Sum Throughput Maximization Scheme for NOMA-Enabled D2D Groups Using Deep Reinforcement Learning in 5G and Beyond Networks
Device-to-Device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum's efficiency. However, in this condition, D2D generates cross-channel and co-channel interference for cellular and other D2D users, which creates an excessive technical challenge for...
Saved in:
Published in | IEEE sensors journal Vol. 23; no. 13; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2023.3276799 |
Cover
Abstract | Device-to-Device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum's efficiency. However, in this condition, D2D generates cross-channel and co-channel interference for cellular and other D2D users, which creates an excessive technical challenge for allocating the spectrum. Despite this, massive connectivity is another issue in the 5G and beyond networks that need to be addressed. To overcome this problem, non-orthogonal multiple access (NOMA) is integrated with the D2D groups (DGs). In this paper, our target is to maximize the sum throughput of the overall network while maintaining the signal-to-interference noise ratio (SINR) of the cellular and D2D users. To achieve the target, a discriminated spectrum distribution framework dependent on multi-agent deep reinforcement learning (MADRL), termed a deep deterministic policy gradient (DDPG) is proposed. Here, it shares the global historical states, actions, and policies using the duration of central training. Furthermore, the proximal online policy scheme (POPS) is used to decrease the computation complexity of training. It utilized the clipping substitute technique for the modification and reduction of complexity at the training stage. The simulation results demonstrated that the proposed scheme POPS attains 16.67%, 24.98%, and 59.09% higher performance than the DDPG, Deep Dueling and deep Q-network (DQN). |
---|---|
AbstractList | Device-to-device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum’s efficiency. However, in this condition, D2D generates cross-channel and co-channel interference for cellular and other D2D users, which creates an excessive technical challenge for allocating the spectrum. Despite this, massive connectivity is another issue in the 5G and beyond networks that need to be addressed. To overcome this problem, nonorthogonal multiple access (NOMA) is integrated with the D2D groups (DGs). In this article, our target is to maximize the sum throughput of the overall network while maintaining the signal-to-interference noise ratio (SINR) of the cellular and D2D users. To achieve the target, a discriminated spectrum distribution framework dependent on multiagent deep reinforcement learning (MADRL), termed a deep deterministic policy gradient (DDPG), is proposed. Here, it shares the global historical states, actions, and policies using the duration of central training. Furthermore, the proximal online policy scheme (POPS) is used to decrease the computation complexity of training. It used the clipping substitute technique for the modification and reduction of complexity at the training stage. The simulation results demonstrated that the proposed scheme POPS attains 16.67%, 24.98%, and 59.09% higher performance than the DDPG, deep dueling, and deep Q-network (DQN), respectively. Device-to-Device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum's efficiency. However, in this condition, D2D generates cross-channel and co-channel interference for cellular and other D2D users, which creates an excessive technical challenge for allocating the spectrum. Despite this, massive connectivity is another issue in the 5G and beyond networks that need to be addressed. To overcome this problem, non-orthogonal multiple access (NOMA) is integrated with the D2D groups (DGs). In this paper, our target is to maximize the sum throughput of the overall network while maintaining the signal-to-interference noise ratio (SINR) of the cellular and D2D users. To achieve the target, a discriminated spectrum distribution framework dependent on multi-agent deep reinforcement learning (MADRL), termed a deep deterministic policy gradient (DDPG) is proposed. Here, it shares the global historical states, actions, and policies using the duration of central training. Furthermore, the proximal online policy scheme (POPS) is used to decrease the computation complexity of training. It utilized the clipping substitute technique for the modification and reduction of complexity at the training stage. The simulation results demonstrated that the proposed scheme POPS attains 16.67%, 24.98%, and 59.09% higher performance than the DDPG, Deep Dueling and deep Q-network (DQN). |
Author | Rehman, Masood Ur Ahmad, Norulhusna Kaidi, Hazilah Mad Khan, Mohammad Aftab Alam |
Author_xml | – sequence: 1 givenname: Mohammad Aftab Alam orcidid: 0000-0003-3261-6902 surname: Khan fullname: Khan, Mohammad Aftab Alam organization: Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia – sequence: 2 givenname: Hazilah Mad orcidid: 0000-0001-5915-2875 surname: Kaidi fullname: Kaidi, Hazilah Mad organization: Department of Engineering and Technology, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia – sequence: 3 givenname: Norulhusna orcidid: 0000-0001-9991-343X surname: Ahmad fullname: Ahmad, Norulhusna organization: Department of Engineering and Technology, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia – sequence: 4 givenname: Masood Ur surname: Rehman fullname: Rehman, Masood Ur organization: Electronics and Telecommunication Engineering, James Watt School of Engineering, University of Glasgow, United Kingdom |
BookMark | eNp9kE1LAzEQhoMoqNUfIHgIeN66-TLJUW2tSlvBKnhbsttZG22TNdnFj1_vru1BPHh6B-Z9ZuDZR9vOO0DoiKR9QlJ9ejsbTvs0pazPqDyTWm-hPSKESojkarubWZpwJp920X6ML2lKtBRyD33NmhV-WATfPC-qpsYT82FX9svU1js8KxawAlz6gKd3k_Nk6Ey-hDke0AEetUgV8WO07hkPACp8D9a11aJFXI3HYILrdtZhMcLGzfEFfPo2plC_-_AaD9BOaZYRDjfZQ49Xw4fL62R8N7q5PB8nBdW8TighWoscCimMUsAEQH5WzhUrBVBKaM4V5ZxD3hYl14YJKgVXRBS65CAJ66GT9d0q-LcGYp29-Ca49mVGFSMilVrptkXWrSL4GAOUWRXsyoTPjKRZpzjrFGed4myjuGXkH6aw9Y-6Ohi7_Jc8XpMWAH59IlQRytk38mOKWg |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3300586 crossref_primary_10_56977_jicce_2024_22_3_181 |
Cites_doi | 10.1109/TVT.2020.3041458 10.1109/JSAC.2019.2933973 10.1109/ICC42927.2021.9500733 10.1109/ICCW.2018.8403505 10.1109/TVT.2019.2961405 10.1109/TII.2017.2789304 10.1016/j.comcom.2020.11.008 10.1109/JSYST.2020.2997731 10.1109/MAES.2020.3015537 10.1109/JIOT.2020.3014926 10.1109/TWC.2020.3001736 10.1109/COMST.2018.2828120 10.1109/TII.2019.2919323 10.1109/JIOT.2022.3160197 10.1109/TVT.2017.2765208 10.1109/COMST.2019.2916583 10.1109/LWC.2019.2958814 10.1109/CompComm.2017.8322620 10.1109/TVT.2019.2903858 10.1109/TWC.2018.2821151 10.1109/TITS.2021.3082512 10.1109/JSAC.2017.2725519 10.1109/ICC.2018.8422442 10.1016/j.compeleceng.2021.107401 10.1038/nature14236 10.1109/TVT.2016.2620523 10.1145/3530043.3530044 10.1109/TWC.2019.2963833 10.1109/TWC.2019.2919611 10.1109/JIOT.2018.2878435 10.1109/JMASS.2021.3067861 10.1109/JPROC.2019.2957798 10.1109/LWC.2020.3035898 10.1109/PIMRC.2015.7343537 10.1109/ACCESS.2021.3081601 10.1109/GLOBECOM38437.2019.9014074 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2023.3276799 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1 |
ExternalDocumentID | 10_1109_JSEN_2023_3276799 10128124 |
Genre | orig-research |
GrantInformation_xml | – fundername: This work is supported by the Ministry of Higher Education MoHE under Fundamental Research Grant Scheme R.K130000.7856.5F506 and supported by the Universiti Teknologi Malaysia under UTM Transdisciplinary Research grantid: R.K130000.7856.5F506 and Q. K130000.3556.06G45 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c294t-211995bec75a88e35eeb6fd83f5e2212b482444eb211749a352754815c9f4e713 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:05:44 EDT 2025 Tue Jul 01 04:27:09 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Wed Aug 27 02:55:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-211995bec75a88e35eeb6fd83f5e2212b482444eb211749a352754815c9f4e713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3261-6902 0000-0001-5915-2875 0000-0001-9991-343X |
PQID | 2831507989 |
PQPubID | 75733 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2023_3276799 crossref_citationtrail_10_1109_JSEN_2023_3276799 ieee_primary_10128124 proquest_journals_2831507989 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 abeta (ref39) 2015 ref15 ref14 ref36 sutton (ref34) 2000; 12 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 sutton (ref25) 2018 ref16 ref38 ref19 ref18 ref24 ref23 vishnoi (ref30) 2021 ref26 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 cover (ref6) 2006 ref5 ref40 (ref37) 2014 |
References_xml | – ident: ref35 doi: 10.1109/TVT.2020.3041458 – ident: ref31 doi: 10.1109/JSAC.2019.2933973 – ident: ref23 doi: 10.1109/ICC42927.2021.9500733 – ident: ref29 doi: 10.1109/ICCW.2018.8403505 – ident: ref41 doi: 10.1109/TVT.2019.2961405 – ident: ref2 doi: 10.1109/TII.2017.2789304 – ident: ref18 doi: 10.1016/j.comcom.2020.11.008 – ident: ref3 doi: 10.1109/JSYST.2020.2997731 – ident: ref19 doi: 10.1109/MAES.2020.3015537 – ident: ref8 doi: 10.1109/JIOT.2020.3014926 – ident: ref32 doi: 10.1109/TWC.2020.3001736 – ident: ref1 doi: 10.1109/COMST.2018.2828120 – ident: ref17 doi: 10.1109/TII.2019.2919323 – year: 2014 ident: ref37 publication-title: Study on LTE Device to Device Proximity Services Radio Aspects – ident: ref10 doi: 10.1109/JIOT.2022.3160197 – ident: ref15 doi: 10.1109/TVT.2017.2765208 – ident: ref26 doi: 10.1109/COMST.2019.2916583 – ident: ref40 doi: 10.1109/LWC.2019.2958814 – ident: ref12 doi: 10.1109/CompComm.2017.8322620 – ident: ref14 doi: 10.1109/TVT.2019.2903858 – ident: ref13 doi: 10.1109/TWC.2018.2821151 – ident: ref22 doi: 10.1109/TITS.2021.3082512 – ident: ref5 doi: 10.1109/JSAC.2017.2725519 – year: 2018 ident: ref25 publication-title: Reinforcement Learning An Introduction – ident: ref28 doi: 10.1109/ICC.2018.8422442 – year: 2006 ident: ref6 publication-title: Elements of Information Theory – ident: ref20 doi: 10.1016/j.compeleceng.2021.107401 – ident: ref7 doi: 10.1038/nature14236 – ident: ref11 doi: 10.1109/TVT.2016.2620523 – ident: ref33 doi: 10.1145/3530043.3530044 – ident: ref16 doi: 10.1109/TWC.2019.2963833 – ident: ref27 doi: 10.1109/TWC.2019.2919611 – ident: ref9 doi: 10.1109/JIOT.2018.2878435 – volume: 12 start-page: 1057 year: 2000 ident: ref34 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Proc Adv Neural Inf Process Syst – year: 2015 ident: ref39 publication-title: Evolved Universal Terrestrial Radio Access (EUTRA) Further Advancements for E-UTRA Physical Layer Aspects – ident: ref21 doi: 10.1109/JMASS.2021.3067861 – start-page: 318 year: 2021 ident: ref30 article-title: Deep reinforcement learning based throughput maximization scheme for D2D users underlaying noma-enabled cellular network publication-title: Proc Int Adv Comput Conf – ident: ref24 doi: 10.1109/JPROC.2019.2957798 – ident: ref36 doi: 10.1109/LWC.2020.3035898 – ident: ref38 doi: 10.1109/PIMRC.2015.7343537 – ident: ref4 doi: 10.1109/ACCESS.2021.3081601 – ident: ref42 doi: 10.1109/GLOBECOM38437.2019.9014074 |
SSID | ssj0019757 |
Score | 2.4089005 |
Snippet | Device-to-Device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum's efficiency. However, in this condition, D2D... Device-to-device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum’s efficiency. However, in this condition, D2D... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Cellular communication Cochannel interference Complexity Computer architecture D2D DDPG Deep learning Device-to-device communication DGs DQN MADRL Multiagent systems NOMA Nonorthogonal multiple access Optimization POPS Resource management SINR Throughput Training |
Title | Sum Throughput Maximization Scheme for NOMA-Enabled D2D Groups Using Deep Reinforcement Learning in 5G and Beyond Networks |
URI | https://ieeexplore.ieee.org/document/10128124 https://www.proquest.com/docview/2831507989 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUKl9JDS4GKpVDNoadKCV7HWcdH1F2KkDaVuiDtLUqcSYtgw6qbSJRf3_HHUlRE1VsOdmTp2Z4Zz7w3jH2UFCRXRtDt1ygdSXKRIy0lRlUpFa9Kg4mjj03z0dmlPJ-n80BWd1wYRHTFZxjbT5fLr29Nb5_Kjocu7yPkBttQSnuy1kPKQCsn60knmEcyUfOQwhxyfXw-m-Sx7RMeJ0KNlNN5_WOEXFeVJ1exsy-nb1i-XpkvK7mO-66Kzf1foo3_vfRt9jp4mnDit8Zb9gLbHfbqkf7gDnsZWqD_-LXL7mf9Ai58155l38G0vLtaBJImzAjaBQI5uJB_nZ5EE8e4qmEsxuBer1bgag9gjLiEb-jkWI17eYSg4PodrlpIv0DZ1uBpM5D7EvTVHrs8nVx8PotCY4bICC27yKrC6ZTQV2mZZQQnYjVq6ixpUhRkCyuZkdcgKWgfUsCjS8JbpVYVxuhGIoXF79hme9viPgORSCUasqO8tOL2NKAyNSqOmpcjofmA8TVShQmq5bZ5xk3hoheuCwtuYcEtArgD9ulhytJLdvxr8J4F69FAj9OAHa73QxFO9aogV8z6zzrTB89Me8-27N99Pe8h2-x-9nhEXktXfXC79TfM9OWM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BORQOfJQiFgr4wAkpqddx1vGxYrcspRskdivtLUqcSalg0xWbSNBfz_hjSwUCccvBViw92zPjmfcG4LWkILkygm6_RulIkoscaSkxqkqpeFUaTBx9bJaPpmfyZJkuA1ndcWEQ0RWfYWw_XS6_vjS9fSo7HLq8j5C34U5KYYXydK3rpIFWTtiTzjCPZKKWIYk55PrwZD7JY9spPE6EGimn9PrLDLm-Kn9cxs7CHD-AfLs2X1jyJe67KjZXv8k2_vfiH8L94GuyI785HsEtbPfg3g0Fwj3YDU3QP_94DFfzfsUWvm_Puu_YrPx-sQo0TTYncFfIyMVl-cfZUTRxnKuajcWYuferDXPVB2yMuGaf0AmyGvf2yIKG6zm7aFn6jpVtzTxxhuW-CH2zD2fHk8XbaRRaM0RGaNlFVhdOp4S_SsssI0ARq1FTZ0mToiBrWMmM_AZJYfuQQh5dEuIqtbowRjcSKTB-AjvtZYtPgYlEKtGQJeWllbenAZWpUXHUvBwJzQfAt0gVJuiW2_YZXwsXv3BdWHALC24RwB3Am-spay_a8a_B-xasGwM9TgM42O6HIpzrTUHOmPWgdaaf_WXaK9idLmanxen7_MNzuGv_5Kt7D2Cn-9bjC_Jhuuql27k_AQXH6N0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sum+Throughput+Maximization+Scheme+for+NOMA-Enabled+D2D+Groups+Using+Deep+Reinforcement+Learning+in+5G+and+Beyond+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Khan%2C+Mohammad+Aftab+Alam&rft.au=Kaidi%2C+Hazilah+Mad&rft.au=Ahmad%2C+Norulhusna&rft.au=Rehman%2C+Masood+Ur&rft.date=2023-07-01&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2023.3276799&rft.externalDocID=10128124 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |