Interval-Aware Probabilistic Slow Feature Analysis for Irregular Dynamic Process Monitoring With Missing Data

Due to unexpected data transition or equipment failures, irregular data with missing values, which have both irregular sampling intervals and missing values, become very common in industrial processes and bring significant challenges for existing dynamic monitoring methods to explore temporal correl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 53; no. 10; pp. 1 - 12
Main Authors Zheng, Jiale, Chen, Xu, Zhao, Chunhui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2216
2168-2232
DOI10.1109/TSMC.2023.3284397

Cover

Abstract Due to unexpected data transition or equipment failures, irregular data with missing values, which have both irregular sampling intervals and missing values, become very common in industrial processes and bring significant challenges for existing dynamic monitoring methods to explore temporal correlations. Therefore, this article develops an interval-aware probabilistic slow feature analysis (IA-PSFA) method along with the corresponding monitoring strategy to address the above problems for industrial processes. The IA-PSFA method incorporates functions of sampling intervals to adjust the influences of previous samples on the current one when inferring state variables. Specifically, different functions are designed such that the changing temporal correlations between adjacent samples caused by irregular sampling intervals can be tracked effectively. Parameters of the IA-PSFA model are estimated through the expectation-maximization (EM) algorithm with an interval-aware Kalman filter, which addresses the missing variable issue along with irregular sampling intervals. After that, three statistics are constructed based on the state variables, transition and emission errors, and the varying speed of the state variables, to establish comprehensive evaluations of processes. Finally, cases from the Tennessee Eastman (TE) process are provided to validate the effectiveness of the proposed method confronted with different degrees of data irregularity and missing values.
AbstractList Due to unexpected data transition or equipment failures, irregular data with missing values, which have both irregular sampling intervals and missing values, become very common in industrial processes and bring significant challenges for existing dynamic monitoring methods to explore temporal correlations. Therefore, this article develops an interval-aware probabilistic slow feature analysis (IA-PSFA) method along with the corresponding monitoring strategy to address the above problems for industrial processes. The IA-PSFA method incorporates functions of sampling intervals to adjust the influences of previous samples on the current one when inferring state variables. Specifically, different functions are designed such that the changing temporal correlations between adjacent samples caused by irregular sampling intervals can be tracked effectively. Parameters of the IA-PSFA model are estimated through the expectation-maximization (EM) algorithm with an interval-aware Kalman filter, which addresses the missing variable issue along with irregular sampling intervals. After that, three statistics are constructed based on the state variables, transition and emission errors, and the varying speed of the state variables, to establish comprehensive evaluations of processes. Finally, cases from the Tennessee Eastman (TE) process are provided to validate the effectiveness of the proposed method confronted with different degrees of data irregularity and missing values.
Author Chen, Xu
Zheng, Jiale
Zhao, Chunhui
Author_xml – sequence: 1
  givenname: Jiale
  surname: Zheng
  fullname: Zheng, Jiale
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Xu
  orcidid: 0000-0002-4951-8332
  surname: Chen
  fullname: Chen, Xu
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Chunhui
  orcidid: 0000-0002-0254-5763
  surname: Zhao
  fullname: Zhao, Chunhui
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
BookMark eNp9kU1PwkAQhjcGExH5ASYeNvFc3I-2dI4EREkgmoDx2EzbLS4pXdxdJPx720CM8eBpZjLvM5l555p0alMrQm45G3DO4GG1XIwHggk5kCIJJQwvSFfwOAmEkKLzk_P4ivSd2zDGuEhiyeIu2c5qr-wXVsHogFbRV2syzHSlndc5XVbmQKcK_b5pjWqsjk47WhpLZ9aq9b5CSyfHGreNtiFz5RxdmFp7Y3W9pu_af9CFdq4tJujxhlyWWDnVP8ceeZs-rsbPwfzlaTYezYNcQOgDGUOYRbyEGPJIqCLnkGUKWcikKMtMguCszCARUBQl5oUUMgLIEABjMRRS9sj9ae7Oms-9cj7dmL1t9ndpc3jEIEwYNKrhSZVb45xVZZprj16b2lvUVcpZ2tqbtvamrb3p2d6G5H_IndVbtMd_mbsTo5VSv_TNbziA_Aantoio
CODEN ITSMFE
CitedBy_id crossref_primary_10_1016_j_jprocont_2023_103107
crossref_primary_10_1109_TICPS_2024_3501275
crossref_primary_10_1016_j_measurement_2024_115773
crossref_primary_10_1016_j_conengprac_2025_106254
crossref_primary_10_1016_j_knosys_2024_111404
crossref_primary_10_1109_TSMC_2024_3486442
crossref_primary_10_1021_acs_iecr_4c00540
crossref_primary_10_1016_j_ifacol_2024_07_236
crossref_primary_10_1016_j_aei_2024_102470
crossref_primary_10_1016_j_jprocont_2023_103130
crossref_primary_10_1109_JAS_2024_124902
crossref_primary_10_1016_j_jprocont_2025_103389
crossref_primary_10_1109_TSMC_2024_3495020
crossref_primary_10_1109_TSMC_2024_3462755
Cites_doi 10.1109/TII.2019.2896987
10.1016/j.engappai.2019.04.013
10.1002/aic.10568
10.1002/aic.14937
10.1609/aaai.v34i01.5440
10.1016/S0169-7439(03)00063-7
10.1016/j.jprocont.2015.02.006
10.1002/cjce.5450850414
10.1109/TIE.2018.2853603
10.1016/0169-7439(95)00076-3
10.1109/TASE.2019.2915286
10.1016/j.jprocont.2020.09.005
10.1016/s0959-1524(01)00050-6
10.1016/0098-1354(93)80018-I
10.1002/aic.14523
10.1016/j.chemolab.2015.12.017
10.1109/89.242489
10.1002/cem.3035
10.1016/j.jprocont.2022.06.011
10.1109/tnnls.2022.3201621
10.1016/j.arcontrol.2012.09.004
10.1002/aic.14888
10.1016/j.chemolab.2015.09.010
10.1016/j.csda.2020.107124
10.1016/j.compchemeng.2005.02.007
10.1016/0165-1684(96)00049-7
10.1109/TSMC.2021.3130232
10.1016/j.ces.2004.04.031
10.1016/j.jprocont.2004.02.002
10.1109/TSMC.2020.3004659
10.1016/0169-7439(95)80036-9
10.1016/S0169-7439(00)00058-7
10.1109/tase.2022.3218009
10.1016/j.ins.2020.06.062
10.1002/aic.10978
10.1016/j.compchemeng.2021.107587
10.1016/j.conengprac.2015.04.012
10.1109/TSMC.2022.3167838
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2023.3284397
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 12
ExternalDocumentID 10_1109_TSMC_2023_3284397
10168199
Genre orig-research
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2022A1515240003
– fundername: National Natural Science Foundation of China
  grantid: 62125306; 62133003
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-3694b51f969c52edc19bbea04032ffb39210fb9829ddfacd323599ba99a627233
IEDL.DBID RIE
ISSN 2168-2216
IngestDate Mon Jun 30 06:11:24 EDT 2025
Wed Oct 01 03:10:31 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Aug 27 02:56:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-3694b51f969c52edc19bbea04032ffb39210fb9829ddfacd323599ba99a627233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0254-5763
0000-0002-4951-8332
PQID 2865094809
PQPubID 75739
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TSMC_2023_3284397
crossref_primary_10_1109_TSMC_2023_3284397
ieee_primary_10168199
proquest_journals_2865094809
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Tan (ref32)
ref28
ref27
ref29
ref8
ref7
ref9
ref4
Klindt (ref39)
ref3
ref6
ref5
ref40
References_xml – ident: ref24
  doi: 10.1109/TII.2019.2896987
– ident: ref38
  doi: 10.1016/j.engappai.2019.04.013
– ident: ref5
  doi: 10.1002/aic.10568
– ident: ref31
  doi: 10.1002/aic.14937
– ident: ref26
  doi: 10.1609/aaai.v34i01.5440
– ident: ref34
  doi: 10.1016/S0169-7439(03)00063-7
– start-page: 998
  volume-title: Proc. AMIA Annu. Symp.
  ident: ref32
  article-title: A hybrid residual network and long short-term memory method for peptic ulcer bleeding mortality prediction
– ident: ref19
  doi: 10.1016/j.jprocont.2015.02.006
– ident: ref9
  doi: 10.1002/cjce.5450850414
– ident: ref25
  doi: 10.1109/TIE.2018.2853603
– ident: ref13
  doi: 10.1016/0169-7439(95)00076-3
– ident: ref27
  doi: 10.1109/TASE.2019.2915286
– ident: ref12
  doi: 10.1016/j.jprocont.2020.09.005
– ident: ref2
  doi: 10.1016/s0959-1524(01)00050-6
– ident: ref33
  doi: 10.1016/0098-1354(93)80018-I
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref39
  article-title: Towards nonlinear disentanglement in natural data with temporal sparse coding
– ident: ref1
  doi: 10.1002/aic.14523
– ident: ref30
  doi: 10.1016/j.chemolab.2015.12.017
– ident: ref29
  doi: 10.1109/89.242489
– ident: ref11
  doi: 10.1002/cem.3035
– ident: ref35
  doi: 10.1016/j.jprocont.2022.06.011
– ident: ref40
  doi: 10.1109/tnnls.2022.3201621
– ident: ref3
  doi: 10.1016/j.arcontrol.2012.09.004
– ident: ref23
  doi: 10.1002/aic.14888
– ident: ref18
  doi: 10.1016/j.chemolab.2015.09.010
– ident: ref28
  doi: 10.1016/j.csda.2020.107124
– ident: ref7
  doi: 10.1016/j.compchemeng.2005.02.007
– ident: ref21
  doi: 10.1016/0165-1684(96)00049-7
– ident: ref10
  doi: 10.1109/TSMC.2021.3130232
– ident: ref17
  doi: 10.1016/j.ces.2004.04.031
– ident: ref16
  doi: 10.1016/j.jprocont.2004.02.002
– ident: ref4
  doi: 10.1109/TSMC.2020.3004659
– ident: ref6
  doi: 10.1016/0169-7439(95)80036-9
– ident: ref22
  doi: 10.1016/S0169-7439(00)00058-7
– ident: ref36
  doi: 10.1109/tase.2022.3218009
– ident: ref37
  doi: 10.1016/j.ins.2020.06.062
– ident: ref8
  doi: 10.1002/aic.10978
– ident: ref15
  doi: 10.1016/j.compchemeng.2021.107587
– ident: ref20
  doi: 10.1016/j.conengprac.2015.04.012
– ident: ref14
  doi: 10.1109/TSMC.2022.3167838
SSID ssj0001286306
Score 2.4006736
Snippet Due to unexpected data transition or equipment failures, irregular data with missing values, which have both irregular sampling intervals and missing values,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Correlation
Data models
Dynamic process monitoring
Feature extraction
interval-aware probabilistic slow feature analysis (IA-PSFA)
Intervals
Irregular sampling
irregular sampling intervals
Kalman filters
Missing data
missing values
Monitoring
Probabilistic logic
Probability theory
Process monitoring
State variable
State-space methods
Variables
varying speed
Title Interval-Aware Probabilistic Slow Feature Analysis for Irregular Dynamic Process Monitoring With Missing Data
URI https://ieeexplore.ieee.org/document/10168199
https://www.proquest.com/docview/2865094809
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2232
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286306
  issn: 2168-2216
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS9xAFB9cT_agrVXcqmUOngrJJjPJbN5RtMtWWBFU6i3MV7Bod0uaRfCv971JUkKlxUtIyMww8Jt53x-MnchcZYXQHiU3m0QZqTugchu5XLhKF-lUG_LoLi7V_Da7uMvvumT1kAvjvQ_BZz6m1-DLdyu7JlPZhDRN5GAwYqNpodpkrYFBpVAy9NIUOCoS-Oy8mGkCk5vrxVlMrcJjiQRZUo2nAR8KjVVeUePAYmY77LLfXBtZ8hCvGxPb57_qNr559-_Zdids8tP2dHxgG365y94NShB-ZD-DSRCPW3T6pGvPr2q84BQwS_Wb-fXj6omTlLjGX339Eo5yLv9W16GLfc3P2572vEs54C2VoNX59x_NPV8gtPRxrhu9x25nX2_O5lHXgiGyArImkgoyk6cVKLC58M6mYIzXePOlqCqDwlWaVAYKAQ6htU4KmQMYDaCVmAop99nmcrX0B4zbInHILaU1xpLdCQmrsV6BSp0pXCXHLOkBKW1Xn5zaZDyWQU9JoCQMS8Kw7DAcsy9_pvxqi3P8b_AeYTIY2MIxZkc97GV3f3-XlK-Lim-RwKd_TDtkW7R6G9d3xDabeu2PUT5pzOdwLl8AI1zhaw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9RAFH9oPagHPyuuVp2DJyFpMpOZ5h1La9lqdxG6xd7CfAXFuisxS8G_3vcmWVkUxUtIyEwy8Jt53x8Ar5U2VS1tJMnNF1nF6g4a7bOgZWhtXR5Yxx7d2dxML6p3l_pyTFZPuTAxxhR8FnO-Tb78sPJrNpXts6ZJHAxvwi1dVZUe0rW2TCq1UambpqRxmaTr6McsC9xfnM-Ocm4WnisiyYqrPG1xotRa5Q96nJjMyX2Yb5Y3xJZ8yde9y_2P3yo3_vf6H8C9UdwUh8P-eAg34vIR3N0qQvgYviajIG247PDadlF86OiIc8gsV3AW51era8Fy4ppebSqYCJJ0xWnXpT72nTgeutqLMelADHSCvy4-fu4_iRmByw_Htre7cHHydnE0zcYmDJmXWPWZMlg5XbZo0GsZgy_RuWjp7CvZto7Eq7JoHdYSA4Hrg5JKIzqLaI08kEo9gZ3lahmfgvB1EYhfKu-cZ8sTkVbno0FTBleHVk2g2ADS-LFCOTfKuGqSplJgwxg2jGEzYjiBN7-mfBvKc_xr8C5jsjVwgGMCexvYm_EEf284Y5dU37rAZ3-Z9gpuTxezs-bsdP7-OdzhPw1Rfnuw03fr-IKkld69THv0Jxdt5Lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interval-Aware+Probabilistic+Slow+Feature+Analysis+for+Irregular+Dynamic+Process+Monitoring+With+Missing+Data&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Zheng%2C+Jiale&rft.au=Chen%2C+Xu&rft.au=Zhao%2C+Chunhui&rft.date=2023-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=53&rft.issue=10&rft.spage=6553&rft_id=info:doi/10.1109%2FTSMC.2023.3284397&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon