Hardware Deployable Edge AI Solution for Posture Classification Using mmWave Radar and Low- Computational Machine Learning Model

Identifying correct human postures is crucial in areas, such as patient care, in hospitals. However, the traditional vision-based methods widely used for this purpose raise privacy concerns for the subject, and the other wearable sensor-based approaches are impractical for real-world scenarios. In t...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 16; pp. 26836 - 26844
Main Authors Pratap Singh, Yash, Gupta, Aham, Chaudhary, Devansh, Wajid, Mohd, Srivastava, Abhishek, Mahajan, Pranjal
Format Journal Article
LanguageEnglish
Published New York IEEE 15.08.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3416390

Cover

Abstract Identifying correct human postures is crucial in areas, such as patient care, in hospitals. However, the traditional vision-based methods widely used for this purpose raise privacy concerns for the subject, and the other wearable sensor-based approaches are impractical for real-world scenarios. In this article, we propose a contactless, privacy-conscious, and memory-efficient posture classification system based on a millimeter-wave (mmWave) radar. This system utilizes 3-D point-cloud data captured using Texas Instrument's IWR1843BOOST frequency-modulated continuous-wave (FMCW) radar module to classify the posture of the subject. Two types of datasets are extracted from these radar data: 1) image dataset derived from the isometric view of the point-cloud data and 2) spatial coordinates dataset also extracted from the point-cloud data. A low-computational tiny machine learning (TinyML) model is employed on the datasets for efficient implementation on embedded hardware, Raspberry Pi 3 B+. The proposed model's parameters were quantized to 8 bits (int8), which accurately classify four postures, i.e., standing, sitting, lying, and bending, with an accuracy of 98.97% for the image data. However, to make it more computationally efficient, the int8 quantized TinyML model was trained on the spatial coordinates dataset, giving an accuracy of 96.12%. This highlights the efficiency and effectiveness of our proposed lightweight model that can be deployed on edge devices for real-world applications.
AbstractList Identifying correct human postures is crucial in areas, such as patient care, in hospitals. However, the traditional vision-based methods widely used for this purpose raise privacy concerns for the subject, and the other wearable sensor-based approaches are impractical for real-world scenarios. In this article, we propose a contactless, privacy-conscious, and memory-efficient posture classification system based on a millimeter-wave (mmWave) radar. This system utilizes 3-D point-cloud data captured using Texas Instrument's IWR1843BOOST frequency-modulated continuous-wave (FMCW) radar module to classify the posture of the subject. Two types of datasets are extracted from these radar data: 1) image dataset derived from the isometric view of the point-cloud data and 2) spatial coordinates dataset also extracted from the point-cloud data. A low-computational tiny machine learning (TinyML) model is employed on the datasets for efficient implementation on embedded hardware, Raspberry Pi 3 B+. The proposed model's parameters were quantized to 8 bits (int8), which accurately classify four postures, i.e., standing, sitting, lying, and bending, with an accuracy of 98.97% for the image data. However, to make it more computationally efficient, the int8 quantized TinyML model was trained on the spatial coordinates dataset, giving an accuracy of 96.12%. This highlights the efficiency and effectiveness of our proposed lightweight model that can be deployed on edge devices for real-world applications.
Author Pratap Singh, Yash
Wajid, Mohd
Gupta, Aham
Mahajan, Pranjal
Chaudhary, Devansh
Srivastava, Abhishek
Author_xml – sequence: 1
  givenname: Yash
  orcidid: 0000-0002-8759-3800
  surname: Pratap Singh
  fullname: Pratap Singh, Yash
  organization: Department of Electronics Engineering, Z.H.C.E.T, Aligarh Muslim University, Aligarh, India
– sequence: 2
  givenname: Aham
  orcidid: 0009-0009-9274-8078
  surname: Gupta
  fullname: Gupta, Aham
  organization: Department of Electronics Engineering, Z.H.C.E.T, Aligarh Muslim University, Aligarh, India
– sequence: 3
  givenname: Devansh
  orcidid: 0009-0001-9576-0322
  surname: Chaudhary
  fullname: Chaudhary, Devansh
  email: gk8205@myamu.ac.in
  organization: Department of Electronics Engineering, Z.H.C.E.T, Aligarh Muslim University, Aligarh, India
– sequence: 4
  givenname: Mohd
  orcidid: 0000-0002-6932-6354
  surname: Wajid
  fullname: Wajid, Mohd
  organization: Department of Electronics Engineering, Z.H.C.E.T, Aligarh Muslim University, Aligarh, India
– sequence: 5
  givenname: Abhishek
  orcidid: 0000-0003-3140-6137
  surname: Srivastava
  fullname: Srivastava, Abhishek
  organization: Center for VLSI and Embedded Systems Technology (CVEST), IIIT Hyderabad, Hyderabad, India
– sequence: 6
  givenname: Pranjal
  orcidid: 0009-0004-2140-0617
  surname: Mahajan
  fullname: Mahajan, Pranjal
  organization: Center for VLSI and Embedded Systems Technology (CVEST), IIIT Hyderabad, Hyderabad, India
BookMark eNp9kEtLAzEQx4MoaNUPIHgIeN6aSbKPHKVWq9QHPtDbkuahKdtNTXYtvfnR7doexIOnGZjfb5j599B27WuD0BGQPgARp9ePw9s-JZT3GYeMCbKF9iBNiwRyXmx3PSMJZ_nrLurFOCUERJ7me-hrJINeyGDwuZlXfiknlcFD_Wbw2RV-9FXbOF9j6wO-97FpV9ygkjE665T8GT1HV7_h2exFfhr8ILUMWNYaj_0iwQM_m7fNDycrfCPVu6sNHhsZ6k668dpUB2jHyiqaw03dR88Xw6fBKBnfXV4NzsaJooI3CaVWWJJqxnShs4wLalWRE2OBAUBhLUwoZEJppTSnPFOcKyYJZSLLSEEE20cn673z4D9aE5ty6tuwuiuWjAieQpqJfEXla0oFH2MwtlRu_UATpKtKIGUXd9nFXXZxl5u4Vyb8MefBzWRY_uscrx1njPnFpzmBgrJv-0KNXA
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_TRS_2025_3539289
crossref_primary_10_3390_s24227250
crossref_primary_10_1109_JSEN_2024_3507951
Cites_doi 10.1109/JSEN.2022.3227025
10.3390/info13110520
10.1109/LSENS.2018.2889060
10.3390/s23031275
10.1109/JSEN.2020.2991741
10.1109/ICIP40778.2020.9190922
10.1109/SENSORS56945.2023.10325157
10.1109/EmergiTech.2016.7737367
10.1109/LSENS.2018.2810093
10.1109/JSEN.2023.3267300
10.1109/ACCESS.2023.3312328
10.1109/TIV.2022.3167733
10.1109/LCOMM.2021.3081135
10.1109/JSEN.2022.3167251
10.1109/LSENS.2017.2726759
10.1109/JSEN.2022.3225290
10.1109/BioCAS58349.2023.10388660
10.1109/TSMCA.2007.897609
10.1007/s11042-023-16740-9
10.1109/78.650093
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3416390
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
Consulter via IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: Consulter via IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 26844
ExternalDocumentID 10_1109_JSEN_2024_3416390
10570182
Genre orig-research
GrantInformation_xml – fundername: C2S program, MeitY, Government of India
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-22f9f05d33d8d66492fc870ef131118ff1b2169cdccd4246c44c3a02396608093
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:09:30 EDT 2025
Wed Oct 01 05:06:26 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
Wed Aug 27 02:32:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-22f9f05d33d8d66492fc870ef131118ff1b2169cdccd4246c44c3a02396608093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-2140-0617
0009-0001-9576-0322
0000-0003-3140-6137
0000-0002-6932-6354
0009-0009-9274-8078
0000-0002-8759-3800
PQID 3094515697
PQPubID 75733
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2024_3416390
crossref_primary_10_1109_JSEN_2024_3416390
ieee_primary_10570182
proquest_journals_3094515697
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-15
PublicationDateYYYYMMDD 2024-08-15
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Iovescu (ref20) 2017
(ref23) 2023
ref14
ref10
ref2
ref1
ref17
ref16
ref19
ref18
(ref22) 2023
ref24
ref26
ref25
ref21
Howard (ref15) 2017
ref8
ref7
(ref11) 2023
ref4
ref3
ref6
ref5
(ref9) 2023
References_xml – ident: ref14
  doi: 10.1109/JSEN.2022.3227025
– year: 2017
  ident: ref20
  article-title: The fundamentals of millimeter wave sensors
– year: 2017
  ident: ref15
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– ident: ref25
  doi: 10.3390/info13110520
– ident: ref17
  doi: 10.1109/LSENS.2018.2889060
– ident: ref7
  doi: 10.3390/s23031275
– ident: ref19
  doi: 10.1109/JSEN.2020.2991741
– ident: ref26
  doi: 10.1109/ICIP40778.2020.9190922
– ident: ref8
  doi: 10.1109/SENSORS56945.2023.10325157
– volume-title: Raspberry Pi 3 Model B+
  year: 2023
  ident: ref11
– ident: ref12
  doi: 10.1109/EmergiTech.2016.7737367
– volume-title: Convolutional Neural Network (CNN)
  year: 2023
  ident: ref9
– ident: ref18
  doi: 10.1109/LSENS.2018.2810093
– ident: ref4
  doi: 10.1109/JSEN.2023.3267300
– ident: ref13
  doi: 10.1109/ACCESS.2023.3312328
– ident: ref16
  doi: 10.1109/TIV.2022.3167733
– ident: ref2
  doi: 10.1109/LCOMM.2021.3081135
– ident: ref5
  doi: 10.1109/JSEN.2022.3167251
– ident: ref1
  doi: 10.1109/LSENS.2017.2726759
– ident: ref3
  doi: 10.1109/JSEN.2022.3225290
– ident: ref21
  doi: 10.1109/BioCAS58349.2023.10388660
– ident: ref6
  doi: 10.1109/TSMCA.2007.897609
– ident: ref10
  doi: 10.1007/s11042-023-16740-9
– ident: ref24
  doi: 10.1109/78.650093
– volume-title: Matplotlib: Visualization With Python
  year: 2023
  ident: ref23
– volume-title: RVIZ
  year: 2023
  ident: ref22
SSID ssj0019757
Score 2.4372544
Snippet Identifying correct human postures is crucial in areas, such as patient care, in hospitals. However, the traditional vision-based methods widely used for this...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26836
SubjectTerms Accuracy
Artificial Intelligence (AI)
Chirp
Classification
Continuous radiation
Datasets
Hardware
Machine learning
millimeter wave (mmWave)
Millimeter wave communication
Millimeter waves
point-cloud images
Posture
posture classification
Privacy
Radar
Radar data
Radar imaging
Sensors
Spatial data
Three dimensional models
Three-dimensional displays
tiny machine learning
Title Hardware Deployable Edge AI Solution for Posture Classification Using mmWave Radar and Low- Computational Machine Learning Model
URI https://ieeexplore.ieee.org/document/10570182
https://www.proquest.com/docview/3094515697
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: Consulter via IEEE Xplore
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PTxQxFH4BLuhBBTGuAumBk8ksnbbTmR6JLAECe1CJe5v0JyTCrll2IXLiT7ev0yUbjYbbHNpJk6-v_fp-fQB7mjNV1ToiIL0vRLySCqMoLZySInAvhGmwwPl8KI8vxOmoGuVi9VQL471PyWe-j58plu8mdo6usn3UpKWREK_Cat3IrljrKWSg6tTWM1owLQSvRzmEWVK1f_p1MIxPQSb6HPkHnr9Ll1BSVfnrKE73y9FrGC5W1qWV_OjPZ6ZvH_5o2vjspb-BV5lpkoNua2zAih9vwsul_oObsJ4l0K9-vYVHjOHf66knhx5FgLGkigzcpScHJ2ThPCOR4hLU953HcUlPEzONErgkJR-Qm5vv-s6TL9rpKdFjR84m9wXptCOy35GcpwROT3Jv10uCgmzXW3BxNPj2-bjI8gyFZUrMCsaCCrRynLvGSSkUCzZavw_YwadsQigNK6WyzlonmJBWCMs1FtNKGXmq4u9gbTwZ-_dAuKWlbbjjKpjI35QyTa1dxYKuZGON6QFd4NXa3LscJTSu2_SGoapFiFuEuM0Q9-DT05SfXeOO_w3eQsiWBnZo9WB7sSvabNu3LY8v4sgCpao__GPaR3iBf0fXc1ltw9psOvc7kbvMzG7as78B4BzpTg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbhMxFL2CsigseJQiAgW8YIU0qcf2eMbLClKlJckCWpHdyM9Wok2qNKGCFZ-Or8epIhCI3SxsjaXjax_f1wF4qzlTVa0jAtL7QsQrqTCK0sIpKQL3QpgGC5zHEzk8FcfTapqL1VMtjPc-JZ_5Pn6mWL6b2xW6yvZRk5ZGQnwX7lVCiKor17oNGqg6NfaMNkwLwetpDmKWVO0ffx5M4mOQiT5HBoIn8MY1lHRV_jiM0w1z-Agm67V1iSVf-6ul6dsfv7Vt_O_FP4aHmWuSg25zPIE7frYDDzY6EO7AdhZBP__-FH5iFP9GLzz54FEGGIuqyMCdeXJwRNbuMxJJLkGF31UclxQ1MdcowUtS-gG5vPyiv3nySTu9IHrmyGh-U5BOPSJ7Hsk4pXB6kru7nhGUZLvYhdPDwcn7YZEFGgrLlFgWjAUVaOU4d42TUigWbLR_H7CHT9mEUBpWSmWdtU4wIa0Qlmssp5UyMlXFn8HWbD7zz4FwS0vbcMdVMJHBKWWaWruKBV3JxhrTA7rGq7W5ezmKaFy06RVDVYsQtwhxmyHuwbvbKVdd645_Dd5FyDYGdmj1YG-9K9ps3dctj2_iyAOlql_8Zdob2B6ejEft6Gjy8SXcxz-hI7qs9mBruVj5V5HJLM3rtH9_AT0W7Js
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardware+Deployable+Edge+AI+Solution+for+Posture+Classification+Using+mmWave+Radar+and+Low-+Computational+Machine+Learning+Model&rft.jtitle=IEEE+sensors+journal&rft.au=Pratap+Singh%2C+Yash&rft.au=Gupta%2C+Aham&rft.au=Chaudhary%2C+Devansh&rft.au=Wajid%2C+Mohd&rft.date=2024-08-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=16&rft.spage=26836&rft.epage=26844&rft_id=info:doi/10.1109%2FJSEN.2024.3416390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3416390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon