A nodally bound-preserving finite element method for time-dependent convection–diffusion equations
This paper presents a new method to approximate the time-dependent convection–diffusion equations using conforming finite element methods, ensuring that the discrete solution respects the physical bounds imposed by the differential equation. The method is built by defining, at each time step, a conv...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 470; p. 116691 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0377-0427 1879-1778 |
DOI | 10.1016/j.cam.2025.116691 |
Cover
Abstract | This paper presents a new method to approximate the time-dependent convection–diffusion equations using conforming finite element methods, ensuring that the discrete solution respects the physical bounds imposed by the differential equation. The method is built by defining, at each time step, a convex set of admissible finite element functions (that is, the ones that satisfy the global bounds at their degrees of freedom) and seeks for a discrete solution in this admissible set. A family of θ-schemes is used as time integrators, and well-posedness of the discrete schemes is proven for the whole family, but stability and optimal-order error estimates are proven for the implicit Euler scheme. Nevertheless, our numerical experiments show that the method also provides stable and optimally-convergent solutions when the Crank–Nicolson method is used.
•Positivity-preserving method for time-dependent convection–diffusion problems.•Physical bounds enforced using convex admissible sets at each time step.•Stability and error estimate proven for the implicit Euler method.•Crank–Nicolson and Euler schemes yield stable, convergent numerical results. |
---|---|
AbstractList | This paper presents a new method to approximate the time-dependent convection–diffusion equations using conforming finite element methods, ensuring that the discrete solution respects the physical bounds imposed by the differential equation. The method is built by defining, at each time step, a convex set of admissible finite element functions (that is, the ones that satisfy the global bounds at their degrees of freedom) and seeks for a discrete solution in this admissible set. A family of θ-schemes is used as time integrators, and well-posedness of the discrete schemes is proven for the whole family, but stability and optimal-order error estimates are proven for the implicit Euler scheme. Nevertheless, our numerical experiments show that the method also provides stable and optimally-convergent solutions when the Crank–Nicolson method is used.
•Positivity-preserving method for time-dependent convection–diffusion problems.•Physical bounds enforced using convex admissible sets at each time step.•Stability and error estimate proven for the implicit Euler method.•Crank–Nicolson and Euler schemes yield stable, convergent numerical results. |
ArticleNumber | 116691 |
Author | Barrenechea, Gabriel R. Amiri, Abdolreza Pryer, Tristan |
Author_xml | – sequence: 1 givenname: Abdolreza surname: Amiri fullname: Amiri, Abdolreza email: abdolreza.amiri@strath.ac.uk organization: Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, G1 1XH, Glasgow, Scotland, United Kingdom – sequence: 2 givenname: Gabriel R. surname: Barrenechea fullname: Barrenechea, Gabriel R. organization: Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, G1 1XH, Glasgow, Scotland, United Kingdom – sequence: 3 givenname: Tristan surname: Pryer fullname: Pryer, Tristan organization: Department of Mathematical Sciences, University of Bath, Claverton down, Bath, BA2 7AY, UK |
BookMark | eNqNkEtOwzAQhr0oEm3hAOx8gQQ7D7sRq6riJVViA2vLscfgKrGDnRR1xx24ISchUVgjVjP6R99I_7dCC-cdIHRFSUoJZdeHVMk2zUhWppQyVtEFWpKc84QUGT9HqxgPhJAxL5ZIb7HzWjbNCdd-cDrpAkQIR-tesbHO9oChgRZcj1vo37zGxgfc2xYSDR04PV2Ud0dQvfXu-_NLW2OGOO4Y3gc5hfECnRnZRLj8nWv0cnf7vHtI9k_3j7vtPlFZVfRJJknJGKXcECaN5opCWTNOKkVynQFXeiNpTetSS00qUFVeSr4hOZOgoZAyX6Ns_ju4Tp4-xlaiC7aV4SQoEZMbcRCjGzG5EbObEaIzpIKPMYD5F3MzMzC2OVoIIioLToG2YRQhtLd_0D8-pYQr |
Cites_doi | 10.1007/s00211-016-0808-z 10.1142/S0218202524500283 10.1016/j.jcp.2013.01.052 10.1016/j.cma.2004.01.026 10.1016/0045-7825(82)90071-8 10.1007/s00211-018-0955-5 10.1090/S0025-5718-99-01148-5 10.1016/0045-7825(85)90089-1 10.1093/imanum/drad055 10.1137/0727022 10.1137/22M1488934 10.1016/j.cma.2009.11.023 10.1090/S0025-5718-05-01761-8 10.1016/0045-7825(73)90019-4 10.1016/j.cma.2009.02.011 10.1137/0733033 10.1016/j.jcp.2008.12.011 10.1016/j.cma.2003.12.032 10.1017/S0004972700027349 10.1016/0045-7825(89)90111-4 10.1051/m2an:1999145 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
DOI | 10.1016/j.cam.2025.116691 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 10.1016/j.cam.2025.116691 10_1016_j_cam_2025_116691 S0377042725002055 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6I. 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABAOU ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSW T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS AAFWJ AAQXK AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ADMUD ADNMO ADVLN AEXQZ AGHFR AGQPQ ASPBG AVWKF AZFZN CITATION D-I EFKBS EFLBG EJD FGOYB G-2 HZ~ NHB R2- SSZ WUQ ZY4 ~HD ADTOC UNPAY |
ID | FETCH-LOGICAL-c294t-2a0566117f06afd7c1e5b6709c03d2e7cd8a1b1b5dad09ec935a78036aede4aa3 |
IEDL.DBID | UNPAY |
ISSN | 0377-0427 1879-1778 |
IngestDate | Tue Aug 19 23:24:43 EDT 2025 Wed Oct 01 06:00:04 EDT 2025 Sat Jun 28 18:16:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Time-dependent convection–diffusion equation Variational inequality Stabilised finite-element approximation Positivity preservation |
Language | English |
License | This is an open access article under the CC BY license. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-2a0566117f06afd7c1e5b6709c03d2e7cd8a1b1b5dad09ec935a78036aede4aa3 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cam.2025.116691 |
ParticipantIDs | unpaywall_primary_10_1016_j_cam_2025_116691 crossref_primary_10_1016_j_cam_2025_116691 elsevier_sciencedirect_doi_10_1016_j_cam_2025_116691 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-12-15 |
PublicationDateYYYYMMDD | 2025-12-15 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kuzmin (b14) 2007 Leveque (b27) 1996; 33 Bochev, Gunzburger, Shadid (b4) 2004; 193 Ciarlet, Raviart (b9) 1973; 2 Barrenechea, Burman, Karakatsani (b15) 2017; 135 Ern, Guermond (b19) 2021 Becker, Braack (b7) 2004 Argyros (b29) 1988; 38 Barrenechea, John, Knobloch (b11) 2024; 66 Brezis (b20) 2011 Evans (b21) 2010; vol. 19 Xu, Zikatanov (b10) 1999; 68 Makridakis (b22) 2018; 139 Ashby, Hamdan, Pryer (b30) 2025 Ross, Stynes, Tobiska (b24) 2008 Kuzmin (b28) 2009; 228 Burman, Ern (b13) 2005; 74 Barrenechea, Pryer, Trenam (b31) 2024 Brooks, Hughes (b1) 1982; 32 Amiri, Barrenechea, Pryer (b18) 2024; 34 Guermond (b5) 1999; 33 Burman, Fernández (b8) 2009; 198 Burman, Hansbo (b6) 2004; 193 Heywood, Rannacher (b26) 1990; 27 Hughes, Franca, Hulbert (b2) 1989; 73 Burman (b3) 2010; 199 Barrenechea, Georgoulis, Pryer, Veeser (b17) 2024; 44 Renardy, Rogers (b25) 2004; vol. 13 Mizukami, Hughes (b12) 1985; 50 Lu, Huang, Van Vleck (b16) 2013; 242 Ern, Guermond (b23) 2021 Bochev (10.1016/j.cam.2025.116691_b4) 2004; 193 Heywood (10.1016/j.cam.2025.116691_b26) 1990; 27 Brooks (10.1016/j.cam.2025.116691_b1) 1982; 32 Barrenechea (10.1016/j.cam.2025.116691_b17) 2024; 44 Amiri (10.1016/j.cam.2025.116691_b18) 2024; 34 Becker (10.1016/j.cam.2025.116691_b7) 2004 Burman (10.1016/j.cam.2025.116691_b8) 2009; 198 Kuzmin (10.1016/j.cam.2025.116691_b14) 2007 Barrenechea (10.1016/j.cam.2025.116691_b15) 2017; 135 Ern (10.1016/j.cam.2025.116691_b23) 2021 Barrenechea (10.1016/j.cam.2025.116691_b11) 2024; 66 Kuzmin (10.1016/j.cam.2025.116691_b28) 2009; 228 Brezis (10.1016/j.cam.2025.116691_b20) 2011 Ross (10.1016/j.cam.2025.116691_b24) 2008 Leveque (10.1016/j.cam.2025.116691_b27) 1996; 33 Ashby (10.1016/j.cam.2025.116691_b30) 2025 Burman (10.1016/j.cam.2025.116691_b6) 2004; 193 Hughes (10.1016/j.cam.2025.116691_b2) 1989; 73 Burman (10.1016/j.cam.2025.116691_b13) 2005; 74 Lu (10.1016/j.cam.2025.116691_b16) 2013; 242 Makridakis (10.1016/j.cam.2025.116691_b22) 2018; 139 Argyros (10.1016/j.cam.2025.116691_b29) 1988; 38 Ciarlet (10.1016/j.cam.2025.116691_b9) 1973; 2 Renardy (10.1016/j.cam.2025.116691_b25) 2004; vol. 13 Barrenechea (10.1016/j.cam.2025.116691_b31) 2024 Guermond (10.1016/j.cam.2025.116691_b5) 1999; 33 Burman (10.1016/j.cam.2025.116691_b3) 2010; 199 Ern (10.1016/j.cam.2025.116691_b19) 2021 Mizukami (10.1016/j.cam.2025.116691_b12) 1985; 50 Xu (10.1016/j.cam.2025.116691_b10) 1999; 68 Evans (10.1016/j.cam.2025.116691_b21) 2010; vol. 19 |
References_xml | – year: 2008 ident: b24 article-title: Robust Numerical Methods for Singularly Perturbed Differential Equations publication-title: SSCM – start-page: 123 year: 2004 end-page: 130 ident: b7 article-title: A two-level stabilization scheme for the Navier-Stokes equations publication-title: Numerical Mathematics and Advanced Applications – year: 2025 ident: b30 article-title: A nodally bound-preserving finite element method for hyperbolic convection-reaction problems – year: 2021 ident: b23 article-title: Finite Elements II – volume: 74 start-page: 1637 year: 2005 end-page: 1652 ident: b13 article-title: Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence publication-title: Math. Comp. – start-page: 1 year: 2007 end-page: 5 ident: b14 article-title: Algebraic flux correction for finite element discretizations of coupled systems publication-title: Proceedings of the Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering – volume: 73 start-page: 173 year: 1989 end-page: 189 ident: b2 article-title: A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 198 start-page: 2508 year: 2009 end-page: 2519 ident: b8 article-title: Finite element methods with symmetric stabilization for the transient convection–diffusion–reaction equation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 38 start-page: 131 year: 1988 end-page: 140 ident: b29 article-title: On Newton’s method and nondiscrete mathematical induction publication-title: Bull. Aust. Math. Soc. – volume: 193 start-page: 1437 year: 2004 end-page: 1453 ident: b6 article-title: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2021 ident: b19 article-title: Finite Elements I – year: 2024 ident: b31 article-title: A nodally bound-preserving discontinuous Galerkin method for the drift-diffusion equation – volume: 27 start-page: 353 year: 1990 end-page: 384 ident: b26 article-title: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization publication-title: SIAM J. Numer. Anal. – volume: 193 start-page: 2301 year: 2004 end-page: 2323 ident: b4 article-title: Stability of the SUPG finite element method for transient advection–diffusion problems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 32 start-page: 199 year: 1982 end-page: 259 ident: b1 article-title: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 66 start-page: 3 year: 2024 end-page: 88 ident: b11 article-title: Finite element methods respecting the discrete maximum principle for convection-diffusion equations publication-title: SIAM Rev. – volume: 228 start-page: 2517 year: 2009 end-page: 2534 ident: b28 article-title: Explicit and implicit FEM-FCT algorithms with flux linearization publication-title: J. Comput. Phys. – volume: 139 start-page: 831 year: 2018 end-page: 844 ident: b22 article-title: On the Babuška-Osborn approach to finite element analysis: publication-title: Numer. Math. – volume: 242 start-page: 24 year: 2013 end-page: 36 ident: b16 article-title: The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations publication-title: J. Comput. Phys. – volume: 50 start-page: 181 year: 1985 end-page: 193 ident: b12 article-title: A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 34 start-page: 1533 year: 2024 end-page: 1565 ident: b18 article-title: A nodally bound-preserving finite element method for reaction–convection–diffusion equations publication-title: Math. Models Methods Appl. Sci. – volume: 44 start-page: 2198 year: 2024 end-page: 2219 ident: b17 article-title: A nodally bound-preserving finite element method publication-title: IMA J. Numer. Anal. – volume: vol. 13 start-page: xiv+434 year: 2004 ident: b25 publication-title: An Introduction to Partial Differential Equations – volume: 199 start-page: 1114 year: 2010 end-page: 1123 ident: b3 article-title: Consistent SUPG–method for transient transport problems: Stability and convergence publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 68 start-page: 1429 year: 1999 end-page: 1446 ident: b10 article-title: A monotone finite element scheme for convection-diffusion equations publication-title: Math. Comp. – volume: 33 start-page: 1293 year: 1999 end-page: 1316 ident: b5 article-title: Stabilization of Galerkin approximations of transport equations by subgrid modeling publication-title: M2AN Math. Model. Numer. Anal. – start-page: xiv+599 year: 2011 ident: b20 publication-title: Functional Analysis, Sobolev Spaces and Partial Differential Equations – volume: 33 start-page: 627 year: 1996 end-page: 665 ident: b27 article-title: High-resolution conservative algorithms for advection in incompressible flow publication-title: SIAM J. Numer. Anal. – volume: vol. 19 year: 2010 ident: b21 publication-title: Partial Differential Equations – volume: 135 start-page: 521 year: 2017 end-page: 545 ident: b15 article-title: Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes publication-title: Numer. Math. – volume: 2 start-page: 17 year: 1973 end-page: 31 ident: b9 article-title: Maximum principle and uniform convergence for the finite element method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 135 start-page: 521 issue: 2 year: 2017 ident: 10.1016/j.cam.2025.116691_b15 article-title: Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes publication-title: Numer. Math. doi: 10.1007/s00211-016-0808-z – volume: 34 start-page: 1533 issue: 8 year: 2024 ident: 10.1016/j.cam.2025.116691_b18 article-title: A nodally bound-preserving finite element method for reaction–convection–diffusion equations publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202524500283 – volume: 242 start-page: 24 year: 2013 ident: 10.1016/j.cam.2025.116691_b16 article-title: The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.01.052 – start-page: xiv+599 year: 2011 ident: 10.1016/j.cam.2025.116691_b20 – volume: 193 start-page: 2301 issue: 23 year: 2004 ident: 10.1016/j.cam.2025.116691_b4 article-title: Stability of the SUPG finite element method for transient advection–diffusion problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.01.026 – volume: 32 start-page: 199 issue: 1–3 year: 1982 ident: 10.1016/j.cam.2025.116691_b1 article-title: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(82)90071-8 – volume: 139 start-page: 831 issue: 4 year: 2018 ident: 10.1016/j.cam.2025.116691_b22 article-title: On the Babuška-Osborn approach to finite element analysis: L2 estimates for unstructured meshes publication-title: Numer. Math. doi: 10.1007/s00211-018-0955-5 – year: 2024 ident: 10.1016/j.cam.2025.116691_b31 – volume: 68 start-page: 1429 issue: 228 year: 1999 ident: 10.1016/j.cam.2025.116691_b10 article-title: A monotone finite element scheme for convection-diffusion equations publication-title: Math. Comp. doi: 10.1090/S0025-5718-99-01148-5 – volume: 50 start-page: 181 issue: 2 year: 1985 ident: 10.1016/j.cam.2025.116691_b12 article-title: A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(85)90089-1 – volume: 44 start-page: 2198 issue: 4 year: 2024 ident: 10.1016/j.cam.2025.116691_b17 article-title: A nodally bound-preserving finite element method publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drad055 – volume: 27 start-page: 353 issue: 2 year: 1990 ident: 10.1016/j.cam.2025.116691_b26 article-title: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization publication-title: SIAM J. Numer. Anal. doi: 10.1137/0727022 – volume: 66 start-page: 3 issue: 1 year: 2024 ident: 10.1016/j.cam.2025.116691_b11 article-title: Finite element methods respecting the discrete maximum principle for convection-diffusion equations publication-title: SIAM Rev. doi: 10.1137/22M1488934 – year: 2021 ident: 10.1016/j.cam.2025.116691_b23 – volume: 199 start-page: 1114 issue: 17 year: 2010 ident: 10.1016/j.cam.2025.116691_b3 article-title: Consistent SUPG–method for transient transport problems: Stability and convergence publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2009.11.023 – volume: 74 start-page: 1637 issue: 252 year: 2005 ident: 10.1016/j.cam.2025.116691_b13 article-title: Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence publication-title: Math. Comp. doi: 10.1090/S0025-5718-05-01761-8 – volume: 2 start-page: 17 year: 1973 ident: 10.1016/j.cam.2025.116691_b9 article-title: Maximum principle and uniform convergence for the finite element method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(73)90019-4 – year: 2008 ident: 10.1016/j.cam.2025.116691_b24 article-title: Robust Numerical Methods for Singularly Perturbed Differential Equations – volume: 198 start-page: 2508 issue: 33 year: 2009 ident: 10.1016/j.cam.2025.116691_b8 article-title: Finite element methods with symmetric stabilization for the transient convection–diffusion–reaction equation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2009.02.011 – volume: vol. 13 start-page: xiv+434 year: 2004 ident: 10.1016/j.cam.2025.116691_b25 – volume: 33 start-page: 627 issue: 2 year: 1996 ident: 10.1016/j.cam.2025.116691_b27 article-title: High-resolution conservative algorithms for advection in incompressible flow publication-title: SIAM J. Numer. Anal. doi: 10.1137/0733033 – start-page: 1 year: 2007 ident: 10.1016/j.cam.2025.116691_b14 article-title: Algebraic flux correction for finite element discretizations of coupled systems – volume: 228 start-page: 2517 issue: 7 year: 2009 ident: 10.1016/j.cam.2025.116691_b28 article-title: Explicit and implicit FEM-FCT algorithms with flux linearization publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.12.011 – volume: 193 start-page: 1437 issue: 15–16 year: 2004 ident: 10.1016/j.cam.2025.116691_b6 article-title: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2003.12.032 – year: 2021 ident: 10.1016/j.cam.2025.116691_b19 – year: 2025 ident: 10.1016/j.cam.2025.116691_b30 – start-page: 123 year: 2004 ident: 10.1016/j.cam.2025.116691_b7 article-title: A two-level stabilization scheme for the Navier-Stokes equations – volume: 38 start-page: 131 issue: 1 year: 1988 ident: 10.1016/j.cam.2025.116691_b29 article-title: On Newton’s method and nondiscrete mathematical induction publication-title: Bull. Aust. Math. Soc. doi: 10.1017/S0004972700027349 – volume: vol. 19 year: 2010 ident: 10.1016/j.cam.2025.116691_b21 – volume: 73 start-page: 173 issue: 2 year: 1989 ident: 10.1016/j.cam.2025.116691_b2 article-title: A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(89)90111-4 – volume: 33 start-page: 1293 issue: 6 year: 1999 ident: 10.1016/j.cam.2025.116691_b5 article-title: Stabilization of Galerkin approximations of transport equations by subgrid modeling publication-title: M2AN Math. Model. Numer. Anal. doi: 10.1051/m2an:1999145 |
SSID | ssj0006914 |
Score | 2.4666247 |
Snippet | This paper presents a new method to approximate the time-dependent convection–diffusion equations using conforming finite element methods, ensuring that the... |
SourceID | unpaywall crossref elsevier |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 116691 |
SubjectTerms | Positivity preservation Stabilised finite-element approximation Time-dependent convection–diffusion equation Variational inequality |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2LF_UgfuL6RQ6elLhN26TtURYXEfSigrcyaVJZke7qdhEv4n_wH_pLnOnHqgcVPLYkpEzCm0f6Zh5j-yrUmAXBCQ9CI0LQWhjtjFABIF_wczwidA95fqFPr8OzG3XTYf22FoZklQ3215heoXXzptdEszceDnuXXhBF5BSBSRw5j6JCc-r-hWf66OVT5qGTur83DhY0uv2zWWm8MqBidF8hcGidyJ9y0_y0GMPzE9zff8k9g2W21JBGflx_1wrruGKVLZ7POq5O1pg95sXI4txnbsgpSZDAlXCguOX5kIgld7VSnNem0RzZKidnedH64Ja8kqBXhQ7vr29knTKluzTuHup-4JN1dj04ueqfisZBQWR-EpbCB-Q3Wsoo9zTkNsqkU4Y6tmVeYH0XZTYGaaRRFqyXuCwJFEQxJjVw1oUAwQabK0aF22RcZ8YzSF6Q_gCSvDgOVS4dqDw2idVKdtlBG7t0XDfKSFsF2V2KgU4p0Gkd6C4L2-im33Y7RSD_bdrhbCf-XmTrf4tsswV6IsmKVDtsrnycul0kHqXZq07WB0VW10k priority: 102 providerName: Elsevier |
Title | A nodally bound-preserving finite element method for time-dependent convection–diffusion equations |
URI | https://dx.doi.org/10.1016/j.cam.2025.116691 https://doi.org/10.1016/j.cam.2025.116691 |
UnpaywallVersion | publishedVersion |
Volume | 470 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1879-1778 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006914 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 1879-1778 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006914 providerName: Elsevier – providerCode: PRVESC databaseName: Sciencedirect - Freedom Collection issn: 1879-1778 databaseCode: ACRLP dateStart: 20211001 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006914 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 1879-1778 databaseCode: AIKHN dateStart: 20210601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006914 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1879-1778 databaseCode: AKRWK dateStart: 19750301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1BsoAu-gCqpkA0i65AE3lsz4y9jCKilNIoqogUVtYdz7hqGzmBOEJhUfUf-EO-hLl-RBTxXFmW_NKdse_x3HPPIeREhNJlQbDMg1CzEKRkWlrNRAAOL_iZmyK4Dnk-lqNp-HYmZrVYNPbC3KvflzysFLBh3Bfu5ZYS-9TbEmtJLdKejif9D2WVQCmGnhH4cxWpmHGloqaC-atr_C4HPVrnS9h8hvn8hxwz3KvYWatSmhCpJTe9daF76ZefhBv_6fH3yW6NNGm_mhoH5IHNn5Cd861M6-opMX2aL4x7kA3VaK_EkBWLH4_8kmZXiEaprejltHKapg7iUrSjZ415bkFL3nrZHfHt7iv6raxxAY7aj5WI-OoZmQ7fvB-MWG27wFI_DgvmgwNFknOVeRIyo1JuhUaZt9QLjG9VaiLgmmthwHixTeNAgIpcJgRrbAgQHJJWvsjtEaEy1Z52iMdhJnDIMIpCkXELIot0bKTgHfKqGYhkWalrJA3t7DpxoUswdEkVug4Jm6FKanhQpf3ERf1Pp73eDuvfb3L8X0c_J49xD-ktXLwgreLT2r50IKXQXfKwd8u7pN0fXLyb4Pb0bDTu1pP2O5AC5X0 |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6C9gAc0Pgl2NjmA6chq3FiO8mxqoba0fZCkbhFz7GDilDoRivU2_4H_kP-kj03SbUdAGnXOE-Onq3vfXI-vw_gTElNVRAdD1AaLlFrbrQzXEVIfCEsaIv4c8jRWPev5Y8bdbMBveYujJdV1thfYfoKresnnTqbndl02rkKojj2ThFUxInzKLUJbakIk1vQ7g4u--M1IOu0avFN73Mf0PzcXMm8cvT30UNF2KF1Kl4rT1uLcobLJ7y__6v8XHyA3Zo3sm71aXuw4cp92Bmtm64-HoDtsvLBUuySGW-WxL3G1UNBecuKqeeWzFVicVb5RjMirMyby_PGCnfOVir01V2Hl9_P3j1l4Y_TmPtZtQR_PITri--TXp_XJgo8D1M55yESxdFCxEWgsbBxLpwyvmlbHkQ2dHFuExRGGGXRBqnL00hhnFBdQ2edRIyOoFU-lO4YmM5NYIi_EANC4nlJIlUhHKoiManVSpzAtyZ32azqlZE1IrK7jBKd-URnVaJPQDbZzf5Z8Iyw_K2w8_VKvD_Jx_-b5Cts9SejYTYcjC8_wbYf8QoWoU6hNf-1cJ-Jh8zNl3qf_QFt-tuC |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQewAO7IhdPnACuYrT2E6OFQIhpFYcqFRO0Th2EItSoKlQOfEP_CFfgicLAsR6jJTFGjuZF8-b9wjZFYF0WRAs8yDQLAApmZZWM9EGhxf81C0R3Ifs9uRxPzgZiEElFo29MB_q9wUPKwFsGPeFe7mlxD71psRaUoM0-73TznlRJVCKoWcE_lyFKmJcqbCuYH51j-9y0PQ4u4XJA9zcvMsxR_MlO2tUSBMiteS6Nc51K3n8JNz4p-EvkLkKadJOuTQWyZTNlshs902mdbRMTIdmQ-MGMqEa7ZUYsmLx45Fd0PQS0Si1Jb2clk7T1EFcinb0rDbPzWnBWy-6I16entFvZYwbcNTelSLioxXSPzo8Ozhmle0CS_woyJkPDhRJzlXqSUiNSrgVGmXeEq9tfKsSEwLXXAsDxotsErUFqNBlQrDGBgDtVdLIhpldI1Qm2tMO8TjMBA4ZhmEgUm5BpKGOjBR8nezVExHfluoacU07u4pd6GIMXVyGbp0E9VTFFTwo037sov7TZftv0_r7Qzb-dfYmmcEjpLdwsUUa-f3YbjuQkuudanm-Aguj4Vw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nodally+bound-preserving+finite+element+method+for+time-dependent+convection%E2%80%93diffusion+equations&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Amiri%2C+Abdolreza&rft.au=Barrenechea%2C+Gabriel+R.&rft.au=Pryer%2C+Tristan&rft.date=2025-12-15&rft.issn=0377-0427&rft.volume=470&rft.spage=116691&rft_id=info:doi/10.1016%2Fj.cam.2025.116691&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2025_116691 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |