Understanding Grasp Synergies During Reach-to-Grasp Using an Instrumented Data Glove

Grasp synergies lead to the identification of underlying patterns to develop control strategies for five-fingered prosthetic hands or exoskeletons. Data gloves play a crucial role in the study of human grasping and could provide insights into grasp synergies. This article presents the design and imp...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 25; no. 4; pp. 6133 - 6150
Main Authors Pratap, Subhash, Hatta, Yoshiyuki, Ito, Kazuaki, Hazarika, Shyamanta M.
Format Journal Article
LanguageEnglish
Published New York IEEE 15.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3523512

Cover

Abstract Grasp synergies lead to the identification of underlying patterns to develop control strategies for five-fingered prosthetic hands or exoskeletons. Data gloves play a crucial role in the study of human grasping and could provide insights into grasp synergies. This article presents the design and implementation of a data glove that has been fabricated using 3-D-printing technology and enhanced with instrumentation. The glove utilizes flexible sensors for the fingers and force sensors integrated into the glove at the fingertips to accurately capture grasp postures and forces. Understanding the kinematics and dynamics of human grasp including reach-to-grasp is undertaken. A comprehensive study involving ten healthy subjects was conducted. Grasp synergy analysis is carried out to identify underlying patterns for grasping. Correlation analysis showed a strong synergy, especially between index and middle fingers with a 0.95 correlation coefficient. Principal component analysis (PCA) facilitated dimensionality reduction, revealing that three principal components (PCs) capture over 97% of the variance in grasp postures, underscoring the complexity and synergy of hand movements. Grasp classification experiments validated the efficacy of PCA-based synergy, achieving high classification accuracies (95.84%-92.34%) and demonstrating the method's competitive performance in scenarios requiring reduced sensor complexity, as confirmed by confusion matrices and comparative analysis with existing methodologies. The t-distributed stochastic neighbor embedding (t-SNE) visualization showcased clusters of grasp postures and forces, unveiling similarities and patterns among different grasp types (GTs). These findings could serve as a comprehensive guide in the design and control of five-fingered robotic hands and exoskeletons for rehabilitation applications, enabling the replication of natural hand movements.
AbstractList Grasp synergies lead to the identification of underlying patterns to develop control strategies for five-fingered prosthetic hands or exoskeletons. Data gloves play a crucial role in the study of human grasping and could provide insights into grasp synergies. This article presents the design and implementation of a data glove that has been fabricated using 3-D-printing technology and enhanced with instrumentation. The glove utilizes flexible sensors for the fingers and force sensors integrated into the glove at the fingertips to accurately capture grasp postures and forces. Understanding the kinematics and dynamics of human grasp including reach-to-grasp is undertaken. A comprehensive study involving ten healthy subjects was conducted. Grasp synergy analysis is carried out to identify underlying patterns for grasping. Correlation analysis showed a strong synergy, especially between index and middle fingers with a 0.95 correlation coefficient. Principal component analysis (PCA) facilitated dimensionality reduction, revealing that three principal components (PCs) capture over 97% of the variance in grasp postures, underscoring the complexity and synergy of hand movements. Grasp classification experiments validated the efficacy of PCA-based synergy, achieving high classification accuracies (95.84%–92.34%) and demonstrating the method’s competitive performance in scenarios requiring reduced sensor complexity, as confirmed by confusion matrices and comparative analysis with existing methodologies. The t-distributed stochastic neighbor embedding (t-SNE) visualization showcased clusters of grasp postures and forces, unveiling similarities and patterns among different grasp types (GTs). These findings could serve as a comprehensive guide in the design and control of five-fingered robotic hands and exoskeletons for rehabilitation applications, enabling the replication of natural hand movements.
Author Hatta, Yoshiyuki
Pratap, Subhash
Hazarika, Shyamanta M.
Ito, Kazuaki
Author_xml – sequence: 1
  givenname: Subhash
  orcidid: 0000-0002-9904-4497
  surname: Pratap
  fullname: Pratap, Subhash
  email: subhash.iitg18@gmail.com
  organization: Department of Mechanical Engineering, Biomimetic Robotics and Artificial Intelligence Laboratory (BRAIL), Indian Institute of Technology Guwahati, Guwahati, India
– sequence: 2
  givenname: Yoshiyuki
  orcidid: 0000-0001-7077-5264
  surname: Hatta
  fullname: Hatta, Yoshiyuki
  email: hatta.yoshiyuki.b3@f.gifu-u.ac.jp
  organization: Department of Mechanical Engineering, Gifu University, Gifu, Japan
– sequence: 3
  givenname: Kazuaki
  orcidid: 0000-0002-8977-3709
  surname: Ito
  fullname: Ito, Kazuaki
  email: ito.kazuaki.x5@f.gifu-u.ac.jp
  organization: Department of Mechanical Engineering, Gifu University, Gifu, Japan
– sequence: 4
  givenname: Shyamanta M.
  orcidid: 0000-0003-4547-6013
  surname: Hazarika
  fullname: Hazarika, Shyamanta M.
  email: s.m.hazarika@iitg.ac.in
  organization: Department of Mechanical Engineering, Biomimetic Robotics and Artificial Intelligence Laboratory (BRAIL), Indian Institute of Technology Guwahati, Guwahati, India
BookMark eNp9kE9LAzEQxYNUsK1-AMHDguet-btJjtLWWikKtgVvIZvN1i1ttiZZod_eLtuDePA0w5v3m2HeAPRc7SwAtwiOEILy4WU5fR1hiOmIMEwYwhegjxgTKeJU9NqewJQS_nEFBiFsIUSSM94Hq7UrrA9Ru6Jym2TmdTgky6OzflPZkEwa38rvVpvPNNZpN1-HVtQumbsQfbO3Ltoimeiok9mu_rbX4LLUu2BvznUI1k_T1fg5XbzN5uPHRWqwpDHFouAsY9IYIg2DsORYioxzKDKIcqStyTmxuTGoZLqkQkpaFoJCjXJDuCnIENx3ew--_mpsiGpbN96dTiqCsky0T-OTi3cu4-sQvC2VqaKOVe2i19VOIajaCFUboWojVOcITyT6Qx58tdf--C9z1zGVtfaXX2DJKCU__dJ-Vg
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1038_s41598_025_91970_5
Cites_doi 10.1016/j.jht.2020.04.002
10.1109/JSEN.2021.3059028
10.1109/IATMSI60426.2024.10502560
10.1109/THMS.2015.2470657
10.1016/j.mejo.2018.01.014
10.3389/fnins.2021.621885
10.1155/2018/8567648
10.1302/0301-620X.38B4.902
10.1109/URAI.2017.7992819
10.3390/s21216948
10.3390/s19183896
10.1109/TOH.2012.53
10.1016/j.compag.2021.106472
10.1109/TBCAS.2018.2810182
10.1109/ACCESS.2021.3129650
10.3390/s22197417
10.1016/j.matpr.2022.04.785
10.1109/TNSRE.2019.2928719
10.1109/JSEN.2020.2965580
10.1109/Humanoids43949.2019.9035047
10.1080/105294199277860
10.1109/TIM.2021.3077967
10.1109/TIM.2023.3265102
10.1109/ROBOT.1985.1087226
10.1109/TBCAS.2019.2940030
10.1055/b-005-148861
10.1109/JSEN.2020.3001982
10.1007/s11042-018-5971-z
10.1016/j.measurement.2016.06.059
10.1109/TIM.2021.3065761
10.1186/s12984-019-0536-6
10.1109/EMBC.2015.7319426
10.1016/j.plrev.2016.02.001
10.1016/j.robot.2019.103259
10.3390/bios10080085
10.1109/TII.2020.3010369
10.1109/TNSRE.2017.2720727
10.1371/journal.pone.0268880
10.1098/rstb.2011.0152
10.1109/TIM.2023.3243614
10.1109/IROS.2017.8206575
10.1109/TBME.2013.2250286
10.3390/s16122005
10.3390/s22030831
10.5772/19977
10.1109/JSEN.2020.3014276
10.1109/MRA.2015.2448951
10.3390/s23073364
10.3390/s150818315
10.1109/TBME.2021.3110432
10.3389/fncom.2022.1006763
10.1109/IROS.2007.4399115
10.1109/70.34763
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3523512
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 6150
ExternalDocumentID 10_1109_JSEN_2024_3523512
10829544
Genre orig-research
GrantInformation_xml – fundername: DST, Government of India
  grantid: TDP/BDTD/21/2019
– fundername: Japan Student Services Organization (JASSO) and Gifu University, Japan
  grantid: TDP/BDTD/21/2019
  funderid: 10.13039/501100010485
– fundername: INAE Abdul Kalam Technology Innovation National Fellowship
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-28d75659cc39c500f729867708601b1aecb73ebcc1f5af48994fd840a1bc37cd3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:10:05 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Wed Oct 01 06:54:52 EDT 2025
Wed Aug 27 01:50:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-28d75659cc39c500f729867708601b1aecb73ebcc1f5af48994fd840a1bc37cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8977-3709
0000-0001-7077-5264
0000-0003-4547-6013
0000-0002-9904-4497
PQID 3166815302
PQPubID 75733
PageCount 18
ParticipantIDs crossref_primary_10_1109_JSEN_2024_3523512
ieee_primary_10829544
crossref_citationtrail_10_1109_JSEN_2024_3523512
proquest_journals_3166815302
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-15
PublicationDateYYYYMMDD 2025-02-15
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
van der Maaten (ref58) 2008; 9
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref9
ref4
ref3
Schlesinger (ref7) 1919
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
Reese (ref49) 2016
ref23
ref26
ref25
ref20
ref22
ref21
(ref54) 2023
ref28
ref27
ref29
Jackson (ref6) 1898; 1
References_xml – ident: ref2
  doi: 10.1016/j.jht.2020.04.002
– ident: ref31
  doi: 10.1109/JSEN.2021.3059028
– ident: ref30
  doi: 10.1109/IATMSI60426.2024.10502560
– ident: ref12
  doi: 10.1109/THMS.2015.2470657
– ident: ref24
  doi: 10.1016/j.mejo.2018.01.014
– ident: ref21
  doi: 10.3389/fnins.2021.621885
– ident: ref3
  doi: 10.1155/2018/8567648
– ident: ref8
  doi: 10.1302/0301-620X.38B4.902
– ident: ref44
  doi: 10.1109/URAI.2017.7992819
– ident: ref18
  doi: 10.3390/s21216948
– ident: ref52
  doi: 10.3390/s19183896
– ident: ref10
  doi: 10.1109/TOH.2012.53
– ident: ref39
  doi: 10.1016/j.compag.2021.106472
– ident: ref25
  doi: 10.1109/TBCAS.2018.2810182
– ident: ref16
  doi: 10.1109/ACCESS.2021.3129650
– ident: ref46
  doi: 10.3390/s22197417
– ident: ref35
  doi: 10.1016/j.matpr.2022.04.785
– ident: ref32
  doi: 10.1109/TNSRE.2019.2928719
– ident: ref43
  doi: 10.1109/JSEN.2020.2965580
– ident: ref45
  doi: 10.1109/Humanoids43949.2019.9035047
– ident: ref57
  doi: 10.1080/105294199277860
– ident: ref42
  doi: 10.1109/TIM.2021.3077967
– ident: ref27
  doi: 10.1109/TIM.2023.3265102
– ident: ref11
  doi: 10.1109/ROBOT.1985.1087226
– ident: ref17
  doi: 10.1109/TBCAS.2019.2940030
– ident: ref51
  doi: 10.1055/b-005-148861
– ident: ref28
  doi: 10.1109/JSEN.2020.3001982
– ident: ref14
  doi: 10.1007/s11042-018-5971-z
– ident: ref41
  doi: 10.1016/j.measurement.2016.06.059
– ident: ref40
  doi: 10.1109/TIM.2021.3065761
– ident: ref47
  doi: 10.1186/s12984-019-0536-6
– ident: ref36
  doi: 10.1109/EMBC.2015.7319426
– ident: ref1
  doi: 10.1016/j.plrev.2016.02.001
– ident: ref55
  doi: 10.1016/j.robot.2019.103259
– ident: ref19
  doi: 10.3390/bios10080085
– ident: ref29
  doi: 10.1109/TII.2020.3010369
– volume-title: Joint Range of Motion and Muscle Length Testing-E-book
  year: 2016
  ident: ref49
– ident: ref23
  doi: 10.1109/TNSRE.2017.2720727
– ident: ref20
  doi: 10.1371/journal.pone.0268880
– ident: ref5
  doi: 10.1098/rstb.2011.0152
– ident: ref13
  doi: 10.1109/TIM.2023.3243614
– ident: ref38
  doi: 10.1109/IROS.2017.8206575
– ident: ref50
  doi: 10.1109/TBME.2013.2250286
– ident: ref37
  doi: 10.3390/s16122005
– ident: ref48
  doi: 10.3390/s22030831
– ident: ref4
  doi: 10.5772/19977
– ident: ref26
  doi: 10.1109/JSEN.2020.3014276
– ident: ref56
  doi: 10.1109/MRA.2015.2448951
– volume-title: Pressure Profile Systems
  year: 2023
  ident: ref54
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref58
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref34
  doi: 10.3390/s23073364
– ident: ref53
  doi: 10.3390/s150818315
– ident: ref33
  doi: 10.1109/TBME.2021.3110432
– ident: ref22
  doi: 10.3389/fncom.2022.1006763
– volume: 1
  start-page: 79
  year: 1898
  ident: ref6
  article-title: Relations of different divisions of the central neurons system to one another and to parts of the body
  publication-title: Lancet
– start-page: 321
  volume-title: Replacement Links and Work Aids
  year: 1919
  ident: ref7
  article-title: The mechanical structure of the artificial limbs
– ident: ref15
  doi: 10.1109/IROS.2007.4399115
– ident: ref9
  doi: 10.1109/70.34763
SSID ssj0019757
Score 2.4355528
Snippet Grasp synergies lead to the identification of underlying patterns to develop control strategies for five-fingered prosthetic hands or exoskeletons. Data gloves...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6133
SubjectTerms Accuracy
Biomechanics
Classification
Complexity
Correlation analysis
Correlation coefficients
data glove
Data gloves
End effectors
Exoskeletons
Fingers
Flexible components
Force
Gloves
grasp synergy
Grasping
Grasping (robotics)
hand orthosis
Hands
human grasp
Instruments
Kinematics
multisensory information
Optical fiber sensors
Principal components analysis
Prostheses
Robot control
Sensors
Thumb
Wearable sensors
Title Understanding Grasp Synergies During Reach-to-Grasp Using an Instrumented Data Glove
URI https://ieeexplore.ieee.org/document/10829544
https://www.proquest.com/docview/3166815302
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4RLurBH4gRRdODJ5Ph1nZbdzQCIokcBBJuS9d1MdEAkXHAv97XbhDUaLwtWZs1-_rW9-299z2A60BpJUPJkeRkrsMV5Q76ccIREVp56mbCtxHdp0HQG_P-xJ-Uxeq2FkZrbZPPdMtc2lh-OlNL86sMLVyYsBSvQCUUQVGstQkZRKGV9UQLxmeycFKGMD03uu0POwOkgpS30N1gvke_HEK2q8qPT7E9X7qHMFivrEgreW0t86SlPr6JNv576UdwUHqa5K7YGsewo6c12N_SH6zBbtkC_WV1AqPxdpkLeXiXizkZrkxpIJJp0rbljOTZJF86-cwp7tuEAyKn5NEK0VqBz5S0ZS6JTQ6tw7jbGd33nLLlgqNoxHOHijREFy9SikXKd90MfW-jeIfEx_UST2qVhEwnSnmZLzOOZI1nKXJE6SWKhSplp1Cdzqb6DAhynURzGZqAMZeciUwmzM-oDALKUyUa4K4xiFWpR27aYrzFlpe4UWxgiw1scQlbA242U-aFGMdfg-sGhq2BBQINaK6Rjkt7XcTMCwJhtg49_2XaBexR0_rX9ILxm1DFl6ov0R_Jkyu7Dz8BImfaUA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGQoDj1JEeXpgQkpIbOc1Igq0hWagrdQtchxHSKC2gjCUX8_ZSVEBgViiSLGVKJ8vvi939x3AmS-VFIHgSHJyx-KScgv9uNAKI7TyzMlDz0R0-7HfGfHe2BtXxeqmFkYpZZLPlK1PTSw_m8o3_asMLTzUYSm-Cmt45F5ZrvUZNIgCI-yJNox3ZcG4CmK6TnTRG1zHSAYpt9HhYJ5Lv2xDpq_Kj4-x2WFutiBePFuZWPJkvxWpLd-_yTb---G3YbPyNclluTh2YEVNGrCxpEDYgHrVBP1xvgvD0XKhC7l9Ea8zMpjr4kCk06RtChrJg06_tIqpVV43KQdETEjXSNEaic-MtEUhiEkPbcLo5np41bGqpguWpBEvLBpmATp5kZQskp7j5Oh9a807pD6Om7pCyTRgKpXSzT2Rc6RrPM-QJQo3lSyQGduD2mQ6UftAkO2kiotAh4y54CzMRcq8nArfpzyTYQucBQaJrBTJdWOM58QwEydKNGyJhi2pYGvB-eeUWSnH8dfgpoZhaWCJQAuOFkgnlcW-Jsz1_VAvHXrwy7RTqHeG_fvkvhvfHcI61Y2AdWcY7whq-ILVMXonRXpi1uQHu1vdnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+Grasp+Synergies+During+Reach-to-Grasp+Using+an+Instrumented+Data+Glove&rft.jtitle=IEEE+sensors+journal&rft.au=Pratap%2C+Subhash&rft.au=Hatta%2C+Yoshiyuki&rft.au=Ito%2C+Kazuaki&rft.au=Hazarika%2C+Shyamanta+M.&rft.date=2025-02-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=4&rft.spage=6133&rft.epage=6150&rft_id=info:doi/10.1109%2FJSEN.2024.3523512&rft.externalDocID=10829544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon