Interval-Aware Probabilistic Slow Feature Analysis for Irregular Dynamic Process Monitoring With Missing Data
Due to unexpected data transition or equipment failures, irregular data with missing values, which have both irregular sampling intervals and missing values, become very common in industrial processes and bring significant challenges for existing dynamic monitoring methods to explore temporal correl...
Saved in:
| Published in | IEEE transactions on systems, man, and cybernetics. Systems Vol. 53; no. 10; pp. 1 - 12 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2216 2168-2232 |
| DOI | 10.1109/TSMC.2023.3284397 |
Cover
| Abstract | Due to unexpected data transition or equipment failures, irregular data with missing values, which have both irregular sampling intervals and missing values, become very common in industrial processes and bring significant challenges for existing dynamic monitoring methods to explore temporal correlations. Therefore, this article develops an interval-aware probabilistic slow feature analysis (IA-PSFA) method along with the corresponding monitoring strategy to address the above problems for industrial processes. The IA-PSFA method incorporates functions of sampling intervals to adjust the influences of previous samples on the current one when inferring state variables. Specifically, different functions are designed such that the changing temporal correlations between adjacent samples caused by irregular sampling intervals can be tracked effectively. Parameters of the IA-PSFA model are estimated through the expectation-maximization (EM) algorithm with an interval-aware Kalman filter, which addresses the missing variable issue along with irregular sampling intervals. After that, three statistics are constructed based on the state variables, transition and emission errors, and the varying speed of the state variables, to establish comprehensive evaluations of processes. Finally, cases from the Tennessee Eastman (TE) process are provided to validate the effectiveness of the proposed method confronted with different degrees of data irregularity and missing values. |
|---|---|
| AbstractList | Due to unexpected data transition or equipment failures, irregular data with missing values, which have both irregular sampling intervals and missing values, become very common in industrial processes and bring significant challenges for existing dynamic monitoring methods to explore temporal correlations. Therefore, this article develops an interval-aware probabilistic slow feature analysis (IA-PSFA) method along with the corresponding monitoring strategy to address the above problems for industrial processes. The IA-PSFA method incorporates functions of sampling intervals to adjust the influences of previous samples on the current one when inferring state variables. Specifically, different functions are designed such that the changing temporal correlations between adjacent samples caused by irregular sampling intervals can be tracked effectively. Parameters of the IA-PSFA model are estimated through the expectation-maximization (EM) algorithm with an interval-aware Kalman filter, which addresses the missing variable issue along with irregular sampling intervals. After that, three statistics are constructed based on the state variables, transition and emission errors, and the varying speed of the state variables, to establish comprehensive evaluations of processes. Finally, cases from the Tennessee Eastman (TE) process are provided to validate the effectiveness of the proposed method confronted with different degrees of data irregularity and missing values. |
| Author | Chen, Xu Zheng, Jiale Zhao, Chunhui |
| Author_xml | – sequence: 1 givenname: Jiale surname: Zheng fullname: Zheng, Jiale organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Xu orcidid: 0000-0002-4951-8332 surname: Chen fullname: Chen, Xu organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Chunhui orcidid: 0000-0002-0254-5763 surname: Zhao fullname: Zhao, Chunhui organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China |
| BookMark | eNp9kU1PwkAQhjcGExH5ASYeNvFc3I-2dI4EREkgmoDx2EzbLS4pXdxdJPx720CM8eBpZjLvM5l555p0alMrQm45G3DO4GG1XIwHggk5kCIJJQwvSFfwOAmEkKLzk_P4ivSd2zDGuEhiyeIu2c5qr-wXVsHogFbRV2syzHSlndc5XVbmQKcK_b5pjWqsjk47WhpLZ9aq9b5CSyfHGreNtiFz5RxdmFp7Y3W9pu_af9CFdq4tJujxhlyWWDnVP8ceeZs-rsbPwfzlaTYezYNcQOgDGUOYRbyEGPJIqCLnkGUKWcikKMtMguCszCARUBQl5oUUMgLIEABjMRRS9sj9ae7Oms-9cj7dmL1t9ndpc3jEIEwYNKrhSZVb45xVZZprj16b2lvUVcpZ2tqbtvamrb3p2d6G5H_IndVbtMd_mbsTo5VSv_TNbziA_Aantoio |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_1016_j_jprocont_2023_103107 crossref_primary_10_1109_TICPS_2024_3501275 crossref_primary_10_1016_j_measurement_2024_115773 crossref_primary_10_1016_j_conengprac_2025_106254 crossref_primary_10_1016_j_knosys_2024_111404 crossref_primary_10_1109_TSMC_2024_3486442 crossref_primary_10_1021_acs_iecr_4c00540 crossref_primary_10_1016_j_ifacol_2024_07_236 crossref_primary_10_1016_j_aei_2024_102470 crossref_primary_10_1016_j_jprocont_2023_103130 crossref_primary_10_1109_JAS_2024_124902 crossref_primary_10_1016_j_jprocont_2025_103389 crossref_primary_10_1109_TSMC_2024_3495020 crossref_primary_10_1109_TSMC_2024_3462755 |
| Cites_doi | 10.1109/TII.2019.2896987 10.1016/j.engappai.2019.04.013 10.1002/aic.10568 10.1002/aic.14937 10.1609/aaai.v34i01.5440 10.1016/S0169-7439(03)00063-7 10.1016/j.jprocont.2015.02.006 10.1002/cjce.5450850414 10.1109/TIE.2018.2853603 10.1016/0169-7439(95)00076-3 10.1109/TASE.2019.2915286 10.1016/j.jprocont.2020.09.005 10.1016/s0959-1524(01)00050-6 10.1016/0098-1354(93)80018-I 10.1002/aic.14523 10.1016/j.chemolab.2015.12.017 10.1109/89.242489 10.1002/cem.3035 10.1016/j.jprocont.2022.06.011 10.1109/tnnls.2022.3201621 10.1016/j.arcontrol.2012.09.004 10.1002/aic.14888 10.1016/j.chemolab.2015.09.010 10.1016/j.csda.2020.107124 10.1016/j.compchemeng.2005.02.007 10.1016/0165-1684(96)00049-7 10.1109/TSMC.2021.3130232 10.1016/j.ces.2004.04.031 10.1016/j.jprocont.2004.02.002 10.1109/TSMC.2020.3004659 10.1016/0169-7439(95)80036-9 10.1016/S0169-7439(00)00058-7 10.1109/tase.2022.3218009 10.1016/j.ins.2020.06.062 10.1002/aic.10978 10.1016/j.compchemeng.2021.107587 10.1016/j.conengprac.2015.04.012 10.1109/TSMC.2022.3167838 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMC.2023.3284397 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2232 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TSMC_2023_3284397 10168199 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2022A1515240003 – fundername: National Natural Science Foundation of China grantid: 62125306; 62133003 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX AGSQL CITATION EJD 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-3694b51f969c52edc19bbea04032ffb39210fb9829ddfacd323599ba99a627233 |
| IEDL.DBID | RIE |
| ISSN | 2168-2216 |
| IngestDate | Mon Jun 30 06:11:24 EDT 2025 Wed Oct 01 03:10:31 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Aug 27 02:56:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-3694b51f969c52edc19bbea04032ffb39210fb9829ddfacd323599ba99a627233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0254-5763 0000-0002-4951-8332 |
| PQID | 2865094809 |
| PQPubID | 75739 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSMC_2023_3284397 crossref_primary_10_1109_TSMC_2023_3284397 ieee_primary_10168199 proquest_journals_2865094809 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Tan (ref32) ref28 ref27 ref29 ref8 ref7 ref9 ref4 Klindt (ref39) ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref24 doi: 10.1109/TII.2019.2896987 – ident: ref38 doi: 10.1016/j.engappai.2019.04.013 – ident: ref5 doi: 10.1002/aic.10568 – ident: ref31 doi: 10.1002/aic.14937 – ident: ref26 doi: 10.1609/aaai.v34i01.5440 – ident: ref34 doi: 10.1016/S0169-7439(03)00063-7 – start-page: 998 volume-title: Proc. AMIA Annu. Symp. ident: ref32 article-title: A hybrid residual network and long short-term memory method for peptic ulcer bleeding mortality prediction – ident: ref19 doi: 10.1016/j.jprocont.2015.02.006 – ident: ref9 doi: 10.1002/cjce.5450850414 – ident: ref25 doi: 10.1109/TIE.2018.2853603 – ident: ref13 doi: 10.1016/0169-7439(95)00076-3 – ident: ref27 doi: 10.1109/TASE.2019.2915286 – ident: ref12 doi: 10.1016/j.jprocont.2020.09.005 – ident: ref2 doi: 10.1016/s0959-1524(01)00050-6 – ident: ref33 doi: 10.1016/0098-1354(93)80018-I – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref39 article-title: Towards nonlinear disentanglement in natural data with temporal sparse coding – ident: ref1 doi: 10.1002/aic.14523 – ident: ref30 doi: 10.1016/j.chemolab.2015.12.017 – ident: ref29 doi: 10.1109/89.242489 – ident: ref11 doi: 10.1002/cem.3035 – ident: ref35 doi: 10.1016/j.jprocont.2022.06.011 – ident: ref40 doi: 10.1109/tnnls.2022.3201621 – ident: ref3 doi: 10.1016/j.arcontrol.2012.09.004 – ident: ref23 doi: 10.1002/aic.14888 – ident: ref18 doi: 10.1016/j.chemolab.2015.09.010 – ident: ref28 doi: 10.1016/j.csda.2020.107124 – ident: ref7 doi: 10.1016/j.compchemeng.2005.02.007 – ident: ref21 doi: 10.1016/0165-1684(96)00049-7 – ident: ref10 doi: 10.1109/TSMC.2021.3130232 – ident: ref17 doi: 10.1016/j.ces.2004.04.031 – ident: ref16 doi: 10.1016/j.jprocont.2004.02.002 – ident: ref4 doi: 10.1109/TSMC.2020.3004659 – ident: ref6 doi: 10.1016/0169-7439(95)80036-9 – ident: ref22 doi: 10.1016/S0169-7439(00)00058-7 – ident: ref36 doi: 10.1109/tase.2022.3218009 – ident: ref37 doi: 10.1016/j.ins.2020.06.062 – ident: ref8 doi: 10.1002/aic.10978 – ident: ref15 doi: 10.1016/j.compchemeng.2021.107587 – ident: ref20 doi: 10.1016/j.conengprac.2015.04.012 – ident: ref14 doi: 10.1109/TSMC.2022.3167838 |
| SSID | ssj0001286306 |
| Score | 2.4006736 |
| Snippet | Due to unexpected data transition or equipment failures, irregular data with missing values, which have both irregular sampling intervals and missing values,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Correlation Data models Dynamic process monitoring Feature extraction interval-aware probabilistic slow feature analysis (IA-PSFA) Intervals Irregular sampling irregular sampling intervals Kalman filters Missing data missing values Monitoring Probabilistic logic Probability theory Process monitoring State variable State-space methods Variables varying speed |
| Title | Interval-Aware Probabilistic Slow Feature Analysis for Irregular Dynamic Process Monitoring With Missing Data |
| URI | https://ieeexplore.ieee.org/document/10168199 https://www.proquest.com/docview/2865094809 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS9xAFB9cT_agrVXcqmUOngrJJjPJbN5RtMtWWBFU6i3MV7Bod0uaRfCv971JUkKlxUtIyMww8Jt53x-MnchcZYXQHiU3m0QZqTugchu5XLhKF-lUG_LoLi7V_Da7uMvvumT1kAvjvQ_BZz6m1-DLdyu7JlPZhDRN5GAwYqNpodpkrYFBpVAy9NIUOCoS-Oy8mGkCk5vrxVlMrcJjiQRZUo2nAR8KjVVeUePAYmY77LLfXBtZ8hCvGxPb57_qNr559-_Zdids8tP2dHxgG365y94NShB-ZD-DSRCPW3T6pGvPr2q84BQwS_Wb-fXj6omTlLjGX339Eo5yLv9W16GLfc3P2572vEs54C2VoNX59x_NPV8gtPRxrhu9x25nX2_O5lHXgiGyArImkgoyk6cVKLC58M6mYIzXePOlqCqDwlWaVAYKAQ6htU4KmQMYDaCVmAop99nmcrX0B4zbInHILaU1xpLdCQmrsV6BSp0pXCXHLOkBKW1Xn5zaZDyWQU9JoCQMS8Kw7DAcsy9_pvxqi3P8b_AeYTIY2MIxZkc97GV3f3-XlK-Lim-RwKd_TDtkW7R6G9d3xDabeu2PUT5pzOdwLl8AI1zhaw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9RAFH9oPagHPyuuVp2DJyFpMpOZ5h1La9lqdxG6xd7CfAXFuisxS8G_3vcmWVkUxUtIyEwy8Jt53x8Ar5U2VS1tJMnNF1nF6g4a7bOgZWhtXR5Yxx7d2dxML6p3l_pyTFZPuTAxxhR8FnO-Tb78sPJrNpXts6ZJHAxvwi1dVZUe0rW2TCq1UambpqRxmaTr6McsC9xfnM-Ocm4WnisiyYqrPG1xotRa5Q96nJjMyX2Yb5Y3xJZ8yde9y_2P3yo3_vf6H8C9UdwUh8P-eAg34vIR3N0qQvgYviajIG247PDadlF86OiIc8gsV3AW51era8Fy4ppebSqYCJJ0xWnXpT72nTgeutqLMelADHSCvy4-fu4_iRmByw_Htre7cHHydnE0zcYmDJmXWPWZMlg5XbZo0GsZgy_RuWjp7CvZto7Eq7JoHdYSA4Hrg5JKIzqLaI08kEo9gZ3lahmfgvB1EYhfKu-cZ8sTkVbno0FTBleHVk2g2ADS-LFCOTfKuGqSplJgwxg2jGEzYjiBN7-mfBvKc_xr8C5jsjVwgGMCexvYm_EEf284Y5dU37rAZ3-Z9gpuTxezs-bsdP7-OdzhPw1Rfnuw03fr-IKkld69THv0Jxdt5Lg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interval-Aware+Probabilistic+Slow+Feature+Analysis+for+Irregular+Dynamic+Process+Monitoring+With+Missing+Data&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Zheng%2C+Jiale&rft.au=Chen%2C+Xu&rft.au=Zhao%2C+Chunhui&rft.date=2023-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=53&rft.issue=10&rft.spage=6553&rft_id=info:doi/10.1109%2FTSMC.2023.3284397&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |