Dual Appearance-Aware Enhancement for Oriented Object Detection

Oriented detectors have become the mainstream of object detection in remote-sensing images since they provide more precise bounding boxes and contain less background. However, there remain several challenges that restrict the detection performance and need to be tackled. This article focuses on the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 14
Main Authors Gong, Maoguo, Zhao, Hongyu, Wu, Yue, Tang, Zedong, Feng, Kai-Yuan, Sheng, Kai
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2023.3344195

Cover

Abstract Oriented detectors have become the mainstream of object detection in remote-sensing images since they provide more precise bounding boxes and contain less background. However, there remain several challenges that restrict the detection performance and need to be tackled. This article focuses on the following two aspects: 1) numerous tiny objects in remote-sensing images pose a challenge for the detectors pursuing high recall and accurate localization and 2) specific categories with large aspect ratios and arbitrary angles also trouble the regression of the detectors. We attempt to alleviate the above problems by constructing a weak feature extraction network (WFEN) and a dual appearance-aware (DA) loss. Specifically, WFEN is used to extract hierarchical weight vectors for multiscale feature layers by employing a lightweight convolutional module, aiming to fuse activation features distributed in different layers and provide pure features for subsequent regression and classification. DA loss is tailored to regressions of tiny and slender objects by dynamically modulating the associated loss on objects with various appearances, which consists of two auxiliary losses, termed scale-aware loss <inline-formula> <tex-math notation="LaTeX">{\mathcal {L}}_{S} </tex-math></inline-formula> and aspect-ratio-aware loss <inline-formula> <tex-math notation="LaTeX">{\mathcal {L}}_{A} </tex-math></inline-formula>. These two components can contribute to each other, that is, the former provides more accurate features for detection tasks, while the latter can reciprocate the former by imposing constraints on crucial objects, and together constitute an appearance sensitivity detector (ASDet). Extensive experiments on three public datasets demonstrate that our ASDet outperforms all refine-stage detectors in terms of accuracy while maintaining the superior inference speed of single-stage counterparts.
AbstractList Oriented detectors have become the mainstream of object detection in remote-sensing images since they provide more precise bounding boxes and contain less background. However, there remain several challenges that restrict the detection performance and need to be tackled. This article focuses on the following two aspects: 1) numerous tiny objects in remote-sensing images pose a challenge for the detectors pursuing high recall and accurate localization and 2) specific categories with large aspect ratios and arbitrary angles also trouble the regression of the detectors. We attempt to alleviate the above problems by constructing a weak feature extraction network (WFEN) and a dual appearance-aware (DA) loss. Specifically, WFEN is used to extract hierarchical weight vectors for multiscale feature layers by employing a lightweight convolutional module, aiming to fuse activation features distributed in different layers and provide pure features for subsequent regression and classification. DA loss is tailored to regressions of tiny and slender objects by dynamically modulating the associated loss on objects with various appearances, which consists of two auxiliary losses, termed scale-aware loss [Formula Omitted] and aspect-ratio-aware loss [Formula Omitted]. These two components can contribute to each other, that is, the former provides more accurate features for detection tasks, while the latter can reciprocate the former by imposing constraints on crucial objects, and together constitute an appearance sensitivity detector (ASDet). Extensive experiments on three public datasets demonstrate that our ASDet outperforms all refine-stage detectors in terms of accuracy while maintaining the superior inference speed of single-stage counterparts.
Oriented detectors have become the mainstream of object detection in remote-sensing images since they provide more precise bounding boxes and contain less background. However, there remain several challenges that restrict the detection performance and need to be tackled. This article focuses on the following two aspects: 1) numerous tiny objects in remote-sensing images pose a challenge for the detectors pursuing high recall and accurate localization and 2) specific categories with large aspect ratios and arbitrary angles also trouble the regression of the detectors. We attempt to alleviate the above problems by constructing a weak feature extraction network (WFEN) and a dual appearance-aware (DA) loss. Specifically, WFEN is used to extract hierarchical weight vectors for multiscale feature layers by employing a lightweight convolutional module, aiming to fuse activation features distributed in different layers and provide pure features for subsequent regression and classification. DA loss is tailored to regressions of tiny and slender objects by dynamically modulating the associated loss on objects with various appearances, which consists of two auxiliary losses, termed scale-aware loss <inline-formula> <tex-math notation="LaTeX">{\mathcal {L}}_{S} </tex-math></inline-formula> and aspect-ratio-aware loss <inline-formula> <tex-math notation="LaTeX">{\mathcal {L}}_{A} </tex-math></inline-formula>. These two components can contribute to each other, that is, the former provides more accurate features for detection tasks, while the latter can reciprocate the former by imposing constraints on crucial objects, and together constitute an appearance sensitivity detector (ASDet). Extensive experiments on three public datasets demonstrate that our ASDet outperforms all refine-stage detectors in terms of accuracy while maintaining the superior inference speed of single-stage counterparts.
Author Zhao, Hongyu
Sheng, Kai
Gong, Maoguo
Feng, Kai-Yuan
Wu, Yue
Tang, Zedong
Author_xml – sequence: 1
  givenname: Maoguo
  orcidid: 0000-0002-0415-8556
  surname: Gong
  fullname: Gong, Maoguo
  email: gong@ieee.org
  organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi'an, China
– sequence: 2
  givenname: Hongyu
  surname: Zhao
  fullname: Zhao, Hongyu
  email: dmhz@live.cn
  organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi'an, China
– sequence: 3
  givenname: Yue
  orcidid: 0000-0002-3459-5079
  surname: Wu
  fullname: Wu, Yue
  email: ywu@xidian.edu.cn
  organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi'an, China
– sequence: 4
  givenname: Zedong
  surname: Tang
  fullname: Tang, Zedong
  email: omegatangzd@gmail.com
  organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi'an, China
– sequence: 5
  givenname: Kai-Yuan
  orcidid: 0000-0003-4970-4175
  surname: Feng
  fullname: Feng, Kai-Yuan
  email: fkylwl@gmail.com
  organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi'an, China
– sequence: 6
  givenname: Kai
  surname: Sheng
  fullname: Sheng, Kai
  email: kaisheng@xidian.edu.cn
  organization: Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi'an, China
BookMark eNp9kEFLAzEQhYNUsK3-AMHDguetmSS7m5yktLUKhYLWc8imE9zSZtdsivjv3aU9iAdPMwPvm3nzRmTga4-E3AKdAFD1sFm-vk0YZXzCuRCgsgsyhCyTKc2FGJAhBZWnTCp2RUZtu6MURAbFkDzOj2afTJsGTTDeYjr9MgGThf_opwP6mLg6JOtQdS1uk3W5QxuTOcauVLW_JpfO7Fu8OdcxeX9abGbP6Wq9fJlNV6llSsSUsZwKablSDgtDMy65zDt7bFsWgAYYt8pktlQOuHQlFiCdtd1njhmmMs7H5P60twn15xHbqHf1MfjupGYKQEgleK8qTiob6rYN6LStoul9xmCqvQaq-7R0n5bu09LntDoS_pBNqA4mfP_L3J2YChF_6XkupJD8Bz6ydfs
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_rs16214065
crossref_primary_10_1109_TGRS_2024_3500013
crossref_primary_10_1109_TGRS_2024_3523305
crossref_primary_10_1109_TGRS_2025_3541220
crossref_primary_10_1109_TCSVT_2024_3444795
crossref_primary_10_3390_rs16234482
crossref_primary_10_1109_TGRS_2024_3481951
crossref_primary_10_1109_TGRS_2024_3486559
Cites_doi 10.1109/tmm.2023.3305120
10.1145/2964284.2967274
10.1109/TGRS.2019.2930982
10.1007/978-3-030-58598-3_40
10.1109/CVPR52688.2022.00187
10.1109/CVPR.2019.00091
10.1007/978-3-030-20893-6_10
10.1109/CVPR.2016.90
10.1109/ICCV.2019.00832
10.1109/TPAMI.2021.3117983
10.48550/arXiv.1911.08287
10.1109/CVPR46437.2021.00281
10.1109/tgrs.2022.3149780
10.1109/tgrs.2023.3269642
10.1109/ICCV.2019.00840
10.1109/ICCV.2017.324
10.1609/aaai.v35i3.16336
10.1109/ICCV.2019.00929
10.1109/tgrs.2022.3231340
10.1007/978-3-030-58558-7_12
10.1109/TGRS.2020.2981203
10.1109/TIP.2022.3167307
10.1007/s11633-022-1339-y
10.1609/aaai.v36i1.19975
10.1109/TGRS.2019.2899955
10.1109/CVPR42600.2020.01122
10.1109/ICCV48922.2021.00350
10.1109/CVPR.2019.00296
10.1109/TCSVT.2022.3148392
10.1007/978-3-030-58545-7_6
10.1109/tgrs.2022.3183022
10.1109/tgrs.2022.3216215
10.1109/TPAMI.2016.2577031
10.1109/tgrs.2021.3069056
10.1109/TIP.2012.2219547
10.1109/CVPR46437.2021.00868
10.1109/TPAMI.2020.2974745
10.1109/ICCV.2019.00972
10.1109/tgrs.2021.3095186
10.1145/3503161.3548541
10.1109/CVPR.2018.00418
10.1109/tgrs.2021.3062048
10.1109/CVPR42600.2020.00978
10.1109/TMM.2018.2818020
10.1609/aaai.v35i4.16426
10.1609/aaai.v35i3.16347
10.1109/CVPR.2019.00075
10.1109/LGRS.2019.2936173
10.1109/CVPR.2017.106
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3344195
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 14
ExternalDocumentID 10_1109_TGRS_2023_3344195
10364848
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62036006
  funderid: 10.13039/501100001809
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2020B090921001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-226048c399fe7a05383865582db71ea123c9a5cb9f138fbe718fcc110f2a29533
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:24:19 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Wed Oct 01 02:58:00 EDT 2025
Wed Aug 27 02:07:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-226048c399fe7a05383865582db71ea123c9a5cb9f138fbe718fcc110f2a29533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3459-5079
0000-0002-0415-8556
0000-0003-4970-4175
PQID 2911489433
PQPubID 85465
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2023_3344195
ieee_primary_10364848
proquest_journals_2911489433
crossref_primary_10_1109_TGRS_2023_3344195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref53
ref52
ref11
ref10
ref54
ref17
Li (ref12); 33
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
Tan (ref35)
ref5
ref40
Yang (ref14)
ref34
ref37
ref36
ref31
Yang (ref49) 2022
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Yang (ref48); 34
ref28
ref27
ref29
References_xml – ident: ref20
  doi: 10.1109/tmm.2023.3305120
– ident: ref9
  doi: 10.1145/2964284.2967274
– ident: ref43
  doi: 10.1109/TGRS.2019.2930982
– volume: 34
  start-page: 18381
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref48
  article-title: Learning high-precision bounding box for rotated object detection via Kullback–Leibler divergence
– ident: ref47
  doi: 10.1007/978-3-030-58598-3_40
– year: 2022
  ident: ref49
  article-title: The KFIoU loss for rotated object detection
  publication-title: arXiv:2201.12558
– ident: ref51
  doi: 10.1109/CVPR52688.2022.00187
– ident: ref34
  doi: 10.1109/CVPR.2019.00091
– ident: ref42
  doi: 10.1007/978-3-030-20893-6_10
– ident: ref38
  doi: 10.1109/CVPR.2016.90
– ident: ref6
  doi: 10.1109/ICCV.2019.00832
– ident: ref53
  doi: 10.1109/TPAMI.2021.3117983
– ident: ref11
  doi: 10.48550/arXiv.1911.08287
– ident: ref26
  doi: 10.1109/CVPR46437.2021.00281
– ident: ref44
  doi: 10.1109/tgrs.2022.3149780
– ident: ref8
  doi: 10.1109/tgrs.2023.3269642
– ident: ref16
  doi: 10.1109/ICCV.2019.00840
– ident: ref39
  doi: 10.1109/ICCV.2017.324
– ident: ref46
  doi: 10.1609/aaai.v35i3.16336
– ident: ref33
  doi: 10.1109/ICCV.2019.00929
– ident: ref7
  doi: 10.1109/tgrs.2022.3231340
– start-page: 6105
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref35
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– ident: ref13
  doi: 10.1007/978-3-030-58558-7_12
– ident: ref18
  doi: 10.1109/TGRS.2020.2981203
– ident: ref3
  doi: 10.1109/TIP.2022.3167307
– ident: ref4
  doi: 10.1007/s11633-022-1339-y
– ident: ref19
  doi: 10.1609/aaai.v36i1.19975
– ident: ref21
  doi: 10.1109/TGRS.2019.2899955
– ident: ref27
  doi: 10.1109/CVPR42600.2020.01122
– ident: ref31
  doi: 10.1109/ICCV48922.2021.00350
– ident: ref23
  doi: 10.1109/CVPR.2019.00296
– ident: ref5
  doi: 10.1109/TCSVT.2022.3148392
– ident: ref40
  doi: 10.1007/978-3-030-58545-7_6
– ident: ref28
  doi: 10.1109/tgrs.2022.3183022
– ident: ref2
  doi: 10.1109/tgrs.2022.3216215
– start-page: 11830
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref14
  article-title: Rethinking rotated object detection with Gaussian Wasserstein distance loss
– volume: 33
  start-page: 21002
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref12
  article-title: Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection
– ident: ref41
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref17
  doi: 10.1109/tgrs.2021.3069056
– ident: ref1
  doi: 10.1109/TIP.2012.2219547
– ident: ref29
  doi: 10.1109/CVPR46437.2021.00868
– ident: ref30
  doi: 10.1109/TPAMI.2020.2974745
– ident: ref37
  doi: 10.1109/ICCV.2019.00972
– ident: ref22
  doi: 10.1109/tgrs.2021.3095186
– ident: ref54
  doi: 10.1145/3503161.3548541
– ident: ref52
  doi: 10.1109/CVPR.2018.00418
– ident: ref24
  doi: 10.1109/tgrs.2021.3062048
– ident: ref50
  doi: 10.1109/CVPR42600.2020.00978
– ident: ref15
  doi: 10.1109/TMM.2018.2818020
– ident: ref25
  doi: 10.1609/aaai.v35i4.16426
– ident: ref45
  doi: 10.1609/aaai.v35i3.16347
– ident: ref10
  doi: 10.1109/CVPR.2019.00075
– ident: ref36
  doi: 10.1109/LGRS.2019.2936173
– ident: ref32
  doi: 10.1109/CVPR.2017.106
SSID ssj0014517
Score 2.5025742
Snippet Oriented detectors have become the mainstream of object detection in remote-sensing images since they provide more precise bounding boxes and contain less...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anchor-free
appearance sensitivity detector (ASDet)
Aspect ratio
Detection
Detectors
dual appearance-aware (DA) loss
Feature extraction
Localization
Object detection
Object recognition
oriented object detection
Remote sensing
remote-sensing images
Sensitivity
Sensors
Task analysis
Training
Vectors
weak feature extraction
Title Dual Appearance-Aware Enhancement for Oriented Object Detection
URI https://ieeexplore.ieee.org/document/10364848
https://www.proquest.com/docview/2911489433
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dS8Mw8HADQR_8mBPnF33wSUhd27RNnmSoUwQ30Al7K0mWIijd0A7BX-9d2slQFN9auIRwH7m73BfASSxNwiciZ-gix4yrNGJaKMuoVV0ou5E1gqqR7wbJzSO_Hcfjuljd1cJYa13ymfXp08XyJ1Mzp6cylPAo4YKLBjTSVFbFWl8hAx4HdW10wtCLCOsQZtCVZ6Pr-wef5oT7UYTqn2ZJLCkhN1Xlx1Xs9Et_EwaLk1VpJc_-vNS--fjWtPHfR9-CjdrS9HoVa2zDii1asL7Uf7AFqy7_07ztwPnlnGBnM2R84gPWe1ev1rsqnuiP9vbQuvWG1BUZbVRvqOn9xru0pUvlKtrw2L8aXdywerYCM6HkJUOrC2XXoHmS21ShJAoa_hmLcKLTwCrUZ0aq2GiZB5HItUUVlhuD2MxDFVJK6i40i2lh98CLia6CmyDJNU-0FdKgF6QQBWoSGqk70F0gOzN143Gaf_GSOQekKzOiT0b0yWr6dOD0a8ms6rrxF3Cb8L0EWKG6A4cLkma1YL5loSQHUPIo2v9l2QGs4e68emY5hGb5OrdHaHiU-tgx3Ce4bNGC
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD54QdQH7-K89sEnIXVt0y55EvE2bxN0g72VJEsRlDq2DsFf7zlpJ0NRfGshScO59HwnOReAw1iahPdExtBFjhlXjYhpoSyjUnWhrEfWCMpGvm8lzQ6_6cbdKlnd5cJYa13wmfXp0d3l997MiI7KUMOjhAsupmE2RreiUaZrfV0a8DiosqMThn5EWF1iBnV53L56fPKpU7gfRQgAqJvEhBlyfVV-_IydhblchtZ4b2VgyYs_KrRvPr6Vbfz35ldgqcKa3mkpHKswZfM1WJyoQLgGcy4C1AzX4eR8RGP7fRR9kgR2-q4G1rvIn-mN1vYQ33oPVBcZUar3oOkExzu3hQvmyjegc3nRPmuyqrsCM6HkBUPchdprEKBktqFQFwW1_4xF2NONwCq0aEaq2GiZBZHItEUjlhmD1MxCFVJQ6ibM5G-53QIvJs4KboIk0zzRVkiD3FFIAtULjdQ1qI-JnZqq9Dh1wHhNnQtSlynxJyX-pBV_anD0NaVf1t34a_AG0XtiYEnqGuyOWZpWqjlMQ0kuoORRtP3LtAOYb7bv79K769btDizgl3h56LILM8VgZPcQhhR63wnfJ-iQ1NM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Appearance-Aware+Enhancement+for+Oriented+Object+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Gong%2C+Maoguo&rft.au=Zhao%2C+Hongyu&rft.au=Wu%2C+Yue&rft.au=Tang%2C+Zedong&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2023.3344195&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2023_3344195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon