sequence: 3
  givenname: Qian
  surname: Liu
  fullname: Liu, Qian
  email: 21021210832@stu.xidian.edu.cn
  organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China
– sequence: 4
  givenname: Yi
  orcidid: 0000-0001-6090-7948
  surname: Liang
  fullname: Liang, Yi
  email: yliang@xidian.edu.cn
  organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China
– sequence: 5
  givenname: Xiaofei
  orcidid: 0000-0002-1856-4619
  surname: Lu
  fullname: Lu, Xiaofei
  email: luxiaofei.2008@tsinghua.org.cn
  organization: Jiuquan Satellite Launch Center, Jiuquan, China
BookMark eNp9kMlu2zAQhonCAeqkeYACPRDoWS43LTx6iRMXLgzYDnoUaHLkMJBFlaRaJI-Qp668HIoecprBzP_P8l2jQeMaQOgzJSNKify2vV9vRowwMeIiJTlJP6AhTdMiIZkQAzQkVGYJKyT7iK5DeCaEipTmQ_Q2VyHizWSJK-cxS2b4u7NNX-la8Mkagqu7aF2DF5vxGi8Oam-bPf5p4xP-0dXRmj9Q13i1C-B_q5NwogIY3CfLKZ6BdofWBXvquArPXefjU7LyBjzeOmhrG1_xFprg_Cd0Vak6wO0l3qDH-d12-pAsV_eL6XiZaCZFTHilQGilMyF1LjNVAaNgqNlJwnTBhKxYbsjOZAKokbooOFQ7QUUuSc4UM_wGfT3Pbb371UGI5XN_VdOvLDkllPOeGO9V-VmlvQvBQ1VqG08fRq9sXVJSHsGXR_DlEXx5Ad876X_O1tuD8i_ver6cPRYA_tH3T2Zpyv8CtjGRVg
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_LGRS_2025_3547408
Cites_doi 10.1109/TIP.2019.2957939
10.1109/REAL.2003.1253250
10.1109/JSEN.2018.2880899
10.1109/83.974573
10.1109/TAES.2007.4383594
10.1109/TGRS.2018.2890098
10.1109/TGRS.2021.3113007
10.1109/LSP.2017.2692217
10.1109/TAP.2011.2173130
10.1109/LGRS.2008.2010562
10.1109/7.993231
10.1109/TAES.2015.150456
10.1109/TNNLS.2020.3049056
10.1109/JSTARS.2014.2315630
10.1109/TGRS.2013.2286402
10.1109/TAES.2013.130115
10.1093/oso/9780198505143.003.0023
10.1007/s10107-015-0893-2
10.1109/JSEN.2019.2923447
10.1109/TGRS.2023.3249351
10.1109/TGRS.2020.2974550
10.1137/110844830
10.1109/ICSPCC.2013.6663917
10.1109/7.303757
10.1109/JSTARS.2015.2439266
10.1109/TAES.2012.6178106
10.1109/TSP.2017.2764855
10.1109/TGRS.2022.3213579
10.1109/TAP.2023.3344877
10.1137/0724076
10.1109/TAES.2016.150883
10.1109/TGRS.2024.3369172
10.1109/TSP.2015.2449251
10.1109/JSEN.2018.2868308
10.1109/TGRS.2020.2994179
10.1109/TGRS.2021.3091645
10.1109/TGRS.2024.3372398
10.3390/s20185047
10.1016/s0024-3795(97)00372-8
10.1109/ICDSP.2018.8631827
10.1109/TGRS.2019.2893505
10.1109/APS.2005.1551901
10.1109/TGRS.2022.3154635
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3450705
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 17
ExternalDocumentID 10_1109_TGRS_2024_3450705
10649655
Genre orig-research
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: 62271363; 61971326
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-3fae4cac649c796afe21ed1db902c8249f27d0bd64e1d9c883efb41479072a2d3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:14:43 EDT 2025
Wed Oct 01 02:58:11 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Aug 27 02:00:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-3fae4cac649c796afe21ed1db902c8249f27d0bd64e1d9c883efb41479072a2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2166-2516
0000-0001-6090-7948
0000-0002-1856-4619
PQID 3101336443
PQPubID 85465
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2024_3450705
crossref_primary_10_1109_TGRS_2024_3450705
ieee_primary_10649655
proquest_journals_3101336443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Wehner (ref1) 1987
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref24
  doi: 10.1109/TIP.2019.2957939
– ident: ref6
  doi: 10.1109/REAL.2003.1253250
– ident: ref29
  doi: 10.1109/JSEN.2018.2880899
– ident: ref2
  doi: 10.1109/83.974573
– ident: ref32
  doi: 10.1109/TAES.2007.4383594
– ident: ref34
  doi: 10.1109/TGRS.2018.2890098
– ident: ref35
  doi: 10.1109/TGRS.2021.3113007
– ident: ref25
  doi: 10.1109/LSP.2017.2692217
– ident: ref4
  doi: 10.1109/TAP.2011.2173130
– ident: ref31
  doi: 10.1109/LGRS.2008.2010562
– ident: ref16
  doi: 10.1109/7.993231
– ident: ref20
  doi: 10.1109/TAES.2015.150456
– ident: ref26
  doi: 10.1109/TNNLS.2020.3049056
– ident: ref8
  doi: 10.1109/JSTARS.2014.2315630
– ident: ref18
  doi: 10.1109/TGRS.2013.2286402
– ident: ref5
  doi: 10.1109/TAES.2013.130115
– volume-title: High Resolution Radar
  year: 1987
  ident: ref1
– ident: ref39
  doi: 10.1093/oso/9780198505143.003.0023
– ident: ref44
  doi: 10.1007/s10107-015-0893-2
– ident: ref13
  doi: 10.1109/JSEN.2019.2923447
– ident: ref38
  doi: 10.1109/TGRS.2023.3249351
– ident: ref14
  doi: 10.1109/TGRS.2020.2974550
– ident: ref42
  doi: 10.1137/110844830
– ident: ref21
  doi: 10.1109/ICSPCC.2013.6663917
– ident: ref30
  doi: 10.1109/7.303757
– ident: ref28
  doi: 10.1109/JSTARS.2015.2439266
– ident: ref19
  doi: 10.1109/TAES.2012.6178106
– ident: ref27
  doi: 10.1109/TSP.2017.2764855
– ident: ref33
  doi: 10.1109/TGRS.2022.3213579
– ident: ref12
  doi: 10.1109/TAP.2023.3344877
– ident: ref40
  doi: 10.1137/0724076
– ident: ref37
  doi: 10.1109/TAES.2016.150883
– ident: ref11
  doi: 10.1109/TGRS.2024.3369172
– ident: ref7
  doi: 10.1109/TSP.2015.2449251
– ident: ref10
  doi: 10.1109/JSEN.2018.2868308
– ident: ref15
  doi: 10.1109/TGRS.2020.2994179
– ident: ref3
  doi: 10.1109/TGRS.2021.3091645
– ident: ref23
  doi: 10.1109/TGRS.2024.3372398
– ident: ref36
  doi: 10.3390/s20185047
– ident: ref43
  doi: 10.1016/s0024-3795(97)00372-8
– ident: ref22
  doi: 10.1109/ICDSP.2018.8631827
– ident: ref9
  doi: 10.1109/TGRS.2019.2893505
– ident: ref17
  doi: 10.1109/APS.2005.1551901
– ident: ref41
  doi: 10.1109/TGRS.2022.3154635
SSID ssj0014517
Score 2.443613
Snippet For multifunctional phased array radar systems, inverse synthetic aperture radar (ISAR) imaging typically requires multidwell coherent processing to achieve...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 2-D joint super-resolution inverse synthetic aperture radar (ISAR) imaging
Algorithms
Bayesian analysis
Covariance matrix
Decomposition
Doppler sonar
Fast Fourier transformations
fast sparse Bayesian learning (SBL) and iterative Wiener filter (IWF) algorithms
Fourier transforms
fourth-order Toeplitz tensor
Image processing
Image reconstruction
Image resolution
Imaging
Inverse synthetic aperture radar
Lobes
Matching pursuit algorithms
multidwell joint coherent processing
Phased arrays
Probability theory
Radar
Radar arrays
Radar equipment
Radar imaging
Radar transmission
range spatial-variant autofocus
Rotation
SAR (radar)
Signal processing algorithms
Superresolution
Tensors
Wiener filtering
Title Fast SBL for 2-D Joint Super-Resolution ISAR Imaging With Multidwell Observation Based on LC Decomposition of Fourth-Order Toeplitz Tensor
URI https://ieeexplore.ieee.org/document/10649655
https://www.proquest.com/docview/3101336443
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoJSQ4FChFBEo1B05IDrte78PHPkgfKkVqUtHbyo-xqKDZKtlc-hP41Yy9mygqouJmrWzLqxnb841nvmHsoxHelQS7OJZlzqUwjqvKVtxoRwemRWViyP_Xi-LkSp5d59d9snrMhUHEGHyGw9CMb_musYvgKqMdXgR683yDbZRV0SVrrZ4MZJ72udEFJxQh-ifMNFGfJ8eXY4KCQg4zSfZPKFW3dgnFqip_HcXxfhm9YBfLlXVhJT-Hi9YM7f0D0sb_XvpLttVbmrDfqcYr9gSn2-z5Gv_gNnsa4z_t_DX7PdLzFsYH50BGLAh-BGfNzZS-LO5wxoOPv9NQOB3vX8LpbaxtBN9v2h8QU3hd8AHCN7Py8cIBXY8OqHF-CEcYItf78DBoPIxoccGnGng_YdIgWcLtPUwIUjezHXY1-jI5POF9mQZuhZItz7xGabWlH7SlKrRHkaJLnVGJsBXBOy9KlxhXSEydslWVoTcylSXhcqGFy96wzWkzxbcMCkylTVRGqC2XWuY6D_x-3utceVdJN2DJUm617TnMQymNX3XEMomqg6jrIOq6F_WAfVoNuesIPB7rvBNEt9axk9qA7S61o-73-Lwmw5gAPtmT2bt_DHvPnoXZO4_NLttsZwv8QDZMa_ai7v4BDzbsrw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagCEEPBUpRAwV84ITksOu1d9fHvkJS0iA1W9Hbyk9R0WarZHPpT-BXM_Y6UQQCcbNWtuzVjO35xjPfIPRBUWcKgF3EFgUnjCpDRKlLoqSBA1NboULI__kkH16ysyt-FZPVQy6MtTYEn9m-b4a3fNPopXeVwQ7PPb05f4geccYY79K11o8GjKcxOzongCNofMRME_Gp-nwxBTBIWT9jYAH5YnUb11Coq_LHYRxumMEzNFmtrQss-dFftqqv73-jbfzvxT9HO9HWxIedcrxAD-xsF21vMBDuoschAlQvXqKfA7lo8fRojMGMxZSc4LPmegZflnd2TryXv9NRPJoeXuDRbahuhL9dt99xSOI13guIv6q1lxcfwQVpMDTGx_jE-tj1GCCGG4cHsDjvVfXMn7hqLNjC7T2uAFQ38z10OTitjockFmogmgrWksxJy7TU8IO6ELl0lqbWpEaJhOoSAJ6jhUmUyZlNjdBlmVmnWMoKQOZUUpO9QluzZmb3Ec5tynQiMsBtnEnGJfcMf85JLpwpmemhZCW3WkcWc19M46YOaCYRtRd17UVdR1H30Mf1kLuOwuNfnfe86DY6dlLroYOVdtRxly9qMI0B4oNFmb3-y7D36MmwOh_X49Hkyxv01M_U-W8O0FY7X9q3YNG06l3Q41-Zme_8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+SBL+for+2-D+Joint+Super-Resolution+ISAR+Imaging+With+Multidwell+Observation+Based+on+LC+Decomposition+of+Fourth-Order+Toeplitz+Tensor&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wang%2C+Yuanyuan&rft.au=Dai%2C+Fengzhou&rft.au=Liu%2C+Qian&rft.au=Liang%2C+Yi&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTGRS.2024.3450705&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3450705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon