Fast SBL for 2-D Joint Super-Resolution ISAR Imaging With Multidwell Observation Based on LC Decomposition of Fourth-Order Toeplitz Tensor
For multifunctional phased array radar systems, inverse synthetic aperture radar (ISAR) imaging typically requires multidwell coherent processing to achieve adequate cross-range resolution. In such cases, the traditional fast Fourier transform (FFT)-based Doppler processing method can result in grat...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 17 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2024.3450705 |
Cover
| Abstract | For multifunctional phased array radar systems, inverse synthetic aperture radar (ISAR) imaging typically requires multidwell coherent processing to achieve adequate cross-range resolution. In such cases, the traditional fast Fourier transform (FFT)-based Doppler processing method can result in grating lobes in the cross-range dimension. Additionally, the range resolution is insufficient when the radar transmission bandwidth is relatively narrow. To address these two issues, this article proposes a fast sparse Bayesian learning (SBL)/iterative Wiener filter (IWF)-based 2-D joint super-resolution ISAR imaging method, which enhances the resolution in both range and cross-range dimensions while suppressing grating lobes. The proposed fast SBL and IWF algorithms incorporate the lower-triangular-Toeplitz-cyclic (LC) decomposition of the unfolded fourth-order Toeplitz tensor of the covariance matrix. Except for the LC decomposition, all operations utilize the FFT, allowing for efficient, precise, and memory-efficient processing of two types of multidwell observations. Furthermore, during image reconstruction, the target's rotational velocity is estimated using the minimum entropy criterion, thereby achieving range-variant autofocus and 2-D super-resolution ISAR imaging. Finally, simulated and measured data are employed to validate the effectiveness of the proposed algorithms. |
|---|---|
| AbstractList | For multifunctional phased array radar systems, inverse synthetic aperture radar (ISAR) imaging typically requires multidwell coherent processing to achieve adequate cross-range resolution. In such cases, the traditional fast Fourier transform (FFT)-based Doppler processing method can result in grating lobes in the cross-range dimension. Additionally, the range resolution is insufficient when the radar transmission bandwidth is relatively narrow. To address these two issues, this article proposes a fast sparse Bayesian learning (SBL)/iterative Wiener filter (IWF)-based 2-D joint super-resolution ISAR imaging method, which enhances the resolution in both range and cross-range dimensions while suppressing grating lobes. The proposed fast SBL and IWF algorithms incorporate the lower-triangular-Toeplitz-cyclic (LC) decomposition of the unfolded fourth-order Toeplitz tensor of the covariance matrix. Except for the LC decomposition, all operations utilize the FFT, allowing for efficient, precise, and memory-efficient processing of two types of multidwell observations. Furthermore, during image reconstruction, the target's rotational velocity is estimated using the minimum entropy criterion, thereby achieving range-variant autofocus and 2-D super-resolution ISAR imaging. Finally, simulated and measured data are employed to validate the effectiveness of the proposed algorithms. |
| Author | Wang, Yuanyuan Lu, Xiaofei Liang, Yi Dai, Fengzhou Liu, Qian |
| Author_xml | – sequence: 1 givenname: Yuanyuan surname: Wang fullname: Wang, Yuanyuan email: yyw97@stu.xidian.edu.cn organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 2 givenname: Fengzhou orcidid: 0000-0003-2166-2516 surname: Dai fullname: Dai, Fengzhou email: fzdai@xidian.edu.cn organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 3 givenname: Qian surname: Liu fullname: Liu, Qian email: 21021210832@stu.xidian.edu.cn organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 4 givenname: Yi orcidid: 0000-0001-6090-7948 surname: Liang fullname: Liang, Yi email: yliang@xidian.edu.cn organization: National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an, China – sequence: 5 givenname: Xiaofei orcidid: 0000-0002-1856-4619 surname: Lu fullname: Lu, Xiaofei email: luxiaofei.2008@tsinghua.org.cn organization: Jiuquan Satellite Launch Center, Jiuquan, China |
| BookMark | eNp9kMlu2zAQhonCAeqkeYACPRDoWS43LTx6iRMXLgzYDnoUaHLkMJBFlaRaJI-Qp668HIoecprBzP_P8l2jQeMaQOgzJSNKify2vV9vRowwMeIiJTlJP6AhTdMiIZkQAzQkVGYJKyT7iK5DeCaEipTmQ_Q2VyHizWSJK-cxS2b4u7NNX-la8Mkagqu7aF2DF5vxGi8Oam-bPf5p4xP-0dXRmj9Q13i1C-B_q5NwogIY3CfLKZ6BdofWBXvquArPXefjU7LyBjzeOmhrG1_xFprg_Cd0Vak6wO0l3qDH-d12-pAsV_eL6XiZaCZFTHilQGilMyF1LjNVAaNgqNlJwnTBhKxYbsjOZAKokbooOFQ7QUUuSc4UM_wGfT3Pbb371UGI5XN_VdOvLDkllPOeGO9V-VmlvQvBQ1VqG08fRq9sXVJSHsGXR_DlEXx5Ad876X_O1tuD8i_ver6cPRYA_tH3T2Zpyv8CtjGRVg |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_LGRS_2025_3547408 |
| Cites_doi | 10.1109/TIP.2019.2957939 10.1109/REAL.2003.1253250 10.1109/JSEN.2018.2880899 10.1109/83.974573 10.1109/TAES.2007.4383594 10.1109/TGRS.2018.2890098 10.1109/TGRS.2021.3113007 10.1109/LSP.2017.2692217 10.1109/TAP.2011.2173130 10.1109/LGRS.2008.2010562 10.1109/7.993231 10.1109/TAES.2015.150456 10.1109/TNNLS.2020.3049056 10.1109/JSTARS.2014.2315630 10.1109/TGRS.2013.2286402 10.1109/TAES.2013.130115 10.1093/oso/9780198505143.003.0023 10.1007/s10107-015-0893-2 10.1109/JSEN.2019.2923447 10.1109/TGRS.2023.3249351 10.1109/TGRS.2020.2974550 10.1137/110844830 10.1109/ICSPCC.2013.6663917 10.1109/7.303757 10.1109/JSTARS.2015.2439266 10.1109/TAES.2012.6178106 10.1109/TSP.2017.2764855 10.1109/TGRS.2022.3213579 10.1109/TAP.2023.3344877 10.1137/0724076 10.1109/TAES.2016.150883 10.1109/TGRS.2024.3369172 10.1109/TSP.2015.2449251 10.1109/JSEN.2018.2868308 10.1109/TGRS.2020.2994179 10.1109/TGRS.2021.3091645 10.1109/TGRS.2024.3372398 10.3390/s20185047 10.1016/s0024-3795(97)00372-8 10.1109/ICDSP.2018.8631827 10.1109/TGRS.2019.2893505 10.1109/APS.2005.1551901 10.1109/TGRS.2022.3154635 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2024.3450705 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) Online IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 17 |
| ExternalDocumentID | 10_1109_TGRS_2024_3450705 10649655 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Nature Science Foundation of China grantid: 62271363; 61971326 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c294t-3fae4cac649c796afe21ed1db902c8249f27d0bd64e1d9c883efb41479072a2d3 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:14:43 EDT 2025 Wed Oct 01 02:58:11 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Aug 27 02:00:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-3fae4cac649c796afe21ed1db902c8249f27d0bd64e1d9c883efb41479072a2d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2166-2516 0000-0001-6090-7948 0000-0002-1856-4619 |
| PQID | 3101336443 |
| PQPubID | 85465 |
| PageCount | 17 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2024_3450705 crossref_primary_10_1109_TGRS_2024_3450705 ieee_primary_10649655 proquest_journals_3101336443 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref17 ref39 ref16 ref38 ref19 ref18 Wehner (ref1) 1987 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref24 doi: 10.1109/TIP.2019.2957939 – ident: ref6 doi: 10.1109/REAL.2003.1253250 – ident: ref29 doi: 10.1109/JSEN.2018.2880899 – ident: ref2 doi: 10.1109/83.974573 – ident: ref32 doi: 10.1109/TAES.2007.4383594 – ident: ref34 doi: 10.1109/TGRS.2018.2890098 – ident: ref35 doi: 10.1109/TGRS.2021.3113007 – ident: ref25 doi: 10.1109/LSP.2017.2692217 – ident: ref4 doi: 10.1109/TAP.2011.2173130 – ident: ref31 doi: 10.1109/LGRS.2008.2010562 – ident: ref16 doi: 10.1109/7.993231 – ident: ref20 doi: 10.1109/TAES.2015.150456 – ident: ref26 doi: 10.1109/TNNLS.2020.3049056 – ident: ref8 doi: 10.1109/JSTARS.2014.2315630 – ident: ref18 doi: 10.1109/TGRS.2013.2286402 – ident: ref5 doi: 10.1109/TAES.2013.130115 – volume-title: High Resolution Radar year: 1987 ident: ref1 – ident: ref39 doi: 10.1093/oso/9780198505143.003.0023 – ident: ref44 doi: 10.1007/s10107-015-0893-2 – ident: ref13 doi: 10.1109/JSEN.2019.2923447 – ident: ref38 doi: 10.1109/TGRS.2023.3249351 – ident: ref14 doi: 10.1109/TGRS.2020.2974550 – ident: ref42 doi: 10.1137/110844830 – ident: ref21 doi: 10.1109/ICSPCC.2013.6663917 – ident: ref30 doi: 10.1109/7.303757 – ident: ref28 doi: 10.1109/JSTARS.2015.2439266 – ident: ref19 doi: 10.1109/TAES.2012.6178106 – ident: ref27 doi: 10.1109/TSP.2017.2764855 – ident: ref33 doi: 10.1109/TGRS.2022.3213579 – ident: ref12 doi: 10.1109/TAP.2023.3344877 – ident: ref40 doi: 10.1137/0724076 – ident: ref37 doi: 10.1109/TAES.2016.150883 – ident: ref11 doi: 10.1109/TGRS.2024.3369172 – ident: ref7 doi: 10.1109/TSP.2015.2449251 – ident: ref10 doi: 10.1109/JSEN.2018.2868308 – ident: ref15 doi: 10.1109/TGRS.2020.2994179 – ident: ref3 doi: 10.1109/TGRS.2021.3091645 – ident: ref23 doi: 10.1109/TGRS.2024.3372398 – ident: ref36 doi: 10.3390/s20185047 – ident: ref43 doi: 10.1016/s0024-3795(97)00372-8 – ident: ref22 doi: 10.1109/ICDSP.2018.8631827 – ident: ref9 doi: 10.1109/TGRS.2019.2893505 – ident: ref17 doi: 10.1109/APS.2005.1551901 – ident: ref41 doi: 10.1109/TGRS.2022.3154635 |
| SSID | ssj0014517 |
| Score | 2.443613 |
| Snippet | For multifunctional phased array radar systems, inverse synthetic aperture radar (ISAR) imaging typically requires multidwell coherent processing to achieve... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 2-D joint super-resolution inverse synthetic aperture radar (ISAR) imaging Algorithms Bayesian analysis Covariance matrix Decomposition Doppler sonar Fast Fourier transformations fast sparse Bayesian learning (SBL) and iterative Wiener filter (IWF) algorithms Fourier transforms fourth-order Toeplitz tensor Image processing Image reconstruction Image resolution Imaging Inverse synthetic aperture radar Lobes Matching pursuit algorithms multidwell joint coherent processing Phased arrays Probability theory Radar Radar arrays Radar equipment Radar imaging Radar transmission range spatial-variant autofocus Rotation SAR (radar) Signal processing algorithms Superresolution Tensors Wiener filtering |
| Title | Fast SBL for 2-D Joint Super-Resolution ISAR Imaging With Multidwell Observation Based on LC Decomposition of Fourth-Order Toeplitz Tensor |
| URI | https://ieeexplore.ieee.org/document/10649655 https://www.proquest.com/docview/3101336443 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZoJSQ4FChFBEo1B05IDrte78PHPkgfKkVqUtHbyo-xqKDZKtlc-hP41Yy9mygqouJmrWzLqxnb841nvmHsoxHelQS7OJZlzqUwjqvKVtxoRwemRWViyP_Xi-LkSp5d59d9snrMhUHEGHyGw9CMb_musYvgKqMdXgR683yDbZRV0SVrrZ4MZJ72udEFJxQh-ifMNFGfJ8eXY4KCQg4zSfZPKFW3dgnFqip_HcXxfhm9YBfLlXVhJT-Hi9YM7f0D0sb_XvpLttVbmrDfqcYr9gSn2-z5Gv_gNnsa4z_t_DX7PdLzFsYH50BGLAh-BGfNzZS-LO5wxoOPv9NQOB3vX8LpbaxtBN9v2h8QU3hd8AHCN7Py8cIBXY8OqHF-CEcYItf78DBoPIxoccGnGng_YdIgWcLtPUwIUjezHXY1-jI5POF9mQZuhZItz7xGabWlH7SlKrRHkaJLnVGJsBXBOy9KlxhXSEydslWVoTcylSXhcqGFy96wzWkzxbcMCkylTVRGqC2XWuY6D_x-3utceVdJN2DJUm617TnMQymNX3XEMomqg6jrIOq6F_WAfVoNuesIPB7rvBNEt9axk9qA7S61o-73-Lwmw5gAPtmT2bt_DHvPnoXZO4_NLttsZwv8QDZMa_ai7v4BDzbsrw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagCEEPBUpRAwV84ITksOu1d9fHvkJS0iA1W9Hbyk9R0WarZHPpT-BXM_Y6UQQCcbNWtuzVjO35xjPfIPRBUWcKgF3EFgUnjCpDRKlLoqSBA1NboULI__kkH16ysyt-FZPVQy6MtTYEn9m-b4a3fNPopXeVwQ7PPb05f4geccYY79K11o8GjKcxOzongCNofMRME_Gp-nwxBTBIWT9jYAH5YnUb11Coq_LHYRxumMEzNFmtrQss-dFftqqv73-jbfzvxT9HO9HWxIedcrxAD-xsF21vMBDuoschAlQvXqKfA7lo8fRojMGMxZSc4LPmegZflnd2TryXv9NRPJoeXuDRbahuhL9dt99xSOI13guIv6q1lxcfwQVpMDTGx_jE-tj1GCCGG4cHsDjvVfXMn7hqLNjC7T2uAFQ38z10OTitjockFmogmgrWksxJy7TU8IO6ELl0lqbWpEaJhOoSAJ6jhUmUyZlNjdBlmVmnWMoKQOZUUpO9QluzZmb3Ec5tynQiMsBtnEnGJfcMf85JLpwpmemhZCW3WkcWc19M46YOaCYRtRd17UVdR1H30Mf1kLuOwuNfnfe86DY6dlLroYOVdtRxly9qMI0B4oNFmb3-y7D36MmwOh_X49Hkyxv01M_U-W8O0FY7X9q3YNG06l3Q41-Zme_8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+SBL+for+2-D+Joint+Super-Resolution+ISAR+Imaging+With+Multidwell+Observation+Based+on+LC+Decomposition+of+Fourth-Order+Toeplitz+Tensor&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wang%2C+Yuanyuan&rft.au=Dai%2C+Fengzhou&rft.au=Liu%2C+Qian&rft.au=Liang%2C+Yi&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTGRS.2024.3450705&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3450705 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |