Task Assignment Scheme Designed for Online Urban Sensing Based on Sparse Mobile Crowdsensing

Sparse mobile crowdsensing (SMCS) achieves urban-scale environmental sensing by assigning tasks to workers in specific subareas and inferring global data from the collected information. However, the effectiveness of SMCS is often limited because many studies overlook workers' mobility and data...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 12; no. 11; pp. 17791 - 17806
Main Authors Zeng, Hongjian, Xiong, Yonghua, She, Jinhua, Yu, Anjun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2025.3540501

Cover

Abstract Sparse mobile crowdsensing (SMCS) achieves urban-scale environmental sensing by assigning tasks to workers in specific subareas and inferring global data from the collected information. However, the effectiveness of SMCS is often limited because many studies overlook workers' mobility and data collection time during subarea selection, as well as the time constraints of the sensing cycle in task assignment. This may affect the task completion timeliness and data quality. To address these issues, we develop a subarea evaluation method based on deep reinforcement learning, considering both the temporal effectiveness of sensing tasks and the importance of subarea selection for data inference. Using the subarea evaluation values derived from this method, we establish an online urban sensing task assignment model which is subject to constraints of sensing cycle time and cost budget. This model aims to find the task assignment result that minimizes data inference error by maximizing the comprehensive utility value. Considering the characteristics of the task assignment model, we propose an evolutionary algorithm named OTA-EA, which is based on an improved genetic algorithm. Its enhanced evolutionary operators can avoid generating infeasible solutions while maintaining robust search and optimization performance. Lastly, we conduct experimental evaluations of these methods on the real-world datasets. The results demonstrate that our subarea evaluation method can significantly reduce the data inference error, and our evolutionary task assignment algorithm can achieve better task assignment results than the baseline algorithms.
AbstractList Sparse mobile crowdsensing (SMCS) achieves urban-scale environmental sensing by assigning tasks to workers in specific subareas and inferring global data from the collected information. However, the effectiveness of SMCS is often limited because many studies overlook workers' mobility and data collection time during subarea selection, as well as the time constraints of the sensing cycle in task assignment. This may affect the task completion timeliness and data quality. To address these issues, we develop a subarea evaluation method based on deep reinforcement learning, considering both the temporal effectiveness of sensing tasks and the importance of subarea selection for data inference. Using the subarea evaluation values derived from this method, we establish an online urban sensing task assignment model which is subject to constraints of sensing cycle time and cost budget. This model aims to find the task assignment result that minimizes data inference error by maximizing the comprehensive utility value. Considering the characteristics of the task assignment model, we propose an evolutionary algorithm named OTA-EA, which is based on an improved genetic algorithm. Its enhanced evolutionary operators can avoid generating infeasible solutions while maintaining robust search and optimization performance. Lastly, we conduct experimental evaluations of these methods on the real-world datasets. The results demonstrate that our subarea evaluation method can significantly reduce the data inference error, and our evolutionary task assignment algorithm can achieve better task assignment results than the baseline algorithms.
Author She, Jinhua
Xiong, Yonghua
Yu, Anjun
Zeng, Hongjian
Author_xml – sequence: 1
  givenname: Hongjian
  orcidid: 0000-0002-4319-2511
  surname: Zeng
  fullname: Zeng, Hongjian
  email: zenghongjian@cug.edu.cn
  organization: School of Automation, China University of Geosciences, Wuhan, China
– sequence: 2
  givenname: Yonghua
  orcidid: 0000-0002-8672-0193
  surname: Xiong
  fullname: Xiong, Yonghua
  email: xiongyh@cug.edu.cn
  organization: School of Automation, China University of Geosciences, Wuhan, China
– sequence: 3
  givenname: Jinhua
  orcidid: 0000-0003-3165-5045
  surname: She
  fullname: She, Jinhua
  email: she@stf.teu.ac.jp
  organization: School of Engineering, Tokyo University of Technology, Hachioji, Tokyo, Japan
– sequence: 4
  givenname: Anjun
  surname: Yu
  fullname: Yu, Anjun
  email: yaj@600269.cn
  organization: Operation Management Department, Jiangxi Ganyue Expressway Company Ltd., Nanchang, Jiangxi, China
BookMark eNp9kE1LAzEQhoNUsFZ_gOAh4Ll1kuxmd4-1flPpwXoTlmx2UlPbpCZbxH_vLu2hePA0w8zzzMB7SnrOOyTkgsGIMSiun59m8xEHno5EmkAK7Ij0ueDZMJGS9w76E3Ie4xIAWi1lheyT97mKn3Qco124NbqGvuoPXCO9xW6CNTU-0JlbWYf0LVTK0Vd00boFvVGxXft2sFEhIn3xlV0hnQT_Xccdc0aOjVpFPN_XAXm7v5tPHofT2cPTZDwdal4kzVBAVehEc6HAYC0rjkleaWSqVkZnkMragIDUaJnnWWWA51ikheTcMK2ymokBudrd3QT_tcXYlEu_Da59WQoOUkCW57Klsh2lg48xoCm1bVRjvWuCsquSQdmlWXZpll2a5T7N1mR_zE2waxV-_nUud45FxAM-zwrBE_ELrM2CGQ
CODEN IITJAU
CitedBy_id crossref_primary_10_3390_electronics14051038
Cites_doi 10.1109/JIOT.2024.3356554
10.1109/JIOT.2019.2909296
10.1109/TVT.2023.3262800
10.1109/JIOT.2021.3068415
10.1109/TMC.2019.2962457
10.1109/JIOT.2019.2939552
10.1016/j.jnca.2023.103734
10.1007/978-3-319-59513-9_11
10.1016/j.comnet.2019.06.010
10.1109/THMS.2016.2599489
10.1145/3131671
10.1016/j.ins.2022.06.068
10.1145/3331450
10.1109/JIOT.2020.3024833
10.1016/j.swevo.2021.100872
10.1080/13658816.2019.1667501
10.1145/1689239.1689247
10.1109/JIOT.2022.3150804
10.1109/TCYB.2021.3112675
10.1109/JIOT.2023.3318817
10.1109/TMC.2022.3145979
10.1109/JIOT.2019.2957399
10.1145/2998181.2998193
10.1145/3494522
10.1109/JIOT.2024.3414496
10.1145/2750858.2807513
10.1016/j.ins.2023.120018
10.1109/TIM.2020.3034987
10.1016/j.ins.2023.119361
10.1109/TNSE.2022.3226422
10.1109/TMC.2012.205
10.1145/2783258.2788573
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2025.3540501
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 17806
ExternalDocumentID 10_1109_JIOT_2025_3540501
10879324
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873249
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-30b9c4c23a0fed6b2e48bce1adafc7056df0305fc6887bf028e959622f1ca7d13
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Sun Oct 26 20:43:41 EDT 2025
Thu Apr 24 22:52:02 EDT 2025
Wed Oct 01 06:04:49 EDT 2025
Wed Aug 27 01:53:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-30b9c4c23a0fed6b2e48bce1adafc7056df0305fc6887bf028e959622f1ca7d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8672-0193
0000-0002-4319-2511
0000-0003-3165-5045
PQID 3206307886
PQPubID 2040421
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_JIOT_2025_3540501
crossref_primary_10_1109_JIOT_2025_3540501
proquest_journals_3206307886
ieee_primary_10879324
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
Zheng (ref31) 2010; 33
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/JIOT.2024.3356554
– ident: ref32
  doi: 10.1109/JIOT.2019.2909296
– ident: ref13
  doi: 10.1109/TVT.2023.3262800
– ident: ref27
  doi: 10.1109/JIOT.2021.3068415
– ident: ref20
  doi: 10.1109/TMC.2019.2962457
– ident: ref25
  doi: 10.1109/JIOT.2019.2939552
– ident: ref16
  doi: 10.1016/j.jnca.2023.103734
– ident: ref29
  doi: 10.1007/978-3-319-59513-9_11
– ident: ref9
  doi: 10.1016/j.comnet.2019.06.010
– ident: ref33
  doi: 10.1109/THMS.2016.2599489
– ident: ref7
  doi: 10.1145/3131671
– ident: ref14
  doi: 10.1016/j.ins.2022.06.068
– ident: ref26
  doi: 10.1145/3331450
– volume: 33
  start-page: 32
  issue: 2
  year: 2010
  ident: ref31
  article-title: GeoLife: A collaborative social networking service among user, location and trajectory
  publication-title: IEEE Data Eng. Bull.
– ident: ref8
  doi: 10.1109/JIOT.2020.3024833
– ident: ref19
  doi: 10.1016/j.swevo.2021.100872
– ident: ref22
  doi: 10.1080/13658816.2019.1667501
– ident: ref30
  doi: 10.1145/1689239.1689247
– ident: ref11
  doi: 10.1109/JIOT.2022.3150804
– ident: ref15
  doi: 10.1109/TCYB.2021.3112675
– ident: ref24
  doi: 10.1109/JIOT.2023.3318817
– ident: ref3
  doi: 10.1109/TMC.2022.3145979
– ident: ref10
  doi: 10.1109/JIOT.2019.2957399
– ident: ref18
  doi: 10.1145/2998181.2998193
– ident: ref1
  doi: 10.1145/3494522
– ident: ref4
  doi: 10.1109/JIOT.2024.3414496
– ident: ref23
  doi: 10.1145/2750858.2807513
– ident: ref12
  doi: 10.1016/j.ins.2023.120018
– ident: ref2
  doi: 10.1109/TIM.2020.3034987
– ident: ref5
  doi: 10.1016/j.ins.2023.119361
– ident: ref17
  doi: 10.1109/TNSE.2022.3226422
– ident: ref21
  doi: 10.1109/TMC.2012.205
– ident: ref28
  doi: 10.1145/2783258.2788573
SSID ssj0001105196
Score 2.363491
Snippet Sparse mobile crowdsensing (SMCS) achieves urban-scale environmental sensing by assigning tasks to workers in specific subareas and inferring global data from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17791
SubjectTerms Algorithm optimization
Automation
Constraints
Costs
Crowdsensing
Cycle time
Data collection
Data integrity
Effectiveness
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Inference
Inference algorithms
Internet of Things
Mobile computing
Optimization
Sensors
sparse mobile crowdsensing (SMCS)
subarea evaluation
task assignment
Time factors
Title Task Assignment Scheme Designed for Online Urban Sensing Based on Sparse Mobile Crowdsensing
URI https://ieeexplore.ieee.org/document/10879324
https://www.proquest.com/docview/3206307886
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxbKo4jykgcmpITEeTkjFKqCRBlopQ5Ike1cCgISRNuFX8_ZcQCBQGyRfY4sfb7zd_b5jpAjHiBN5hIcFQXCCVHdHOGHzIFAqUJgn6e0o3g9ioeT8GoaTe1jdfMWBgBM8Bm4-tPc5eeVWuqjMtRwjsuJhS3SSnhcP9b6PFDxNRuJ7c2l76UnV5c3Y_QAWeTqw43I1n1p9h5TTOWHBTbbyqBDRs2E6miSR3e5kK56-5ar8d8zXidrlmDS03pFbJAVKDdJpyneQK0ub5G7sZg_UkTnYWYCArDnHp6BnpuQDsgpsllaJyKlk1cpSnqrY93LGT3DjS-nFTa8oFcM9LqSaFpoHx36fF7LdMlkcDHuDx1basFRLA0XTuDJVIWKBcIrII8lg5BLBb7IRaESJEl5oS1DoWI0SrJAUgKprtvDCl-JJPeDbdIuqxJ2COWJSmNfCJnyCH1vKUXoK4i9QgAXHkt7xGtAyJTNQ67LYTxlxh_x0kzjlmncMotbjxx_DHmpk3D8JdzVOHwRrCHokf0G6szq6TwLmM45lnAe7_4ybI-s6r_X0WH7pL14XcIB8pCFPDTr7x1fudpn
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeoALUB5iedWHniplSRwn6xxbHlq2u9tDdyUOSJHtTAAB2dU-Lvx6xo5DqyKq3iJ7rFj6PONv7PEMwBcZE02WGgOTxCoQpG6BigQPMDamVNQXGusoDoZpdyx618m1f6zu3sIgogs-w7b9dHf5xcQs7VEZabik5cTFCnxMhBBJ_Vzr95FKZPlI6u8uozA77V39HJEPyJO2Pd5IfOWXZvdx5VTe2GC3sVxuwrCZUh1P8tBeLnTbPP-VrfG_57wFG55ism_1mvgEH7Dahs2mfAPz2rwDNyM1f2CEz_2tCwmgnjt8QnbugjqwYMRnWZ2KlI1nWlXsl412r27Zd9r6Cjahhin5xcgGE03GhZ2RS1_Ma5ldGF9ejM66gS-2EBieiUUQhzozwvBYhSUWqeYopDYYqUKVpkM0qSitbShNSmZJl0RLMLOVe3gZGdUpongPVqtJhfvAZMdkaaSUzmRC3rfWSkQG07BUKFXIsxaEDQi58ZnIbUGMx9x5JGGWW9xyi1vucWvB19ch0zoNx7-Edy0OfwjWELTgqIE695o6z2Nus451pEwP3hn2Gda6o0E_718NfxzCuv1THSt2BKuL2RKPiZUs9Ilbiy_2Nd20
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+Assignment+Scheme+Designed+for+Online+Urban+Sensing+Based+on+Sparse+Mobile+Crowdsensing&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zeng%2C+Hongjian&rft.au=Xiong%2C+Yonghua&rft.au=She%2C+Jinhua&rft.au=Yu%2C+Anjun&rft.date=2025-06-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=12&rft.issue=11&rft.spage=17791&rft.epage=17806&rft_id=info:doi/10.1109%2FJIOT.2025.3540501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3540501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon