Understanding Grasp Synergies During Reach-to-Grasp Using an Instrumented Data Glove
Grasp synergies lead to the identification of underlying patterns to develop control strategies for five-fingered prosthetic hands or exoskeletons. Data gloves play a crucial role in the study of human grasping and could provide insights into grasp synergies. This article presents the design and imp...
        Saved in:
      
    
          | Published in | IEEE sensors journal Vol. 25; no. 4; pp. 6133 - 6150 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        15.02.2025
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1530-437X 1558-1748  | 
| DOI | 10.1109/JSEN.2024.3523512 | 
Cover
| Abstract | Grasp synergies lead to the identification of underlying patterns to develop control strategies for five-fingered prosthetic hands or exoskeletons. Data gloves play a crucial role in the study of human grasping and could provide insights into grasp synergies. This article presents the design and implementation of a data glove that has been fabricated using 3-D-printing technology and enhanced with instrumentation. The glove utilizes flexible sensors for the fingers and force sensors integrated into the glove at the fingertips to accurately capture grasp postures and forces. Understanding the kinematics and dynamics of human grasp including reach-to-grasp is undertaken. A comprehensive study involving ten healthy subjects was conducted. Grasp synergy analysis is carried out to identify underlying patterns for grasping. Correlation analysis showed a strong synergy, especially between index and middle fingers with a 0.95 correlation coefficient. Principal component analysis (PCA) facilitated dimensionality reduction, revealing that three principal components (PCs) capture over 97% of the variance in grasp postures, underscoring the complexity and synergy of hand movements. Grasp classification experiments validated the efficacy of PCA-based synergy, achieving high classification accuracies (95.84%-92.34%) and demonstrating the method's competitive performance in scenarios requiring reduced sensor complexity, as confirmed by confusion matrices and comparative analysis with existing methodologies. The t-distributed stochastic neighbor embedding (t-SNE) visualization showcased clusters of grasp postures and forces, unveiling similarities and patterns among different grasp types (GTs). These findings could serve as a comprehensive guide in the design and control of five-fingered robotic hands and exoskeletons for rehabilitation applications, enabling the replication of natural hand movements. | 
    
|---|---|
| AbstractList | Grasp synergies lead to the identification of underlying patterns to develop control strategies for five-fingered prosthetic hands or exoskeletons. Data gloves play a crucial role in the study of human grasping and could provide insights into grasp synergies. This article presents the design and implementation of a data glove that has been fabricated using 3-D-printing technology and enhanced with instrumentation. The glove utilizes flexible sensors for the fingers and force sensors integrated into the glove at the fingertips to accurately capture grasp postures and forces. Understanding the kinematics and dynamics of human grasp including reach-to-grasp is undertaken. A comprehensive study involving ten healthy subjects was conducted. Grasp synergy analysis is carried out to identify underlying patterns for grasping. Correlation analysis showed a strong synergy, especially between index and middle fingers with a 0.95 correlation coefficient. Principal component analysis (PCA) facilitated dimensionality reduction, revealing that three principal components (PCs) capture over 97% of the variance in grasp postures, underscoring the complexity and synergy of hand movements. Grasp classification experiments validated the efficacy of PCA-based synergy, achieving high classification accuracies (95.84%–92.34%) and demonstrating the method’s competitive performance in scenarios requiring reduced sensor complexity, as confirmed by confusion matrices and comparative analysis with existing methodologies. The t-distributed stochastic neighbor embedding (t-SNE) visualization showcased clusters of grasp postures and forces, unveiling similarities and patterns among different grasp types (GTs). These findings could serve as a comprehensive guide in the design and control of five-fingered robotic hands and exoskeletons for rehabilitation applications, enabling the replication of natural hand movements. | 
    
| Author | Hatta, Yoshiyuki Pratap, Subhash Hazarika, Shyamanta M. Ito, Kazuaki  | 
    
| Author_xml | – sequence: 1 givenname: Subhash orcidid: 0000-0002-9904-4497 surname: Pratap fullname: Pratap, Subhash email: subhash.iitg18@gmail.com organization: Department of Mechanical Engineering, Biomimetic Robotics and Artificial Intelligence Laboratory (BRAIL), Indian Institute of Technology Guwahati, Guwahati, India – sequence: 2 givenname: Yoshiyuki orcidid: 0000-0001-7077-5264 surname: Hatta fullname: Hatta, Yoshiyuki email: hatta.yoshiyuki.b3@f.gifu-u.ac.jp organization: Department of Mechanical Engineering, Gifu University, Gifu, Japan – sequence: 3 givenname: Kazuaki orcidid: 0000-0002-8977-3709 surname: Ito fullname: Ito, Kazuaki email: ito.kazuaki.x5@f.gifu-u.ac.jp organization: Department of Mechanical Engineering, Gifu University, Gifu, Japan – sequence: 4 givenname: Shyamanta M. orcidid: 0000-0003-4547-6013 surname: Hazarika fullname: Hazarika, Shyamanta M. email: s.m.hazarika@iitg.ac.in organization: Department of Mechanical Engineering, Biomimetic Robotics and Artificial Intelligence Laboratory (BRAIL), Indian Institute of Technology Guwahati, Guwahati, India  | 
    
| BookMark | eNp9kE9LAzEQxYNUsK1-AMHDguet-btJjtLWWikKtgVvIZvN1i1ttiZZod_eLtuDePA0w5v3m2HeAPRc7SwAtwiOEILy4WU5fR1hiOmIMEwYwhegjxgTKeJU9NqewJQS_nEFBiFsIUSSM94Hq7UrrA9Ru6Jym2TmdTgky6OzflPZkEwa38rvVpvPNNZpN1-HVtQumbsQfbO3Ltoimeiok9mu_rbX4LLUu2BvznUI1k_T1fg5XbzN5uPHRWqwpDHFouAsY9IYIg2DsORYioxzKDKIcqStyTmxuTGoZLqkQkpaFoJCjXJDuCnIENx3ew--_mpsiGpbN96dTiqCsky0T-OTi3cu4-sQvC2VqaKOVe2i19VOIajaCFUboWojVOcITyT6Qx58tdf--C9z1zGVtfaXX2DJKCU__dJ-Vg | 
    
| CODEN | ISJEAZ | 
    
| CitedBy_id | crossref_primary_10_1038_s41598_025_91970_5 | 
    
| Cites_doi | 10.1016/j.jht.2020.04.002 10.1109/JSEN.2021.3059028 10.1109/IATMSI60426.2024.10502560 10.1109/THMS.2015.2470657 10.1016/j.mejo.2018.01.014 10.3389/fnins.2021.621885 10.1155/2018/8567648 10.1302/0301-620X.38B4.902 10.1109/URAI.2017.7992819 10.3390/s21216948 10.3390/s19183896 10.1109/TOH.2012.53 10.1016/j.compag.2021.106472 10.1109/TBCAS.2018.2810182 10.1109/ACCESS.2021.3129650 10.3390/s22197417 10.1016/j.matpr.2022.04.785 10.1109/TNSRE.2019.2928719 10.1109/JSEN.2020.2965580 10.1109/Humanoids43949.2019.9035047 10.1080/105294199277860 10.1109/TIM.2021.3077967 10.1109/TIM.2023.3265102 10.1109/ROBOT.1985.1087226 10.1109/TBCAS.2019.2940030 10.1055/b-005-148861 10.1109/JSEN.2020.3001982 10.1007/s11042-018-5971-z 10.1016/j.measurement.2016.06.059 10.1109/TIM.2021.3065761 10.1186/s12984-019-0536-6 10.1109/EMBC.2015.7319426 10.1016/j.plrev.2016.02.001 10.1016/j.robot.2019.103259 10.3390/bios10080085 10.1109/TII.2020.3010369 10.1109/TNSRE.2017.2720727 10.1371/journal.pone.0268880 10.1098/rstb.2011.0152 10.1109/TIM.2023.3243614 10.1109/IROS.2017.8206575 10.1109/TBME.2013.2250286 10.3390/s16122005 10.3390/s22030831 10.5772/19977 10.1109/JSEN.2020.3014276 10.1109/MRA.2015.2448951 10.3390/s23073364 10.3390/s150818315 10.1109/TBME.2021.3110432 10.3389/fncom.2022.1006763 10.1109/IROS.2007.4399115 10.1109/70.34763  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| DOI | 10.1109/JSEN.2024.3523512 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Engineering  | 
    
| EISSN | 1558-1748 | 
    
| EndPage | 6150 | 
    
| ExternalDocumentID | 10_1109_JSEN_2024_3523512 10829544  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: DST, Government of India grantid: TDP/BDTD/21/2019 – fundername: Japan Student Services Organization (JASSO) and Gifu University, Japan grantid: TDP/BDTD/21/2019 funderid: 10.13039/501100010485 – fundername: INAE Abdul Kalam Technology Innovation National Fellowship  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c294t-28d75659cc39c500f729867708601b1aecb73ebcc1f5af48994fd840a1bc37cd3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1530-437X | 
    
| IngestDate | Mon Jun 30 10:10:05 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 Wed Oct 01 06:54:52 EDT 2025 Wed Aug 27 01:50:08 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-28d75659cc39c500f729867708601b1aecb73ebcc1f5af48994fd840a1bc37cd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8977-3709 0000-0001-7077-5264 0000-0003-4547-6013 0000-0002-9904-4497  | 
    
| PQID | 3166815302 | 
    
| PQPubID | 75733 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | crossref_primary_10_1109_JSEN_2024_3523512 ieee_primary_10829544 crossref_citationtrail_10_1109_JSEN_2024_3523512 proquest_journals_3166815302  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-02-15 | 
    
| PublicationDateYYYYMMDD | 2025-02-15 | 
    
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE sensors journal | 
    
| PublicationTitleAbbrev | JSEN | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 van der Maaten (ref58) 2008; 9 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref9 ref4 ref3 Schlesinger (ref7) 1919 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 Reese (ref49) 2016 ref23 ref26 ref25 ref20 ref22 ref21 (ref54) 2023 ref28 ref27 ref29 Jackson (ref6) 1898; 1  | 
    
| References_xml | – ident: ref2 doi: 10.1016/j.jht.2020.04.002 – ident: ref31 doi: 10.1109/JSEN.2021.3059028 – ident: ref30 doi: 10.1109/IATMSI60426.2024.10502560 – ident: ref12 doi: 10.1109/THMS.2015.2470657 – ident: ref24 doi: 10.1016/j.mejo.2018.01.014 – ident: ref21 doi: 10.3389/fnins.2021.621885 – ident: ref3 doi: 10.1155/2018/8567648 – ident: ref8 doi: 10.1302/0301-620X.38B4.902 – ident: ref44 doi: 10.1109/URAI.2017.7992819 – ident: ref18 doi: 10.3390/s21216948 – ident: ref52 doi: 10.3390/s19183896 – ident: ref10 doi: 10.1109/TOH.2012.53 – ident: ref39 doi: 10.1016/j.compag.2021.106472 – ident: ref25 doi: 10.1109/TBCAS.2018.2810182 – ident: ref16 doi: 10.1109/ACCESS.2021.3129650 – ident: ref46 doi: 10.3390/s22197417 – ident: ref35 doi: 10.1016/j.matpr.2022.04.785 – ident: ref32 doi: 10.1109/TNSRE.2019.2928719 – ident: ref43 doi: 10.1109/JSEN.2020.2965580 – ident: ref45 doi: 10.1109/Humanoids43949.2019.9035047 – ident: ref57 doi: 10.1080/105294199277860 – ident: ref42 doi: 10.1109/TIM.2021.3077967 – ident: ref27 doi: 10.1109/TIM.2023.3265102 – ident: ref11 doi: 10.1109/ROBOT.1985.1087226 – ident: ref17 doi: 10.1109/TBCAS.2019.2940030 – ident: ref51 doi: 10.1055/b-005-148861 – ident: ref28 doi: 10.1109/JSEN.2020.3001982 – ident: ref14 doi: 10.1007/s11042-018-5971-z – ident: ref41 doi: 10.1016/j.measurement.2016.06.059 – ident: ref40 doi: 10.1109/TIM.2021.3065761 – ident: ref47 doi: 10.1186/s12984-019-0536-6 – ident: ref36 doi: 10.1109/EMBC.2015.7319426 – ident: ref1 doi: 10.1016/j.plrev.2016.02.001 – ident: ref55 doi: 10.1016/j.robot.2019.103259 – ident: ref19 doi: 10.3390/bios10080085 – ident: ref29 doi: 10.1109/TII.2020.3010369 – volume-title: Joint Range of Motion and Muscle Length Testing-E-book year: 2016 ident: ref49 – ident: ref23 doi: 10.1109/TNSRE.2017.2720727 – ident: ref20 doi: 10.1371/journal.pone.0268880 – ident: ref5 doi: 10.1098/rstb.2011.0152 – ident: ref13 doi: 10.1109/TIM.2023.3243614 – ident: ref38 doi: 10.1109/IROS.2017.8206575 – ident: ref50 doi: 10.1109/TBME.2013.2250286 – ident: ref37 doi: 10.3390/s16122005 – ident: ref48 doi: 10.3390/s22030831 – ident: ref4 doi: 10.5772/19977 – ident: ref26 doi: 10.1109/JSEN.2020.3014276 – ident: ref56 doi: 10.1109/MRA.2015.2448951 – volume-title: Pressure Profile Systems year: 2023 ident: ref54 – volume: 9 start-page: 2579 year: 2008 ident: ref58 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref34 doi: 10.3390/s23073364 – ident: ref53 doi: 10.3390/s150818315 – ident: ref33 doi: 10.1109/TBME.2021.3110432 – ident: ref22 doi: 10.3389/fncom.2022.1006763 – volume: 1 start-page: 79 year: 1898 ident: ref6 article-title: Relations of different divisions of the central neurons system to one another and to parts of the body publication-title: Lancet – start-page: 321 volume-title: Replacement Links and Work Aids year: 1919 ident: ref7 article-title: The mechanical structure of the artificial limbs – ident: ref15 doi: 10.1109/IROS.2007.4399115 – ident: ref9 doi: 10.1109/70.34763  | 
    
| SSID | ssj0019757 | 
    
| Score | 2.4355528 | 
    
| Snippet | Grasp synergies lead to the identification of underlying patterns to develop control strategies for five-fingered prosthetic hands or exoskeletons. Data gloves... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 6133 | 
    
| SubjectTerms | Accuracy Biomechanics Classification Complexity Correlation analysis Correlation coefficients data glove Data gloves End effectors Exoskeletons Fingers Flexible components Force Gloves grasp synergy Grasping Grasping (robotics) hand orthosis Hands human grasp Instruments Kinematics multisensory information Optical fiber sensors Principal components analysis Prostheses Robot control Sensors Thumb Wearable sensors  | 
    
| Title | Understanding Grasp Synergies During Reach-to-Grasp Using an Instrumented Data Glove | 
    
| URI | https://ieeexplore.ieee.org/document/10829544 https://www.proquest.com/docview/3166815302  | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4RLurBH4gRRdODJ5Ph1nZbdzQCIokcBBJuS9d1MdEAkXHAv97XbhDUaLwtWZs1-_rW9-299z2A60BpJUPJkeRkrsMV5Q76ccIREVp56mbCtxHdp0HQG_P-xJ-Uxeq2FkZrbZPPdMtc2lh-OlNL86sMLVyYsBSvQCUUQVGstQkZRKGV9UQLxmeycFKGMD03uu0POwOkgpS30N1gvke_HEK2q8qPT7E9X7qHMFivrEgreW0t86SlPr6JNv576UdwUHqa5K7YGsewo6c12N_SH6zBbtkC_WV1AqPxdpkLeXiXizkZrkxpIJJp0rbljOTZJF86-cwp7tuEAyKn5NEK0VqBz5S0ZS6JTQ6tw7jbGd33nLLlgqNoxHOHijREFy9SikXKd90MfW-jeIfEx_UST2qVhEwnSnmZLzOOZI1nKXJE6SWKhSplp1Cdzqb6DAhynURzGZqAMZeciUwmzM-oDALKUyUa4K4xiFWpR27aYrzFlpe4UWxgiw1scQlbA242U-aFGMdfg-sGhq2BBQINaK6Rjkt7XcTMCwJhtg49_2XaBexR0_rX9ILxm1DFl6ov0R_Jkyu7Dz8BImfaUA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGQoDj1JEeXpgQkpIbOc1Igq0hWagrdQtchxHSKC2gjCUX8_ZSVEBgViiSLGVKJ8vvi939x3AmS-VFIHgSHJyx-KScgv9uNAKI7TyzMlDz0R0-7HfGfHe2BtXxeqmFkYpZZLPlK1PTSw_m8o3_asMLTzUYSm-Cmt45F5ZrvUZNIgCI-yJNox3ZcG4CmK6TnTRG1zHSAYpt9HhYJ5Lv2xDpq_Kj4-x2WFutiBePFuZWPJkvxWpLd-_yTb---G3YbPyNclluTh2YEVNGrCxpEDYgHrVBP1xvgvD0XKhC7l9Ea8zMpjr4kCk06RtChrJg06_tIqpVV43KQdETEjXSNEaic-MtEUhiEkPbcLo5np41bGqpguWpBEvLBpmATp5kZQskp7j5Oh9a807pD6Om7pCyTRgKpXSzT2Rc6RrPM-QJQo3lSyQGduD2mQ6UftAkO2kiotAh4y54CzMRcq8nArfpzyTYQucBQaJrBTJdWOM58QwEydKNGyJhi2pYGvB-eeUWSnH8dfgpoZhaWCJQAuOFkgnlcW-Jsz1_VAvHXrwy7RTqHeG_fvkvhvfHcI61Y2AdWcY7whq-ILVMXonRXpi1uQHu1vdnQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+Grasp+Synergies+During+Reach-to-Grasp+Using+an+Instrumented+Data+Glove&rft.jtitle=IEEE+sensors+journal&rft.au=Pratap%2C+Subhash&rft.au=Hatta%2C+Yoshiyuki&rft.au=Ito%2C+Kazuaki&rft.au=Hazarika%2C+Shyamanta+M.&rft.date=2025-02-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=4&rft.spage=6133&rft.epage=6150&rft_id=info:doi/10.1109%2FJSEN.2024.3523512&rft.externalDocID=10829544 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |