Task Assignment Scheme Designed for Online Urban Sensing Based on Sparse Mobile Crowdsensing
Sparse mobile crowdsensing (SMCS) achieves urban-scale environmental sensing by assigning tasks to workers in specific subareas and inferring global data from the collected information. However, the effectiveness of SMCS is often limited because many studies overlook workers' mobility and data...
Saved in:
| Published in | IEEE internet of things journal Vol. 12; no. 11; pp. 17791 - 17806 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2327-4662 2327-4662 |
| DOI | 10.1109/JIOT.2025.3540501 |
Cover
| Abstract | Sparse mobile crowdsensing (SMCS) achieves urban-scale environmental sensing by assigning tasks to workers in specific subareas and inferring global data from the collected information. However, the effectiveness of SMCS is often limited because many studies overlook workers' mobility and data collection time during subarea selection, as well as the time constraints of the sensing cycle in task assignment. This may affect the task completion timeliness and data quality. To address these issues, we develop a subarea evaluation method based on deep reinforcement learning, considering both the temporal effectiveness of sensing tasks and the importance of subarea selection for data inference. Using the subarea evaluation values derived from this method, we establish an online urban sensing task assignment model which is subject to constraints of sensing cycle time and cost budget. This model aims to find the task assignment result that minimizes data inference error by maximizing the comprehensive utility value. Considering the characteristics of the task assignment model, we propose an evolutionary algorithm named OTA-EA, which is based on an improved genetic algorithm. Its enhanced evolutionary operators can avoid generating infeasible solutions while maintaining robust search and optimization performance. Lastly, we conduct experimental evaluations of these methods on the real-world datasets. The results demonstrate that our subarea evaluation method can significantly reduce the data inference error, and our evolutionary task assignment algorithm can achieve better task assignment results than the baseline algorithms. |
|---|---|
| AbstractList | Sparse mobile crowdsensing (SMCS) achieves urban-scale environmental sensing by assigning tasks to workers in specific subareas and inferring global data from the collected information. However, the effectiveness of SMCS is often limited because many studies overlook workers' mobility and data collection time during subarea selection, as well as the time constraints of the sensing cycle in task assignment. This may affect the task completion timeliness and data quality. To address these issues, we develop a subarea evaluation method based on deep reinforcement learning, considering both the temporal effectiveness of sensing tasks and the importance of subarea selection for data inference. Using the subarea evaluation values derived from this method, we establish an online urban sensing task assignment model which is subject to constraints of sensing cycle time and cost budget. This model aims to find the task assignment result that minimizes data inference error by maximizing the comprehensive utility value. Considering the characteristics of the task assignment model, we propose an evolutionary algorithm named OTA-EA, which is based on an improved genetic algorithm. Its enhanced evolutionary operators can avoid generating infeasible solutions while maintaining robust search and optimization performance. Lastly, we conduct experimental evaluations of these methods on the real-world datasets. The results demonstrate that our subarea evaluation method can significantly reduce the data inference error, and our evolutionary task assignment algorithm can achieve better task assignment results than the baseline algorithms. |
| Author | She, Jinhua Xiong, Yonghua Yu, Anjun Zeng, Hongjian |
| Author_xml | – sequence: 1 givenname: Hongjian orcidid: 0000-0002-4319-2511 surname: Zeng fullname: Zeng, Hongjian email: zenghongjian@cug.edu.cn organization: School of Automation, China University of Geosciences, Wuhan, China – sequence: 2 givenname: Yonghua orcidid: 0000-0002-8672-0193 surname: Xiong fullname: Xiong, Yonghua email: xiongyh@cug.edu.cn organization: School of Automation, China University of Geosciences, Wuhan, China – sequence: 3 givenname: Jinhua orcidid: 0000-0003-3165-5045 surname: She fullname: She, Jinhua email: she@stf.teu.ac.jp organization: School of Engineering, Tokyo University of Technology, Hachioji, Tokyo, Japan – sequence: 4 givenname: Anjun surname: Yu fullname: Yu, Anjun email: yaj@600269.cn organization: Operation Management Department, Jiangxi Ganyue Expressway Company Ltd., Nanchang, Jiangxi, China |
| BookMark | eNp9kE1LAzEQhoNUsFZ_gOAh4Ll1kuxmd4-1flPpwXoTlmx2UlPbpCZbxH_vLu2hePA0w8zzzMB7SnrOOyTkgsGIMSiun59m8xEHno5EmkAK7Ij0ueDZMJGS9w76E3Ie4xIAWi1lheyT97mKn3Qco124NbqGvuoPXCO9xW6CNTU-0JlbWYf0LVTK0Vd00boFvVGxXft2sFEhIn3xlV0hnQT_Xccdc0aOjVpFPN_XAXm7v5tPHofT2cPTZDwdal4kzVBAVehEc6HAYC0rjkleaWSqVkZnkMragIDUaJnnWWWA51ikheTcMK2ymokBudrd3QT_tcXYlEu_Da59WQoOUkCW57Klsh2lg48xoCm1bVRjvWuCsquSQdmlWXZpll2a5T7N1mR_zE2waxV-_nUud45FxAM-zwrBE_ELrM2CGQ |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_3390_electronics14051038 |
| Cites_doi | 10.1109/JIOT.2024.3356554 10.1109/JIOT.2019.2909296 10.1109/TVT.2023.3262800 10.1109/JIOT.2021.3068415 10.1109/TMC.2019.2962457 10.1109/JIOT.2019.2939552 10.1016/j.jnca.2023.103734 10.1007/978-3-319-59513-9_11 10.1016/j.comnet.2019.06.010 10.1109/THMS.2016.2599489 10.1145/3131671 10.1016/j.ins.2022.06.068 10.1145/3331450 10.1109/JIOT.2020.3024833 10.1016/j.swevo.2021.100872 10.1080/13658816.2019.1667501 10.1145/1689239.1689247 10.1109/JIOT.2022.3150804 10.1109/TCYB.2021.3112675 10.1109/JIOT.2023.3318817 10.1109/TMC.2022.3145979 10.1109/JIOT.2019.2957399 10.1145/2998181.2998193 10.1145/3494522 10.1109/JIOT.2024.3414496 10.1145/2750858.2807513 10.1016/j.ins.2023.120018 10.1109/TIM.2020.3034987 10.1016/j.ins.2023.119361 10.1109/TNSE.2022.3226422 10.1109/TMC.2012.205 10.1145/2783258.2788573 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2025.3540501 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 17806 |
| ExternalDocumentID | 10_1109_JIOT_2025_3540501 10879324 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873249 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-30b9c4c23a0fed6b2e48bce1adafc7056df0305fc6887bf028e959622f1ca7d13 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Sun Oct 26 20:43:41 EDT 2025 Thu Apr 24 22:52:02 EDT 2025 Wed Oct 01 06:04:49 EDT 2025 Wed Aug 27 01:53:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-30b9c4c23a0fed6b2e48bce1adafc7056df0305fc6887bf028e959622f1ca7d13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8672-0193 0000-0002-4319-2511 0000-0003-3165-5045 |
| PQID | 3206307886 |
| PQPubID | 2040421 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_JIOT_2025_3540501 crossref_primary_10_1109_JIOT_2025_3540501 proquest_journals_3206307886 ieee_primary_10879324 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 Zheng (ref31) 2010; 33 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref6 doi: 10.1109/JIOT.2024.3356554 – ident: ref32 doi: 10.1109/JIOT.2019.2909296 – ident: ref13 doi: 10.1109/TVT.2023.3262800 – ident: ref27 doi: 10.1109/JIOT.2021.3068415 – ident: ref20 doi: 10.1109/TMC.2019.2962457 – ident: ref25 doi: 10.1109/JIOT.2019.2939552 – ident: ref16 doi: 10.1016/j.jnca.2023.103734 – ident: ref29 doi: 10.1007/978-3-319-59513-9_11 – ident: ref9 doi: 10.1016/j.comnet.2019.06.010 – ident: ref33 doi: 10.1109/THMS.2016.2599489 – ident: ref7 doi: 10.1145/3131671 – ident: ref14 doi: 10.1016/j.ins.2022.06.068 – ident: ref26 doi: 10.1145/3331450 – volume: 33 start-page: 32 issue: 2 year: 2010 ident: ref31 article-title: GeoLife: A collaborative social networking service among user, location and trajectory publication-title: IEEE Data Eng. Bull. – ident: ref8 doi: 10.1109/JIOT.2020.3024833 – ident: ref19 doi: 10.1016/j.swevo.2021.100872 – ident: ref22 doi: 10.1080/13658816.2019.1667501 – ident: ref30 doi: 10.1145/1689239.1689247 – ident: ref11 doi: 10.1109/JIOT.2022.3150804 – ident: ref15 doi: 10.1109/TCYB.2021.3112675 – ident: ref24 doi: 10.1109/JIOT.2023.3318817 – ident: ref3 doi: 10.1109/TMC.2022.3145979 – ident: ref10 doi: 10.1109/JIOT.2019.2957399 – ident: ref18 doi: 10.1145/2998181.2998193 – ident: ref1 doi: 10.1145/3494522 – ident: ref4 doi: 10.1109/JIOT.2024.3414496 – ident: ref23 doi: 10.1145/2750858.2807513 – ident: ref12 doi: 10.1016/j.ins.2023.120018 – ident: ref2 doi: 10.1109/TIM.2020.3034987 – ident: ref5 doi: 10.1016/j.ins.2023.119361 – ident: ref17 doi: 10.1109/TNSE.2022.3226422 – ident: ref21 doi: 10.1109/TMC.2012.205 – ident: ref28 doi: 10.1145/2783258.2788573 |
| SSID | ssj0001105196 |
| Score | 2.363491 |
| Snippet | Sparse mobile crowdsensing (SMCS) achieves urban-scale environmental sensing by assigning tasks to workers in specific subareas and inferring global data from... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17791 |
| SubjectTerms | Algorithm optimization Automation Constraints Costs Crowdsensing Cycle time Data collection Data integrity Effectiveness Evolutionary algorithms Evolutionary computation Genetic algorithms Inference Inference algorithms Internet of Things Mobile computing Optimization Sensors sparse mobile crowdsensing (SMCS) subarea evaluation task assignment Time factors |
| Title | Task Assignment Scheme Designed for Online Urban Sensing Based on Sparse Mobile Crowdsensing |
| URI | https://ieeexplore.ieee.org/document/10879324 https://www.proquest.com/docview/3206307886 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxbKo4jykgcmpITEeTkjFKqCRBlopQ5Ike1cCgISRNuFX8_ZcQCBQGyRfY4sfb7zd_b5jpAjHiBN5hIcFQXCCVHdHOGHzIFAqUJgn6e0o3g9ioeT8GoaTe1jdfMWBgBM8Bm4-tPc5eeVWuqjMtRwjsuJhS3SSnhcP9b6PFDxNRuJ7c2l76UnV5c3Y_QAWeTqw43I1n1p9h5TTOWHBTbbyqBDRs2E6miSR3e5kK56-5ar8d8zXidrlmDS03pFbJAVKDdJpyneQK0ub5G7sZg_UkTnYWYCArDnHp6BnpuQDsgpsllaJyKlk1cpSnqrY93LGT3DjS-nFTa8oFcM9LqSaFpoHx36fF7LdMlkcDHuDx1basFRLA0XTuDJVIWKBcIrII8lg5BLBb7IRaESJEl5oS1DoWI0SrJAUgKprtvDCl-JJPeDbdIuqxJ2COWJSmNfCJnyCH1vKUXoK4i9QgAXHkt7xGtAyJTNQ67LYTxlxh_x0kzjlmncMotbjxx_DHmpk3D8JdzVOHwRrCHokf0G6szq6TwLmM45lnAe7_4ybI-s6r_X0WH7pL14XcIB8pCFPDTr7x1fudpn |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeoALUB5iedWHniplSRwn6xxbHlq2u9tDdyUOSJHtTAAB2dU-Lvx6xo5DqyKq3iJ7rFj6PONv7PEMwBcZE02WGgOTxCoQpG6BigQPMDamVNQXGusoDoZpdyx618m1f6zu3sIgogs-w7b9dHf5xcQs7VEZabik5cTFCnxMhBBJ_Vzr95FKZPlI6u8uozA77V39HJEPyJO2Pd5IfOWXZvdx5VTe2GC3sVxuwrCZUh1P8tBeLnTbPP-VrfG_57wFG55ism_1mvgEH7Dahs2mfAPz2rwDNyM1f2CEz_2tCwmgnjt8QnbugjqwYMRnWZ2KlI1nWlXsl412r27Zd9r6Cjahhin5xcgGE03GhZ2RS1_Ma5ldGF9ejM66gS-2EBieiUUQhzozwvBYhSUWqeYopDYYqUKVpkM0qSitbShNSmZJl0RLMLOVe3gZGdUpongPVqtJhfvAZMdkaaSUzmRC3rfWSkQG07BUKFXIsxaEDQi58ZnIbUGMx9x5JGGWW9xyi1vucWvB19ch0zoNx7-Edy0OfwjWELTgqIE695o6z2Nus451pEwP3hn2Gda6o0E_718NfxzCuv1THSt2BKuL2RKPiZUs9Ilbiy_2Nd20 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+Assignment+Scheme+Designed+for+Online+Urban+Sensing+Based+on+Sparse+Mobile+Crowdsensing&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zeng%2C+Hongjian&rft.au=Xiong%2C+Yonghua&rft.au=She%2C+Jinhua&rft.au=Yu%2C+Anjun&rft.date=2025-06-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=12&rft.issue=11&rft.spage=17791&rft.epage=17806&rft_id=info:doi/10.1109%2FJIOT.2025.3540501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3540501 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |