Hardware Deployable Edge AI Solution for Posture Classification Using mmWave Radar and Low- Computational Machine Learning Model
Identifying correct human postures is crucial in areas, such as patient care, in hospitals. However, the traditional vision-based methods widely used for this purpose raise privacy concerns for the subject, and the other wearable sensor-based approaches are impractical for real-world scenarios. In t...
        Saved in:
      
    
          | Published in | IEEE sensors journal Vol. 24; no. 16; pp. 26836 - 26844 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        15.08.2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1530-437X 1558-1748  | 
| DOI | 10.1109/JSEN.2024.3416390 | 
Cover
| Abstract | Identifying correct human postures is crucial in areas, such as patient care, in hospitals. However, the traditional vision-based methods widely used for this purpose raise privacy concerns for the subject, and the other wearable sensor-based approaches are impractical for real-world scenarios. In this article, we propose a contactless, privacy-conscious, and memory-efficient posture classification system based on a millimeter-wave (mmWave) radar. This system utilizes 3-D point-cloud data captured using Texas Instrument's IWR1843BOOST frequency-modulated continuous-wave (FMCW) radar module to classify the posture of the subject. Two types of datasets are extracted from these radar data: 1) image dataset derived from the isometric view of the point-cloud data and 2) spatial coordinates dataset also extracted from the point-cloud data. A low-computational tiny machine learning (TinyML) model is employed on the datasets for efficient implementation on embedded hardware, Raspberry Pi 3 B+. The proposed model's parameters were quantized to 8 bits (int8), which accurately classify four postures, i.e., standing, sitting, lying, and bending, with an accuracy of 98.97% for the image data. However, to make it more computationally efficient, the int8 quantized TinyML model was trained on the spatial coordinates dataset, giving an accuracy of 96.12%. This highlights the efficiency and effectiveness of our proposed lightweight model that can be deployed on edge devices for real-world applications. | 
    
|---|---|
| AbstractList | Identifying correct human postures is crucial in areas, such as patient care, in hospitals. However, the traditional vision-based methods widely used for this purpose raise privacy concerns for the subject, and the other wearable sensor-based approaches are impractical for real-world scenarios. In this article, we propose a contactless, privacy-conscious, and memory-efficient posture classification system based on a millimeter-wave (mmWave) radar. This system utilizes 3-D point-cloud data captured using Texas Instrument's IWR1843BOOST frequency-modulated continuous-wave (FMCW) radar module to classify the posture of the subject. Two types of datasets are extracted from these radar data: 1) image dataset derived from the isometric view of the point-cloud data and 2) spatial coordinates dataset also extracted from the point-cloud data. A low-computational tiny machine learning (TinyML) model is employed on the datasets for efficient implementation on embedded hardware, Raspberry Pi 3 B+. The proposed model's parameters were quantized to 8 bits (int8), which accurately classify four postures, i.e., standing, sitting, lying, and bending, with an accuracy of 98.97% for the image data. However, to make it more computationally efficient, the int8 quantized TinyML model was trained on the spatial coordinates dataset, giving an accuracy of 96.12%. This highlights the efficiency and effectiveness of our proposed lightweight model that can be deployed on edge devices for real-world applications. | 
    
| Author | Pratap Singh, Yash Wajid, Mohd Gupta, Aham Mahajan, Pranjal Chaudhary, Devansh Srivastava, Abhishek  | 
    
| Author_xml | – sequence: 1 givenname: Yash orcidid: 0000-0002-8759-3800 surname: Pratap Singh fullname: Pratap Singh, Yash organization: Department of Electronics Engineering, Z.H.C.E.T, Aligarh Muslim University, Aligarh, India – sequence: 2 givenname: Aham orcidid: 0009-0009-9274-8078 surname: Gupta fullname: Gupta, Aham organization: Department of Electronics Engineering, Z.H.C.E.T, Aligarh Muslim University, Aligarh, India – sequence: 3 givenname: Devansh orcidid: 0009-0001-9576-0322 surname: Chaudhary fullname: Chaudhary, Devansh email: gk8205@myamu.ac.in organization: Department of Electronics Engineering, Z.H.C.E.T, Aligarh Muslim University, Aligarh, India – sequence: 4 givenname: Mohd orcidid: 0000-0002-6932-6354 surname: Wajid fullname: Wajid, Mohd organization: Department of Electronics Engineering, Z.H.C.E.T, Aligarh Muslim University, Aligarh, India – sequence: 5 givenname: Abhishek orcidid: 0000-0003-3140-6137 surname: Srivastava fullname: Srivastava, Abhishek organization: Center for VLSI and Embedded Systems Technology (CVEST), IIIT Hyderabad, Hyderabad, India – sequence: 6 givenname: Pranjal orcidid: 0009-0004-2140-0617 surname: Mahajan fullname: Mahajan, Pranjal organization: Center for VLSI and Embedded Systems Technology (CVEST), IIIT Hyderabad, Hyderabad, India  | 
    
| BookMark | eNp9kEtLAzEQx4MoaNUPIHgIeN6aSbKPHKVWq9QHPtDbkuahKdtNTXYtvfnR7doexIOnGZjfb5j599B27WuD0BGQPgARp9ePw9s-JZT3GYeMCbKF9iBNiwRyXmx3PSMJZ_nrLurFOCUERJ7me-hrJINeyGDwuZlXfiknlcFD_Wbw2RV-9FXbOF9j6wO-97FpV9ygkjE665T8GT1HV7_h2exFfhr8ILUMWNYaj_0iwQM_m7fNDycrfCPVu6sNHhsZ6k668dpUB2jHyiqaw03dR88Xw6fBKBnfXV4NzsaJooI3CaVWWJJqxnShs4wLalWRE2OBAUBhLUwoZEJppTSnPFOcKyYJZSLLSEEE20cn673z4D9aE5ty6tuwuiuWjAieQpqJfEXla0oFH2MwtlRu_UATpKtKIGUXd9nFXXZxl5u4Vyb8MefBzWRY_uscrx1njPnFpzmBgrJv-0KNXA | 
    
| CODEN | ISJEAZ | 
    
| CitedBy_id | crossref_primary_10_1109_TRS_2025_3539289 crossref_primary_10_3390_s24227250 crossref_primary_10_1109_JSEN_2024_3507951  | 
    
| Cites_doi | 10.1109/JSEN.2022.3227025 10.3390/info13110520 10.1109/LSENS.2018.2889060 10.3390/s23031275 10.1109/JSEN.2020.2991741 10.1109/ICIP40778.2020.9190922 10.1109/SENSORS56945.2023.10325157 10.1109/EmergiTech.2016.7737367 10.1109/LSENS.2018.2810093 10.1109/JSEN.2023.3267300 10.1109/ACCESS.2023.3312328 10.1109/TIV.2022.3167733 10.1109/LCOMM.2021.3081135 10.1109/JSEN.2022.3167251 10.1109/LSENS.2017.2726759 10.1109/JSEN.2022.3225290 10.1109/BioCAS58349.2023.10388660 10.1109/TSMCA.2007.897609 10.1007/s11042-023-16740-9 10.1109/78.650093  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| DOI | 10.1109/JSEN.2024.3416390 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present Consulter via IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: Consulter via IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Engineering  | 
    
| EISSN | 1558-1748 | 
    
| EndPage | 26844 | 
    
| ExternalDocumentID | 10_1109_JSEN_2024_3416390 10570182  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: C2S program, MeitY, Government of India | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c294t-22f9f05d33d8d66492fc870ef131118ff1b2169cdccd4246c44c3a02396608093 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1530-437X | 
    
| IngestDate | Mon Jun 30 10:09:30 EDT 2025 Wed Oct 01 05:06:26 EDT 2025 Thu Apr 24 23:07:28 EDT 2025 Wed Aug 27 02:32:28 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 16 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-22f9f05d33d8d66492fc870ef131118ff1b2169cdccd4246c44c3a02396608093 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0004-2140-0617 0009-0001-9576-0322 0000-0003-3140-6137 0000-0002-6932-6354 0009-0009-9274-8078 0000-0002-8759-3800  | 
    
| PQID | 3094515697 | 
    
| PQPubID | 75733 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2024_3416390 crossref_primary_10_1109_JSEN_2024_3416390 ieee_primary_10570182 proquest_journals_3094515697  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-08-15 | 
    
| PublicationDateYYYYMMDD | 2024-08-15 | 
    
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE sensors journal | 
    
| PublicationTitleAbbrev | JSEN | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 Iovescu (ref20) 2017 (ref23) 2023 ref14 ref10 ref2 ref1 ref17 ref16 ref19 ref18 (ref22) 2023 ref24 ref26 ref25 ref21 Howard (ref15) 2017 ref8 ref7 (ref11) 2023 ref4 ref3 ref6 ref5 (ref9) 2023  | 
    
| References_xml | – ident: ref14 doi: 10.1109/JSEN.2022.3227025 – year: 2017 ident: ref20 article-title: The fundamentals of millimeter wave sensors – year: 2017 ident: ref15 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – ident: ref25 doi: 10.3390/info13110520 – ident: ref17 doi: 10.1109/LSENS.2018.2889060 – ident: ref7 doi: 10.3390/s23031275 – ident: ref19 doi: 10.1109/JSEN.2020.2991741 – ident: ref26 doi: 10.1109/ICIP40778.2020.9190922 – ident: ref8 doi: 10.1109/SENSORS56945.2023.10325157 – volume-title: Raspberry Pi 3 Model B+ year: 2023 ident: ref11 – ident: ref12 doi: 10.1109/EmergiTech.2016.7737367 – volume-title: Convolutional Neural Network (CNN) year: 2023 ident: ref9 – ident: ref18 doi: 10.1109/LSENS.2018.2810093 – ident: ref4 doi: 10.1109/JSEN.2023.3267300 – ident: ref13 doi: 10.1109/ACCESS.2023.3312328 – ident: ref16 doi: 10.1109/TIV.2022.3167733 – ident: ref2 doi: 10.1109/LCOMM.2021.3081135 – ident: ref5 doi: 10.1109/JSEN.2022.3167251 – ident: ref1 doi: 10.1109/LSENS.2017.2726759 – ident: ref3 doi: 10.1109/JSEN.2022.3225290 – ident: ref21 doi: 10.1109/BioCAS58349.2023.10388660 – ident: ref6 doi: 10.1109/TSMCA.2007.897609 – ident: ref10 doi: 10.1007/s11042-023-16740-9 – ident: ref24 doi: 10.1109/78.650093 – volume-title: Matplotlib: Visualization With Python year: 2023 ident: ref23 – volume-title: RVIZ year: 2023 ident: ref22  | 
    
| SSID | ssj0019757 | 
    
| Score | 2.4372544 | 
    
| Snippet | Identifying correct human postures is crucial in areas, such as patient care, in hospitals. However, the traditional vision-based methods widely used for this... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 26836 | 
    
| SubjectTerms | Accuracy Artificial Intelligence (AI) Chirp Classification Continuous radiation Datasets Hardware Machine learning millimeter wave (mmWave) Millimeter wave communication Millimeter waves point-cloud images Posture posture classification Privacy Radar Radar data Radar imaging Sensors Spatial data Three dimensional models Three-dimensional displays tiny machine learning  | 
    
| Title | Hardware Deployable Edge AI Solution for Posture Classification Using mmWave Radar and Low- Computational Machine Learning Model | 
    
| URI | https://ieeexplore.ieee.org/document/10570182 https://www.proquest.com/docview/3094515697  | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: Consulter via IEEE Xplore customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PTxQxFH4BLuhBBTGuAumBk8ksnbbTmR6JLAECe1CJe5v0JyTCrll2IXLiT7ev0yUbjYbbHNpJk6-v_fp-fQB7mjNV1ToiIL0vRLySCqMoLZySInAvhGmwwPl8KI8vxOmoGuVi9VQL471PyWe-j58plu8mdo6usn3UpKWREK_Cat3IrljrKWSg6tTWM1owLQSvRzmEWVK1f_p1MIxPQSb6HPkHnr9Ll1BSVfnrKE73y9FrGC5W1qWV_OjPZ6ZvH_5o2vjspb-BV5lpkoNua2zAih9vwsul_oObsJ4l0K9-vYVHjOHf66knhx5FgLGkigzcpScHJ2ThPCOR4hLU953HcUlPEzONErgkJR-Qm5vv-s6TL9rpKdFjR84m9wXptCOy35GcpwROT3Jv10uCgmzXW3BxNPj2-bjI8gyFZUrMCsaCCrRynLvGSSkUCzZavw_YwadsQigNK6WyzlonmJBWCMs1FtNKGXmq4u9gbTwZ-_dAuKWlbbjjKpjI35QyTa1dxYKuZGON6QFd4NXa3LscJTSu2_SGoapFiFuEuM0Q9-DT05SfXeOO_w3eQsiWBnZo9WB7sSvabNu3LY8v4sgCpao__GPaR3iBf0fXc1ltw9psOvc7kbvMzG7as78B4BzpTg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbhMxFL2CsigseJQiAgW8YIU0qcf2eMbLClKlJckCWpHdyM9Wok2qNKGCFZ-Or8epIhCI3SxsjaXjax_f1wF4qzlTVa0jAtL7QsQrqTCK0sIpKQL3QpgGC5zHEzk8FcfTapqL1VMtjPc-JZ_5Pn6mWL6b2xW6yvZRk5ZGQnwX7lVCiKor17oNGqg6NfaMNkwLwetpDmKWVO0ffx5M4mOQiT5HBoIn8MY1lHRV_jiM0w1z-Agm67V1iSVf-6ul6dsfv7Vt_O_FP4aHmWuSg25zPIE7frYDDzY6EO7AdhZBP__-FH5iFP9GLzz54FEGGIuqyMCdeXJwRNbuMxJJLkGF31UclxQ1MdcowUtS-gG5vPyiv3nySTu9IHrmyGh-U5BOPSJ7Hsk4pXB6kru7nhGUZLvYhdPDwcn7YZEFGgrLlFgWjAUVaOU4d42TUigWbLR_H7CHT9mEUBpWSmWdtU4wIa0Qlmssp5UyMlXFn8HWbD7zz4FwS0vbcMdVMJHBKWWaWruKBV3JxhrTA7rGq7W5ezmKaFy06RVDVYsQtwhxmyHuwbvbKVdd645_Dd5FyDYGdmj1YG-9K9ps3dctj2_iyAOlql_8Zdob2B6ejEft6Gjy8SXcxz-hI7qs9mBruVj5V5HJLM3rtH9_AT0W7Js | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hardware+Deployable+Edge+AI+Solution+for+Posture+Classification+Using+mmWave+Radar+and+Low-+Computational+Machine+Learning+Model&rft.jtitle=IEEE+sensors+journal&rft.au=Pratap+Singh%2C+Yash&rft.au=Gupta%2C+Aham&rft.au=Chaudhary%2C+Devansh&rft.au=Wajid%2C+Mohd&rft.date=2024-08-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=16&rft.spage=26836&rft.epage=26844&rft_id=info:doi/10.1109%2FJSEN.2024.3416390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3416390 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |