Sum Throughput Maximization Scheme for NOMA-Enabled D2D Groups Using Deep Reinforcement Learning in 5G and Beyond Networks

Device-to-Device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum's efficiency. However, in this condition, D2D generates cross-channel and co-channel interference for cellular and other D2D users, which creates an excessive technical challenge for...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 13; p. 1
Main Authors Khan, Mohammad Aftab Alam, Kaidi, Hazilah Mad, Ahmad, Norulhusna, Rehman, Masood Ur
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2023.3276799

Cover

Abstract Device-to-Device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum's efficiency. However, in this condition, D2D generates cross-channel and co-channel interference for cellular and other D2D users, which creates an excessive technical challenge for allocating the spectrum. Despite this, massive connectivity is another issue in the 5G and beyond networks that need to be addressed. To overcome this problem, non-orthogonal multiple access (NOMA) is integrated with the D2D groups (DGs). In this paper, our target is to maximize the sum throughput of the overall network while maintaining the signal-to-interference noise ratio (SINR) of the cellular and D2D users. To achieve the target, a discriminated spectrum distribution framework dependent on multi-agent deep reinforcement learning (MADRL), termed a deep deterministic policy gradient (DDPG) is proposed. Here, it shares the global historical states, actions, and policies using the duration of central training. Furthermore, the proximal online policy scheme (POPS) is used to decrease the computation complexity of training. It utilized the clipping substitute technique for the modification and reduction of complexity at the training stage. The simulation results demonstrated that the proposed scheme POPS attains 16.67%, 24.98%, and 59.09% higher performance than the DDPG, Deep Dueling and deep Q-network (DQN).
AbstractList Device-to-device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum’s efficiency. However, in this condition, D2D generates cross-channel and co-channel interference for cellular and other D2D users, which creates an excessive technical challenge for allocating the spectrum. Despite this, massive connectivity is another issue in the 5G and beyond networks that need to be addressed. To overcome this problem, nonorthogonal multiple access (NOMA) is integrated with the D2D groups (DGs). In this article, our target is to maximize the sum throughput of the overall network while maintaining the signal-to-interference noise ratio (SINR) of the cellular and D2D users. To achieve the target, a discriminated spectrum distribution framework dependent on multiagent deep reinforcement learning (MADRL), termed a deep deterministic policy gradient (DDPG), is proposed. Here, it shares the global historical states, actions, and policies using the duration of central training. Furthermore, the proximal online policy scheme (POPS) is used to decrease the computation complexity of training. It used the clipping substitute technique for the modification and reduction of complexity at the training stage. The simulation results demonstrated that the proposed scheme POPS attains 16.67%, 24.98%, and 59.09% higher performance than the DDPG, deep dueling, and deep Q-network (DQN), respectively.
Device-to-Device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum's efficiency. However, in this condition, D2D generates cross-channel and co-channel interference for cellular and other D2D users, which creates an excessive technical challenge for allocating the spectrum. Despite this, massive connectivity is another issue in the 5G and beyond networks that need to be addressed. To overcome this problem, non-orthogonal multiple access (NOMA) is integrated with the D2D groups (DGs). In this paper, our target is to maximize the sum throughput of the overall network while maintaining the signal-to-interference noise ratio (SINR) of the cellular and D2D users. To achieve the target, a discriminated spectrum distribution framework dependent on multi-agent deep reinforcement learning (MADRL), termed a deep deterministic policy gradient (DDPG) is proposed. Here, it shares the global historical states, actions, and policies using the duration of central training. Furthermore, the proximal online policy scheme (POPS) is used to decrease the computation complexity of training. It utilized the clipping substitute technique for the modification and reduction of complexity at the training stage. The simulation results demonstrated that the proposed scheme POPS attains 16.67%, 24.98%, and 59.09% higher performance than the DDPG, Deep Dueling and deep Q-network (DQN).
Author Rehman, Masood Ur
Ahmad, Norulhusna
Kaidi, Hazilah Mad
Khan, Mohammad Aftab Alam
Author_xml – sequence: 1
  givenname: Mohammad Aftab Alam
  orcidid: 0000-0003-3261-6902
  surname: Khan
  fullname: Khan, Mohammad Aftab Alam
  organization: Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Hazilah Mad
  orcidid: 0000-0001-5915-2875
  surname: Kaidi
  fullname: Kaidi, Hazilah Mad
  organization: Department of Engineering and Technology, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
– sequence: 3
  givenname: Norulhusna
  orcidid: 0000-0001-9991-343X
  surname: Ahmad
  fullname: Ahmad, Norulhusna
  organization: Department of Engineering and Technology, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
– sequence: 4
  givenname: Masood Ur
  surname: Rehman
  fullname: Rehman, Masood Ur
  organization: Electronics and Telecommunication Engineering, James Watt School of Engineering, University of Glasgow, United Kingdom
BookMark eNp9kE1LAzEQhoMoqNUfIHgIeN66-TLJUW2tSlvBKnhbsttZG22TNdnFj1_vru1BPHh6B-Z9ZuDZR9vOO0DoiKR9QlJ9ejsbTvs0pazPqDyTWm-hPSKESojkarubWZpwJp920X6ML2lKtBRyD33NmhV-WATfPC-qpsYT82FX9svU1js8KxawAlz6gKd3k_Nk6Ey-hDke0AEetUgV8WO07hkPACp8D9a11aJFXI3HYILrdtZhMcLGzfEFfPo2plC_-_AaD9BOaZYRDjfZQ49Xw4fL62R8N7q5PB8nBdW8TighWoscCimMUsAEQH5WzhUrBVBKaM4V5ZxD3hYl14YJKgVXRBS65CAJ66GT9d0q-LcGYp29-Ca49mVGFSMilVrptkXWrSL4GAOUWRXsyoTPjKRZpzjrFGed4myjuGXkH6aw9Y-6Ohi7_Jc8XpMWAH59IlQRytk38mOKWg
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2023_3300586
crossref_primary_10_56977_jicce_2024_22_3_181
Cites_doi 10.1109/TVT.2020.3041458
10.1109/JSAC.2019.2933973
10.1109/ICC42927.2021.9500733
10.1109/ICCW.2018.8403505
10.1109/TVT.2019.2961405
10.1109/TII.2017.2789304
10.1016/j.comcom.2020.11.008
10.1109/JSYST.2020.2997731
10.1109/MAES.2020.3015537
10.1109/JIOT.2020.3014926
10.1109/TWC.2020.3001736
10.1109/COMST.2018.2828120
10.1109/TII.2019.2919323
10.1109/JIOT.2022.3160197
10.1109/TVT.2017.2765208
10.1109/COMST.2019.2916583
10.1109/LWC.2019.2958814
10.1109/CompComm.2017.8322620
10.1109/TVT.2019.2903858
10.1109/TWC.2018.2821151
10.1109/TITS.2021.3082512
10.1109/JSAC.2017.2725519
10.1109/ICC.2018.8422442
10.1016/j.compeleceng.2021.107401
10.1038/nature14236
10.1109/TVT.2016.2620523
10.1145/3530043.3530044
10.1109/TWC.2019.2963833
10.1109/TWC.2019.2919611
10.1109/JIOT.2018.2878435
10.1109/JMASS.2021.3067861
10.1109/JPROC.2019.2957798
10.1109/LWC.2020.3035898
10.1109/PIMRC.2015.7343537
10.1109/ACCESS.2021.3081601
10.1109/GLOBECOM38437.2019.9014074
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2023.3276799
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2023_3276799
10128124
Genre orig-research
GrantInformation_xml – fundername: This work is supported by the Ministry of Higher Education MoHE under Fundamental Research Grant Scheme R.K130000.7856.5F506 and supported by the Universiti Teknologi Malaysia under UTM Transdisciplinary Research
  grantid: R.K130000.7856.5F506 and Q. K130000.3556.06G45
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-211995bec75a88e35eeb6fd83f5e2212b482444eb211749a352754815c9f4e713
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:05:44 EDT 2025
Tue Jul 01 04:27:09 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Wed Aug 27 02:55:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-211995bec75a88e35eeb6fd83f5e2212b482444eb211749a352754815c9f4e713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3261-6902
0000-0001-5915-2875
0000-0001-9991-343X
PQID 2831507989
PQPubID 75733
PageCount 1
ParticipantIDs crossref_primary_10_1109_JSEN_2023_3276799
crossref_citationtrail_10_1109_JSEN_2023_3276799
ieee_primary_10128124
proquest_journals_2831507989
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
abeta (ref39) 2015
ref15
ref14
ref36
sutton (ref34) 2000; 12
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
sutton (ref25) 2018
ref16
ref38
ref19
ref18
ref24
ref23
vishnoi (ref30) 2021
ref26
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
cover (ref6) 2006
ref5
ref40
(ref37) 2014
References_xml – ident: ref35
  doi: 10.1109/TVT.2020.3041458
– ident: ref31
  doi: 10.1109/JSAC.2019.2933973
– ident: ref23
  doi: 10.1109/ICC42927.2021.9500733
– ident: ref29
  doi: 10.1109/ICCW.2018.8403505
– ident: ref41
  doi: 10.1109/TVT.2019.2961405
– ident: ref2
  doi: 10.1109/TII.2017.2789304
– ident: ref18
  doi: 10.1016/j.comcom.2020.11.008
– ident: ref3
  doi: 10.1109/JSYST.2020.2997731
– ident: ref19
  doi: 10.1109/MAES.2020.3015537
– ident: ref8
  doi: 10.1109/JIOT.2020.3014926
– ident: ref32
  doi: 10.1109/TWC.2020.3001736
– ident: ref1
  doi: 10.1109/COMST.2018.2828120
– ident: ref17
  doi: 10.1109/TII.2019.2919323
– year: 2014
  ident: ref37
  publication-title: Study on LTE Device to Device Proximity Services Radio Aspects
– ident: ref10
  doi: 10.1109/JIOT.2022.3160197
– ident: ref15
  doi: 10.1109/TVT.2017.2765208
– ident: ref26
  doi: 10.1109/COMST.2019.2916583
– ident: ref40
  doi: 10.1109/LWC.2019.2958814
– ident: ref12
  doi: 10.1109/CompComm.2017.8322620
– ident: ref14
  doi: 10.1109/TVT.2019.2903858
– ident: ref13
  doi: 10.1109/TWC.2018.2821151
– ident: ref22
  doi: 10.1109/TITS.2021.3082512
– ident: ref5
  doi: 10.1109/JSAC.2017.2725519
– year: 2018
  ident: ref25
  publication-title: Reinforcement Learning An Introduction
– ident: ref28
  doi: 10.1109/ICC.2018.8422442
– year: 2006
  ident: ref6
  publication-title: Elements of Information Theory
– ident: ref20
  doi: 10.1016/j.compeleceng.2021.107401
– ident: ref7
  doi: 10.1038/nature14236
– ident: ref11
  doi: 10.1109/TVT.2016.2620523
– ident: ref33
  doi: 10.1145/3530043.3530044
– ident: ref16
  doi: 10.1109/TWC.2019.2963833
– ident: ref27
  doi: 10.1109/TWC.2019.2919611
– ident: ref9
  doi: 10.1109/JIOT.2018.2878435
– volume: 12
  start-page: 1057
  year: 2000
  ident: ref34
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2015
  ident: ref39
  publication-title: Evolved Universal Terrestrial Radio Access (EUTRA) Further Advancements for E-UTRA Physical Layer Aspects
– ident: ref21
  doi: 10.1109/JMASS.2021.3067861
– start-page: 318
  year: 2021
  ident: ref30
  article-title: Deep reinforcement learning based throughput maximization scheme for D2D users underlaying noma-enabled cellular network
  publication-title: Proc Int Adv Comput Conf
– ident: ref24
  doi: 10.1109/JPROC.2019.2957798
– ident: ref36
  doi: 10.1109/LWC.2020.3035898
– ident: ref38
  doi: 10.1109/PIMRC.2015.7343537
– ident: ref4
  doi: 10.1109/ACCESS.2021.3081601
– ident: ref42
  doi: 10.1109/GLOBECOM38437.2019.9014074
SSID ssj0019757
Score 2.4089005
Snippet Device-to-Device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum's efficiency. However, in this condition, D2D...
Device-to-device (D2D) communication underlaying cellular network is a capable system for advancing the spectrum’s efficiency. However, in this condition, D2D...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Cellular communication
Cochannel interference
Complexity
Computer architecture
D2D
DDPG
Deep learning
Device-to-device communication
DGs
DQN
MADRL
Multiagent systems
NOMA
Nonorthogonal multiple access
Optimization
POPS
Resource management
SINR
Throughput
Training
Title Sum Throughput Maximization Scheme for NOMA-Enabled D2D Groups Using Deep Reinforcement Learning in 5G and Beyond Networks
URI https://ieeexplore.ieee.org/document/10128124
https://www.proquest.com/docview/2831507989
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUKl9JDS4GKpVDNoadKCV7HWcdH1F2KkDaVuiDtLUqcSYtgw6qbSJRf3_HHUlRE1VsOdmTp2Z4Zz7w3jH2UFCRXRtDt1ygdSXKRIy0lRlUpFa9Kg4mjj03z0dmlPJ-n80BWd1wYRHTFZxjbT5fLr29Nb5_Kjocu7yPkBttQSnuy1kPKQCsn60knmEcyUfOQwhxyfXw-m-Sx7RMeJ0KNlNN5_WOEXFeVJ1exsy-nb1i-XpkvK7mO-66Kzf1foo3_vfRt9jp4mnDit8Zb9gLbHfbqkf7gDnsZWqD_-LXL7mf9Ai58155l38G0vLtaBJImzAjaBQI5uJB_nZ5EE8e4qmEsxuBer1bgag9gjLiEb-jkWI17eYSg4PodrlpIv0DZ1uBpM5D7EvTVHrs8nVx8PotCY4bICC27yKrC6ZTQV2mZZQQnYjVq6ixpUhRkCyuZkdcgKWgfUsCjS8JbpVYVxuhGIoXF79hme9viPgORSCUasqO8tOL2NKAyNSqOmpcjofmA8TVShQmq5bZ5xk3hoheuCwtuYcEtArgD9ulhytJLdvxr8J4F69FAj9OAHa73QxFO9aogV8z6zzrTB89Me8-27N99Pe8h2-x-9nhEXktXfXC79TfM9OWM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BORQOfJQiFgr4wAkpqddx1vGxYrcspRskdivtLUqcSalg0xWbSNBfz_hjSwUCccvBViw92zPjmfcG4LWkILkygm6_RulIkoscaSkxqkqpeFUaTBx9bJaPpmfyZJkuA1ndcWEQ0RWfYWw_XS6_vjS9fSo7HLq8j5C34U5KYYXydK3rpIFWTtiTzjCPZKKWIYk55PrwZD7JY9spPE6EGimn9PrLDLm-Kn9cxs7CHD-AfLs2X1jyJe67KjZXv8k2_vfiH8L94GuyI785HsEtbPfg3g0Fwj3YDU3QP_94DFfzfsUWvm_Puu_YrPx-sQo0TTYncFfIyMVl-cfZUTRxnKuajcWYuferDXPVB2yMuGaf0AmyGvf2yIKG6zm7aFn6jpVtzTxxhuW-CH2zD2fHk8XbaRRaM0RGaNlFVhdOp4S_SsssI0ARq1FTZ0mToiBrWMmM_AZJYfuQQh5dEuIqtbowRjcSKTB-AjvtZYtPgYlEKtGQJeWllbenAZWpUXHUvBwJzQfAt0gVJuiW2_YZXwsXv3BdWHALC24RwB3Am-spay_a8a_B-xasGwM9TgM42O6HIpzrTUHOmPWgdaaf_WXaK9idLmanxen7_MNzuGv_5Kt7D2Cn-9bjC_Jhuuql27k_AQXH6N0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sum+Throughput+Maximization+Scheme+for+NOMA-Enabled+D2D+Groups+Using+Deep+Reinforcement+Learning+in+5G+and+Beyond+Networks&rft.jtitle=IEEE+sensors+journal&rft.au=Khan%2C+Mohammad+Aftab+Alam&rft.au=Kaidi%2C+Hazilah+Mad&rft.au=Ahmad%2C+Norulhusna&rft.au=Rehman%2C+Masood+Ur&rft.date=2023-07-01&rft.pub=IEEE&rft.issn=1530-437X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2023.3276799&rft.externalDocID=10128124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon