A nodally bound-preserving finite element method for time-dependent convection–diffusion equations

This paper presents a new method to approximate the time-dependent convection–diffusion equations using conforming finite element methods, ensuring that the discrete solution respects the physical bounds imposed by the differential equation. The method is built by defining, at each time step, a conv...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 470; p. 116691
Main Authors Amiri, Abdolreza, Barrenechea, Gabriel R., Pryer, Tristan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2025
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
DOI10.1016/j.cam.2025.116691

Cover

Abstract This paper presents a new method to approximate the time-dependent convection–diffusion equations using conforming finite element methods, ensuring that the discrete solution respects the physical bounds imposed by the differential equation. The method is built by defining, at each time step, a convex set of admissible finite element functions (that is, the ones that satisfy the global bounds at their degrees of freedom) and seeks for a discrete solution in this admissible set. A family of θ-schemes is used as time integrators, and well-posedness of the discrete schemes is proven for the whole family, but stability and optimal-order error estimates are proven for the implicit Euler scheme. Nevertheless, our numerical experiments show that the method also provides stable and optimally-convergent solutions when the Crank–Nicolson method is used. •Positivity-preserving method for time-dependent convection–diffusion problems.•Physical bounds enforced using convex admissible sets at each time step.•Stability and error estimate proven for the implicit Euler method.•Crank–Nicolson and Euler schemes yield stable, convergent numerical results.
AbstractList This paper presents a new method to approximate the time-dependent convection–diffusion equations using conforming finite element methods, ensuring that the discrete solution respects the physical bounds imposed by the differential equation. The method is built by defining, at each time step, a convex set of admissible finite element functions (that is, the ones that satisfy the global bounds at their degrees of freedom) and seeks for a discrete solution in this admissible set. A family of θ-schemes is used as time integrators, and well-posedness of the discrete schemes is proven for the whole family, but stability and optimal-order error estimates are proven for the implicit Euler scheme. Nevertheless, our numerical experiments show that the method also provides stable and optimally-convergent solutions when the Crank–Nicolson method is used. •Positivity-preserving method for time-dependent convection–diffusion problems.•Physical bounds enforced using convex admissible sets at each time step.•Stability and error estimate proven for the implicit Euler method.•Crank–Nicolson and Euler schemes yield stable, convergent numerical results.
ArticleNumber 116691
Author Barrenechea, Gabriel R.
Amiri, Abdolreza
Pryer, Tristan
Author_xml – sequence: 1
  givenname: Abdolreza
  surname: Amiri
  fullname: Amiri, Abdolreza
  email: abdolreza.amiri@strath.ac.uk
  organization: Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, G1 1XH, Glasgow, Scotland, United Kingdom
– sequence: 2
  givenname: Gabriel R.
  surname: Barrenechea
  fullname: Barrenechea, Gabriel R.
  organization: Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, G1 1XH, Glasgow, Scotland, United Kingdom
– sequence: 3
  givenname: Tristan
  surname: Pryer
  fullname: Pryer, Tristan
  organization: Department of Mathematical Sciences, University of Bath, Claverton down, Bath, BA2 7AY, UK
BookMark eNqNkEtOwzAQhr0oEm3hAOx8gQQ7D7sRq6riJVViA2vLscfgKrGDnRR1xx24ISchUVgjVjP6R99I_7dCC-cdIHRFSUoJZdeHVMk2zUhWppQyVtEFWpKc84QUGT9HqxgPhJAxL5ZIb7HzWjbNCdd-cDrpAkQIR-tesbHO9oChgRZcj1vo37zGxgfc2xYSDR04PV2Ud0dQvfXu-_NLW2OGOO4Y3gc5hfECnRnZRLj8nWv0cnf7vHtI9k_3j7vtPlFZVfRJJknJGKXcECaN5opCWTNOKkVynQFXeiNpTetSS00qUFVeSr4hOZOgoZAyX6Ns_ju4Tp4-xlaiC7aV4SQoEZMbcRCjGzG5EbObEaIzpIKPMYD5F3MzMzC2OVoIIioLToG2YRQhtLd_0D8-pYQr
Cites_doi 10.1007/s00211-016-0808-z
10.1142/S0218202524500283
10.1016/j.jcp.2013.01.052
10.1016/j.cma.2004.01.026
10.1016/0045-7825(82)90071-8
10.1007/s00211-018-0955-5
10.1090/S0025-5718-99-01148-5
10.1016/0045-7825(85)90089-1
10.1093/imanum/drad055
10.1137/0727022
10.1137/22M1488934
10.1016/j.cma.2009.11.023
10.1090/S0025-5718-05-01761-8
10.1016/0045-7825(73)90019-4
10.1016/j.cma.2009.02.011
10.1137/0733033
10.1016/j.jcp.2008.12.011
10.1016/j.cma.2003.12.032
10.1017/S0004972700027349
10.1016/0045-7825(89)90111-4
10.1051/m2an:1999145
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.cam.2025.116691
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10.1016/j.cam.2025.116691
10_1016_j_cam_2025_116691
S0377042725002055
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6I.
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
AAFWJ
AAQXK
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ADMUD
ADNMO
ADVLN
AEXQZ
AGHFR
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
NHB
R2-
SSZ
WUQ
ZY4
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c294t-2a0566117f06afd7c1e5b6709c03d2e7cd8a1b1b5dad09ec935a78036aede4aa3
IEDL.DBID UNPAY
ISSN 0377-0427
1879-1778
IngestDate Tue Aug 19 23:24:43 EDT 2025
Wed Oct 01 06:00:04 EDT 2025
Sat Jun 28 18:16:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Time-dependent convection–diffusion equation
Variational inequality
Stabilised finite-element approximation
Positivity preservation
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-2a0566117f06afd7c1e5b6709c03d2e7cd8a1b1b5dad09ec935a78036aede4aa3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cam.2025.116691
ParticipantIDs unpaywall_primary_10_1016_j_cam_2025_116691
crossref_primary_10_1016_j_cam_2025_116691
elsevier_sciencedirect_doi_10_1016_j_cam_2025_116691
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-12-15
PublicationDateYYYYMMDD 2025-12-15
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kuzmin (b14) 2007
Leveque (b27) 1996; 33
Bochev, Gunzburger, Shadid (b4) 2004; 193
Ciarlet, Raviart (b9) 1973; 2
Barrenechea, Burman, Karakatsani (b15) 2017; 135
Ern, Guermond (b19) 2021
Becker, Braack (b7) 2004
Argyros (b29) 1988; 38
Barrenechea, John, Knobloch (b11) 2024; 66
Brezis (b20) 2011
Evans (b21) 2010; vol. 19
Xu, Zikatanov (b10) 1999; 68
Makridakis (b22) 2018; 139
Ashby, Hamdan, Pryer (b30) 2025
Ross, Stynes, Tobiska (b24) 2008
Kuzmin (b28) 2009; 228
Burman, Ern (b13) 2005; 74
Barrenechea, Pryer, Trenam (b31) 2024
Brooks, Hughes (b1) 1982; 32
Amiri, Barrenechea, Pryer (b18) 2024; 34
Guermond (b5) 1999; 33
Burman, Fernández (b8) 2009; 198
Burman, Hansbo (b6) 2004; 193
Heywood, Rannacher (b26) 1990; 27
Hughes, Franca, Hulbert (b2) 1989; 73
Burman (b3) 2010; 199
Barrenechea, Georgoulis, Pryer, Veeser (b17) 2024; 44
Renardy, Rogers (b25) 2004; vol. 13
Mizukami, Hughes (b12) 1985; 50
Lu, Huang, Van Vleck (b16) 2013; 242
Ern, Guermond (b23) 2021
Bochev (10.1016/j.cam.2025.116691_b4) 2004; 193
Heywood (10.1016/j.cam.2025.116691_b26) 1990; 27
Brooks (10.1016/j.cam.2025.116691_b1) 1982; 32
Barrenechea (10.1016/j.cam.2025.116691_b17) 2024; 44
Amiri (10.1016/j.cam.2025.116691_b18) 2024; 34
Becker (10.1016/j.cam.2025.116691_b7) 2004
Burman (10.1016/j.cam.2025.116691_b8) 2009; 198
Kuzmin (10.1016/j.cam.2025.116691_b14) 2007
Barrenechea (10.1016/j.cam.2025.116691_b15) 2017; 135
Ern (10.1016/j.cam.2025.116691_b23) 2021
Barrenechea (10.1016/j.cam.2025.116691_b11) 2024; 66
Kuzmin (10.1016/j.cam.2025.116691_b28) 2009; 228
Brezis (10.1016/j.cam.2025.116691_b20) 2011
Ross (10.1016/j.cam.2025.116691_b24) 2008
Leveque (10.1016/j.cam.2025.116691_b27) 1996; 33
Ashby (10.1016/j.cam.2025.116691_b30) 2025
Burman (10.1016/j.cam.2025.116691_b6) 2004; 193
Hughes (10.1016/j.cam.2025.116691_b2) 1989; 73
Burman (10.1016/j.cam.2025.116691_b13) 2005; 74
Lu (10.1016/j.cam.2025.116691_b16) 2013; 242
Makridakis (10.1016/j.cam.2025.116691_b22) 2018; 139
Argyros (10.1016/j.cam.2025.116691_b29) 1988; 38
Ciarlet (10.1016/j.cam.2025.116691_b9) 1973; 2
Renardy (10.1016/j.cam.2025.116691_b25) 2004; vol. 13
Barrenechea (10.1016/j.cam.2025.116691_b31) 2024
Guermond (10.1016/j.cam.2025.116691_b5) 1999; 33
Burman (10.1016/j.cam.2025.116691_b3) 2010; 199
Ern (10.1016/j.cam.2025.116691_b19) 2021
Mizukami (10.1016/j.cam.2025.116691_b12) 1985; 50
Xu (10.1016/j.cam.2025.116691_b10) 1999; 68
Evans (10.1016/j.cam.2025.116691_b21) 2010; vol. 19
References_xml – year: 2008
  ident: b24
  article-title: Robust Numerical Methods for Singularly Perturbed Differential Equations
  publication-title: SSCM
– start-page: 123
  year: 2004
  end-page: 130
  ident: b7
  article-title: A two-level stabilization scheme for the Navier-Stokes equations
  publication-title: Numerical Mathematics and Advanced Applications
– year: 2025
  ident: b30
  article-title: A nodally bound-preserving finite element method for hyperbolic convection-reaction problems
– year: 2021
  ident: b23
  article-title: Finite Elements II
– volume: 74
  start-page: 1637
  year: 2005
  end-page: 1652
  ident: b13
  article-title: Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence
  publication-title: Math. Comp.
– start-page: 1
  year: 2007
  end-page: 5
  ident: b14
  article-title: Algebraic flux correction for finite element discretizations of coupled systems
  publication-title: Proceedings of the Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering
– volume: 73
  start-page: 173
  year: 1989
  end-page: 189
  ident: b2
  article-title: A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 198
  start-page: 2508
  year: 2009
  end-page: 2519
  ident: b8
  article-title: Finite element methods with symmetric stabilization for the transient convection–diffusion–reaction equation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 38
  start-page: 131
  year: 1988
  end-page: 140
  ident: b29
  article-title: On Newton’s method and nondiscrete mathematical induction
  publication-title: Bull. Aust. Math. Soc.
– volume: 193
  start-page: 1437
  year: 2004
  end-page: 1453
  ident: b6
  article-title: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2021
  ident: b19
  article-title: Finite Elements I
– year: 2024
  ident: b31
  article-title: A nodally bound-preserving discontinuous Galerkin method for the drift-diffusion equation
– volume: 27
  start-page: 353
  year: 1990
  end-page: 384
  ident: b26
  article-title: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization
  publication-title: SIAM J. Numer. Anal.
– volume: 193
  start-page: 2301
  year: 2004
  end-page: 2323
  ident: b4
  article-title: Stability of the SUPG finite element method for transient advection–diffusion problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 32
  start-page: 199
  year: 1982
  end-page: 259
  ident: b1
  article-title: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 66
  start-page: 3
  year: 2024
  end-page: 88
  ident: b11
  article-title: Finite element methods respecting the discrete maximum principle for convection-diffusion equations
  publication-title: SIAM Rev.
– volume: 228
  start-page: 2517
  year: 2009
  end-page: 2534
  ident: b28
  article-title: Explicit and implicit FEM-FCT algorithms with flux linearization
  publication-title: J. Comput. Phys.
– volume: 139
  start-page: 831
  year: 2018
  end-page: 844
  ident: b22
  article-title: On the Babuška-Osborn approach to finite element analysis:
  publication-title: Numer. Math.
– volume: 242
  start-page: 24
  year: 2013
  end-page: 36
  ident: b16
  article-title: The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations
  publication-title: J. Comput. Phys.
– volume: 50
  start-page: 181
  year: 1985
  end-page: 193
  ident: b12
  article-title: A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 34
  start-page: 1533
  year: 2024
  end-page: 1565
  ident: b18
  article-title: A nodally bound-preserving finite element method for reaction–convection–diffusion equations
  publication-title: Math. Models Methods Appl. Sci.
– volume: 44
  start-page: 2198
  year: 2024
  end-page: 2219
  ident: b17
  article-title: A nodally bound-preserving finite element method
  publication-title: IMA J. Numer. Anal.
– volume: vol. 13
  start-page: xiv+434
  year: 2004
  ident: b25
  publication-title: An Introduction to Partial Differential Equations
– volume: 199
  start-page: 1114
  year: 2010
  end-page: 1123
  ident: b3
  article-title: Consistent SUPG–method for transient transport problems: Stability and convergence
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 68
  start-page: 1429
  year: 1999
  end-page: 1446
  ident: b10
  article-title: A monotone finite element scheme for convection-diffusion equations
  publication-title: Math. Comp.
– volume: 33
  start-page: 1293
  year: 1999
  end-page: 1316
  ident: b5
  article-title: Stabilization of Galerkin approximations of transport equations by subgrid modeling
  publication-title: M2AN Math. Model. Numer. Anal.
– start-page: xiv+599
  year: 2011
  ident: b20
  publication-title: Functional Analysis, Sobolev Spaces and Partial Differential Equations
– volume: 33
  start-page: 627
  year: 1996
  end-page: 665
  ident: b27
  article-title: High-resolution conservative algorithms for advection in incompressible flow
  publication-title: SIAM J. Numer. Anal.
– volume: vol. 19
  year: 2010
  ident: b21
  publication-title: Partial Differential Equations
– volume: 135
  start-page: 521
  year: 2017
  end-page: 545
  ident: b15
  article-title: Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes
  publication-title: Numer. Math.
– volume: 2
  start-page: 17
  year: 1973
  end-page: 31
  ident: b9
  article-title: Maximum principle and uniform convergence for the finite element method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 135
  start-page: 521
  issue: 2
  year: 2017
  ident: 10.1016/j.cam.2025.116691_b15
  article-title: Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes
  publication-title: Numer. Math.
  doi: 10.1007/s00211-016-0808-z
– volume: 34
  start-page: 1533
  issue: 8
  year: 2024
  ident: 10.1016/j.cam.2025.116691_b18
  article-title: A nodally bound-preserving finite element method for reaction–convection–diffusion equations
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202524500283
– volume: 242
  start-page: 24
  year: 2013
  ident: 10.1016/j.cam.2025.116691_b16
  article-title: The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.01.052
– start-page: xiv+599
  year: 2011
  ident: 10.1016/j.cam.2025.116691_b20
– volume: 193
  start-page: 2301
  issue: 23
  year: 2004
  ident: 10.1016/j.cam.2025.116691_b4
  article-title: Stability of the SUPG finite element method for transient advection–diffusion problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.01.026
– volume: 32
  start-page: 199
  issue: 1–3
  year: 1982
  ident: 10.1016/j.cam.2025.116691_b1
  article-title: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(82)90071-8
– volume: 139
  start-page: 831
  issue: 4
  year: 2018
  ident: 10.1016/j.cam.2025.116691_b22
  article-title: On the Babuška-Osborn approach to finite element analysis: L2 estimates for unstructured meshes
  publication-title: Numer. Math.
  doi: 10.1007/s00211-018-0955-5
– year: 2024
  ident: 10.1016/j.cam.2025.116691_b31
– volume: 68
  start-page: 1429
  issue: 228
  year: 1999
  ident: 10.1016/j.cam.2025.116691_b10
  article-title: A monotone finite element scheme for convection-diffusion equations
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-99-01148-5
– volume: 50
  start-page: 181
  issue: 2
  year: 1985
  ident: 10.1016/j.cam.2025.116691_b12
  article-title: A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(85)90089-1
– volume: 44
  start-page: 2198
  issue: 4
  year: 2024
  ident: 10.1016/j.cam.2025.116691_b17
  article-title: A nodally bound-preserving finite element method
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drad055
– volume: 27
  start-page: 353
  issue: 2
  year: 1990
  ident: 10.1016/j.cam.2025.116691_b26
  article-title: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0727022
– volume: 66
  start-page: 3
  issue: 1
  year: 2024
  ident: 10.1016/j.cam.2025.116691_b11
  article-title: Finite element methods respecting the discrete maximum principle for convection-diffusion equations
  publication-title: SIAM Rev.
  doi: 10.1137/22M1488934
– year: 2021
  ident: 10.1016/j.cam.2025.116691_b23
– volume: 199
  start-page: 1114
  issue: 17
  year: 2010
  ident: 10.1016/j.cam.2025.116691_b3
  article-title: Consistent SUPG–method for transient transport problems: Stability and convergence
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2009.11.023
– volume: 74
  start-page: 1637
  issue: 252
  year: 2005
  ident: 10.1016/j.cam.2025.116691_b13
  article-title: Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-05-01761-8
– volume: 2
  start-page: 17
  year: 1973
  ident: 10.1016/j.cam.2025.116691_b9
  article-title: Maximum principle and uniform convergence for the finite element method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(73)90019-4
– year: 2008
  ident: 10.1016/j.cam.2025.116691_b24
  article-title: Robust Numerical Methods for Singularly Perturbed Differential Equations
– volume: 198
  start-page: 2508
  issue: 33
  year: 2009
  ident: 10.1016/j.cam.2025.116691_b8
  article-title: Finite element methods with symmetric stabilization for the transient convection–diffusion–reaction equation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2009.02.011
– volume: vol. 13
  start-page: xiv+434
  year: 2004
  ident: 10.1016/j.cam.2025.116691_b25
– volume: 33
  start-page: 627
  issue: 2
  year: 1996
  ident: 10.1016/j.cam.2025.116691_b27
  article-title: High-resolution conservative algorithms for advection in incompressible flow
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0733033
– start-page: 1
  year: 2007
  ident: 10.1016/j.cam.2025.116691_b14
  article-title: Algebraic flux correction for finite element discretizations of coupled systems
– volume: 228
  start-page: 2517
  issue: 7
  year: 2009
  ident: 10.1016/j.cam.2025.116691_b28
  article-title: Explicit and implicit FEM-FCT algorithms with flux linearization
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.12.011
– volume: 193
  start-page: 1437
  issue: 15–16
  year: 2004
  ident: 10.1016/j.cam.2025.116691_b6
  article-title: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2003.12.032
– year: 2021
  ident: 10.1016/j.cam.2025.116691_b19
– year: 2025
  ident: 10.1016/j.cam.2025.116691_b30
– start-page: 123
  year: 2004
  ident: 10.1016/j.cam.2025.116691_b7
  article-title: A two-level stabilization scheme for the Navier-Stokes equations
– volume: 38
  start-page: 131
  issue: 1
  year: 1988
  ident: 10.1016/j.cam.2025.116691_b29
  article-title: On Newton’s method and nondiscrete mathematical induction
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972700027349
– volume: vol. 19
  year: 2010
  ident: 10.1016/j.cam.2025.116691_b21
– volume: 73
  start-page: 173
  issue: 2
  year: 1989
  ident: 10.1016/j.cam.2025.116691_b2
  article-title: A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(89)90111-4
– volume: 33
  start-page: 1293
  issue: 6
  year: 1999
  ident: 10.1016/j.cam.2025.116691_b5
  article-title: Stabilization of Galerkin approximations of transport equations by subgrid modeling
  publication-title: M2AN Math. Model. Numer. Anal.
  doi: 10.1051/m2an:1999145
SSID ssj0006914
Score 2.4666247
Snippet This paper presents a new method to approximate the time-dependent convection–diffusion equations using conforming finite element methods, ensuring that the...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 116691
SubjectTerms Positivity preservation
Stabilised finite-element approximation
Time-dependent convection–diffusion equation
Variational inequality
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2LF_UgfuL6RQ6elLhN26TtURYXEfSigrcyaVJZke7qdhEv4n_wH_pLnOnHqgcVPLYkpEzCm0f6Zh5j-yrUmAXBCQ9CI0LQWhjtjFABIF_wczwidA95fqFPr8OzG3XTYf22FoZklQ3215heoXXzptdEszceDnuXXhBF5BSBSRw5j6JCc-r-hWf66OVT5qGTur83DhY0uv2zWWm8MqBidF8hcGidyJ9y0_y0GMPzE9zff8k9g2W21JBGflx_1wrruGKVLZ7POq5O1pg95sXI4txnbsgpSZDAlXCguOX5kIgld7VSnNem0RzZKidnedH64Ja8kqBXhQ7vr29knTKluzTuHup-4JN1dj04ueqfisZBQWR-EpbCB-Q3Wsoo9zTkNsqkU4Y6tmVeYH0XZTYGaaRRFqyXuCwJFEQxJjVw1oUAwQabK0aF22RcZ8YzSF6Q_gCSvDgOVS4dqDw2idVKdtlBG7t0XDfKSFsF2V2KgU4p0Gkd6C4L2-im33Y7RSD_bdrhbCf-XmTrf4tsswV6IsmKVDtsrnycul0kHqXZq07WB0VW10k
  priority: 102
  providerName: Elsevier
Title A nodally bound-preserving finite element method for time-dependent convection–diffusion equations
URI https://dx.doi.org/10.1016/j.cam.2025.116691
https://doi.org/10.1016/j.cam.2025.116691
UnpaywallVersion publishedVersion
Volume 470
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1879-1778
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006914
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 1879-1778
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006914
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Sciencedirect - Freedom Collection
  issn: 1879-1778
  databaseCode: ACRLP
  dateStart: 20211001
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006914
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 1879-1778
  databaseCode: AIKHN
  dateStart: 20210601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006914
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1879-1778
  databaseCode: AKRWK
  dateStart: 19750301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1BsoAu-gCqpkA0i65AE3lsz4y9jCKilNIoqogUVtYdz7hqGzmBOEJhUfUf-EO-hLl-RBTxXFmW_NKdse_x3HPPIeREhNJlQbDMg1CzEKRkWlrNRAAOL_iZmyK4Dnk-lqNp-HYmZrVYNPbC3KvflzysFLBh3Bfu5ZYS-9TbEmtJLdKejif9D2WVQCmGnhH4cxWpmHGloqaC-atr_C4HPVrnS9h8hvn8hxwz3KvYWatSmhCpJTe9daF76ZefhBv_6fH3yW6NNGm_mhoH5IHNn5Cd861M6-opMX2aL4x7kA3VaK_EkBWLH4_8kmZXiEaprejltHKapg7iUrSjZ415bkFL3nrZHfHt7iv6raxxAY7aj5WI-OoZmQ7fvB-MWG27wFI_DgvmgwNFknOVeRIyo1JuhUaZt9QLjG9VaiLgmmthwHixTeNAgIpcJgRrbAgQHJJWvsjtEaEy1Z52iMdhJnDIMIpCkXELIot0bKTgHfKqGYhkWalrJA3t7DpxoUswdEkVug4Jm6FKanhQpf3ERf1Pp73eDuvfb3L8X0c_J49xD-ktXLwgreLT2r50IKXQXfKwd8u7pN0fXLyb4Pb0bDTu1pP2O5AC5X0
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6C9gAc0Pgl2NjmA6chq3FiO8mxqoba0fZCkbhFz7GDilDoRivU2_4H_kP-kj03SbUdAGnXOE-Onq3vfXI-vw_gTElNVRAdD1AaLlFrbrQzXEVIfCEsaIv4c8jRWPev5Y8bdbMBveYujJdV1thfYfoKresnnTqbndl02rkKojj2ThFUxInzKLUJbakIk1vQ7g4u--M1IOu0avFN73Mf0PzcXMm8cvT30UNF2KF1Kl4rT1uLcobLJ7y__6v8XHyA3Zo3sm71aXuw4cp92Bmtm64-HoDtsvLBUuySGW-WxL3G1UNBecuKqeeWzFVicVb5RjMirMyby_PGCnfOVir01V2Hl9_P3j1l4Y_TmPtZtQR_PITri--TXp_XJgo8D1M55yESxdFCxEWgsbBxLpwyvmlbHkQ2dHFuExRGGGXRBqnL00hhnFBdQ2edRIyOoFU-lO4YmM5NYIi_EANC4nlJIlUhHKoiManVSpzAtyZ32azqlZE1IrK7jBKd-URnVaJPQDbZzf5Z8Iyw_K2w8_VKvD_Jx_-b5Cts9SejYTYcjC8_wbYf8QoWoU6hNf-1cJ-Jh8zNl3qf_QFt-tuC
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQewAO7IhdPnACuYrT2E6OFQIhpFYcqFRO0Th2EItSoKlQOfEP_CFfgicLAsR6jJTFGjuZF8-b9wjZFYF0WRAs8yDQLAApmZZWM9EGhxf81C0R3Ifs9uRxPzgZiEElFo29MB_q9wUPKwFsGPeFe7mlxD71psRaUoM0-73TznlRJVCKoWcE_lyFKmJcqbCuYH51j-9y0PQ4u4XJA9zcvMsxR_MlO2tUSBMiteS6Nc51K3n8JNz4p-EvkLkKadJOuTQWyZTNlshs902mdbRMTIdmQ-MGMqEa7ZUYsmLx45Fd0PQS0Si1Jb2clk7T1EFcinb0rDbPzWnBWy-6I16entFvZYwbcNTelSLioxXSPzo8Ozhmle0CS_woyJkPDhRJzlXqSUiNSrgVGmXeEq9tfKsSEwLXXAsDxotsErUFqNBlQrDGBgDtVdLIhpldI1Qm2tMO8TjMBA4ZhmEgUm5BpKGOjBR8nezVExHfluoacU07u4pd6GIMXVyGbp0E9VTFFTwo037sov7TZftv0_r7Qzb-dfYmmcEjpLdwsUUa-f3YbjuQkuudanm-Aguj4Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nodally+bound-preserving+finite+element+method+for+time-dependent+convection%E2%80%93diffusion+equations&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Amiri%2C+Abdolreza&rft.au=Barrenechea%2C+Gabriel+R.&rft.au=Pryer%2C+Tristan&rft.date=2025-12-15&rft.issn=0377-0427&rft.volume=470&rft.spage=116691&rft_id=info:doi/10.1016%2Fj.cam.2025.116691&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2025_116691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon