Adaptive Multiscale Slimming Network Learning for Remote Sensing Image Feature Extraction
Effective feature representation is pivotal in numerous remote sensing image (RSI) interpretation tasks. Notably, a distinct attribute of RSIs is their inclination toward multiscale feature dependence. Previous research predominantly focuses on designing intricate and complex networks or modules to...
        Saved in:
      
    
          | Published in | IEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 13 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0196-2892 1558-0644  | 
| DOI | 10.1109/TGRS.2024.3490666 | 
Cover
| Abstract | Effective feature representation is pivotal in numerous remote sensing image (RSI) interpretation tasks. Notably, a distinct attribute of RSIs is their inclination toward multiscale feature dependence. Previous research predominantly focuses on designing intricate and complex networks or modules to encapsulate rich multiscale features. However, these approaches compromise on either the model's compactness or its representational efficacy, thereby constraining the practical deployment of remote sensing technologies, particularly in limited-capacity environments like small-scale devices or on-orbit satellites. In this study, we explore the problem of how to augment the diversity of encoded features while avoiding heavy parameter scale growth in deep convolutional neural networks (CNNs). We proposed an adaptive multiscale framework RISV which presents two key features: 1) rich scale information: during training, RISV decomposes each convolutional layer into various-sized convolutions, extracting multiscale characteristics; and 2) small model volume: RISV incorporates a differentiable elect layer after each convolutional layer, adaptively calculating and polarizing channel importance during learning. After training, the added convolution kernel and the significant channels selected by the elect layer will be linearly equivalent merged, minimizing the impact of pruning on the model's feature extraction capability. Different from traditional model slimming, it focused on a slimmed-down network while enhancing the representation of multiscale features in RSIs. Versatile and adaptable across various model frameworks like VGG and ResNet. Experimental results demonstrate that our methodology not only preserves accuracy across standard skeletal frameworks but also attains a compression ratio exceeding 80%, surpassing the baseline by an average of 40%. Furthermore, the application of GradCAM on the NWPU dataset reveals our method's proficiency in acquiring detailed and accurate subject information from RSIs. The source code can be available at https://github.com/GeoX-Lab/RISV . | 
    
|---|---|
| AbstractList | Effective feature representation is pivotal in numerous remote sensing image (RSI) interpretation tasks. Notably, a distinct attribute of RSIs is their inclination toward multiscale feature dependence. Previous research predominantly focuses on designing intricate and complex networks or modules to encapsulate rich multiscale features. However, these approaches compromise on either the model’s compactness or its representational efficacy, thereby constraining the practical deployment of remote sensing technologies, particularly in limited-capacity environments like small-scale devices or on-orbit satellites. In this study, we explore the problem of how to augment the diversity of encoded features while avoiding heavy parameter scale growth in deep convolutional neural networks (CNNs). We proposed an adaptive multiscale framework RISV which presents two key features: 1) rich scale information: during training, RISV decomposes each convolutional layer into various-sized convolutions, extracting multiscale characteristics; and 2) small model volume: RISV incorporates a differentiable elect layer after each convolutional layer, adaptively calculating and polarizing channel importance during learning. After training, the added convolution kernel and the significant channels selected by the elect layer will be linearly equivalent merged, minimizing the impact of pruning on the model’s feature extraction capability. Different from traditional model slimming, it focused on a slimmed-down network while enhancing the representation of multiscale features in RSIs. Versatile and adaptable across various model frameworks like VGG and ResNet. Experimental results demonstrate that our methodology not only preserves accuracy across standard skeletal frameworks but also attains a compression ratio exceeding 80%, surpassing the baseline by an average of 40%. Furthermore, the application of GradCAM on the NWPU dataset reveals our method’s proficiency in acquiring detailed and accurate subject information from RSIs. The source code can be available at https://github.com/GeoX-Lab/RISV . | 
    
| Author | Ye, Dingqi Guo, Wang Li, Haifeng Peng, Jian  | 
    
| Author_xml | – sequence: 1 givenname: Dingqi orcidid: 0000-0003-2260-7551 surname: Ye fullname: Ye, Dingqi email: yedingqi@csu.edu.cn organization: School of Geosciences and Info-Physics, Central South University, Changsha, China – sequence: 2 givenname: Jian orcidid: 0000-0002-1820-4015 surname: Peng fullname: Peng, Jian email: pengj2022@mail.tsinghua.edu.cn organization: Xiangjiang Laboratory, Changsha, China – sequence: 3 givenname: Wang orcidid: 0009-0005-2478-2558 surname: Guo fullname: Guo, Wang email: wang_guo@csu.edu.cn organization: School of Geosciences and Info-Physics, Central South University, Changsha, China – sequence: 4 givenname: Haifeng orcidid: 0000-0003-1173-6593 surname: Li fullname: Li, Haifeng email: lihaifeng@csu.edu.cn organization: School of Geosciences and Info-Physics, Central South University, Changsha, China  | 
    
| BookMark | eNp9kEtLw0AUhQepYK3-AMFFwHXq3MlkMlmW0tZCVWjrwlW4TW7K1DzqZOrj35vQLsSFqwuH893DOZesV9UVMXYDfAjA4_v1bLkaCi7kMJAxV0qdsT6Eofa5krLH-hxi5Qsdiwt22TQ7zkGGEPXZ6yjDvTMf5D0eCmeaFAvyVoUpS1NtvSdyn7V98xaEtuqEvLbeksratSaqmk6al7glb0roDpa8yZezmDpTV1fsPMeioevTHbCX6WQ9fvAXz7P5eLTwUxFL5wsOkGHIpUgx55HKtAq1IokQI2mV6xBQA0q54RnoKIdNRDGKDClASjc8GLC749-9rd8P1LhkVx9s1UYmAQitA6VE1Lrg6Ept3TSW8mRvTYn2OwGedAsm3YJJt2ByWrBloj9Mahx23dqOpviXvD2Shoh-JUUSwigMfgBsCoD_ | 
    
| CODEN | IGRSD2 | 
    
| CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102742 crossref_primary_10_1016_j_engappai_2025_110513  | 
    
| Cites_doi | 10.1109/MGRS.2017.2762307 10.1109/TGRS.2023.3336285 10.1109/ICCV.2017.74 10.1016/j.ins.2021.12.077 10.1109/TITS.2021.3136287 10.1109/ICCV.2019.00339 10.1016/j.isprsjprs.2024.09.009 10.1109/CVPR.2018.00913 10.1109/TGRS.2024.3367765 10.1109/TNNLS.2021.3056201 10.48550/arXiv.1511.07122 10.1109/JSTARS.2020.3005403 10.1109/TPAMI.2019.2938758 10.1109/ICCV48922.2021.00447 10.1109/CVPR42600.2020.00804 10.1109/TGRS.2022.3190392 10.1109/TGRS.2023.3320650 10.1109/TGRS.2022.3167644 10.1007/978-3-319-46448-0_2 10.1016/j.knosys.2024.111637 10.1016/j.physa.2023.128913 10.1016/j.inffus.2024.102383 10.1109/TGRS.2019.2954328 10.1109/ICCV48922.2021.00519 10.1109/TMI.2019.2959609 10.1109/CVPR.2017.106 10.4324/9781410605337-29 10.1109/ICCV48922.2021.00675 10.3390/rs15020370 10.1109/JSTARS.2018.2794888 10.1109/ICCV.2017.522 10.1109/ICCV51070.2023.01587 10.24963/ijcai.2020/94 10.1109/TGRS.2023.3277077 10.1016/j.isprsjprs.2016.01.004 10.1109/JSTARS.2023.3271312 10.1016/j.eswa.2023.119858 10.1109/TNNLS.2023.3248871 10.1109/ICCV.2017.298 10.1145/1869790.1869829 10.1109/TNNLS.2023.3294495 10.1109/TGRS.2023.3235717 10.1109/TPAMI.2020.3013269 10.1109/TGRS.2024.3428360 10.1109/CVPR.2016.90 10.1109/TGRS.2021.3077062 10.1109/ACCESS.2018.2877890 10.1109/ICCV.2017.155 10.1109/ICCV48922.2021.00061 10.1109/CVPR46437.2021.01352 10.1016/j.ins.2024.120916 10.48550/arXiv.l803.03635 10.1109/TGRS.2023.3336791  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M  | 
    
| DOI | 10.1109/TGRS.2024.3490666 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Aerospace Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1558-0644 | 
    
| EndPage | 13 | 
    
| ExternalDocumentID | 10_1109_TGRS_2024_3490666 10741575  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Major Program Project of Xiangjiang Laboratory grantid: 22XJ01010 – fundername: High-Performance Computing Center of Central South University funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 41871364; 42301381; 41871302 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M  | 
    
| ID | FETCH-LOGICAL-c294t-2011da5042caf076d86586e4a19ae86f851a81a44b0d187f1b7e9a2dae3aecb03 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0196-2892 | 
    
| IngestDate | Mon Jun 30 10:09:02 EDT 2025 Wed Oct 01 02:58:14 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Aug 27 03:04:37 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-2011da5042caf076d86586e4a19ae86f851a81a44b0d187f1b7e9a2dae3aecb03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-1173-6593 0000-0002-1820-4015 0000-0003-2260-7551 0009-0005-2478-2558  | 
    
| PQID | 3128836627 | 
    
| PQPubID | 85465 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | crossref_primary_10_1109_TGRS_2024_3490666 proquest_journals_3128836627 ieee_primary_10741575 crossref_citationtrail_10_1109_TGRS_2024_3490666  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240000 2024-00-00 20240101  | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – year: 2024 text: 20240000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on geoscience and remote sensing | 
    
| PublicationTitleAbbrev | TGRS | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref53 ref11 ref55 ref10 ref54 He (ref69) 2024; 677 ref17 ref16 ref19 ref18 Simonyan (ref61) 2014 Peng (ref58) 2021 ref46 ref45 ref42 Guo (ref50); 29 ref41 ref43 Hoefler (ref39) 2021; 22 Li (ref44) 2016 ref8 ref7 Louizos (ref49) 2017 ref9 Wen (ref26); 29 ref4 ref3 ref5 ref40 Jang (ref48) 2016 ref35 ref34 ref37 ref36 Han (ref52); 28 ref31 ref30 ref32 ref2 ref1 Huang (ref33) 2017 ref38 Ding (ref27); 32 Ye (ref22) 2018 ref24 ref68 ref23 ref67 ref25 ref20 Han (ref51) 2015 ref64 ref63 ref66 ref21 ref65 Hernandez (ref6) 2020 ref29 ref60 Kang (ref47) ref62 Peng (ref28)  | 
    
| References_xml | – ident: ref1 doi: 10.1109/MGRS.2017.2762307 – ident: ref3 doi: 10.1109/TGRS.2023.3336285 – ident: ref59 doi: 10.1109/ICCV.2017.74 – volume: 32 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref27 article-title: Global sparse momentum sgd for pruning very deep neural networks – ident: ref53 doi: 10.1016/j.ins.2021.12.077 – ident: ref55 doi: 10.1109/TITS.2021.3136287 – year: 2020 ident: ref6 article-title: Measuring the algorithmic efficiency of neural networks publication-title: arXiv:2005.04305 – ident: ref43 doi: 10.1109/ICCV.2019.00339 – ident: ref11 doi: 10.1016/j.isprsjprs.2024.09.009 – year: 2016 ident: ref48 article-title: Categorical reparameterization with gumbel-softmax publication-title: arXiv:1611.01144 – ident: ref34 doi: 10.1109/CVPR.2018.00913 – ident: ref19 doi: 10.1109/TGRS.2024.3367765 – ident: ref25 doi: 10.1109/TNNLS.2021.3056201 – ident: ref30 doi: 10.48550/arXiv.1511.07122 – year: 2017 ident: ref33 article-title: Multi-scale dense networks for resource efficient image classification publication-title: arXiv:1703.09844 – ident: ref2 doi: 10.1109/JSTARS.2020.3005403 – ident: ref12 doi: 10.1109/TPAMI.2019.2938758 – ident: ref23 doi: 10.1109/ICCV48922.2021.00447 – year: 2015 ident: ref51 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: arXiv:1510.00149 – year: 2014 ident: ref61 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – volume: 28 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref52 article-title: Learning both weights and connections for efficient neural network – ident: ref38 doi: 10.1109/CVPR42600.2020.00804 – ident: ref5 doi: 10.1109/TGRS.2022.3190392 – ident: ref66 doi: 10.1109/TGRS.2023.3320650 – ident: ref7 doi: 10.1109/TGRS.2022.3167644 – ident: ref31 doi: 10.1007/978-3-319-46448-0_2 – start-page: 5122 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref47 article-title: Operation-aware soft channel pruning using differentiable masks – ident: ref56 doi: 10.1016/j.knosys.2024.111637 – ident: ref68 doi: 10.1016/j.physa.2023.128913 – ident: ref20 doi: 10.1016/j.inffus.2024.102383 – ident: ref9 doi: 10.1109/TGRS.2019.2954328 – volume: 29 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref26 article-title: Learning structured sparsity in deep neural networks – ident: ref45 doi: 10.1109/ICCV48922.2021.00519 – year: 2021 ident: ref58 article-title: Learning by active forgetting for neural networks publication-title: arXiv:2111.10831 – ident: ref35 doi: 10.1109/TMI.2019.2959609 – volume: 22 start-page: 10882 issue: 1 year: 2021 ident: ref39 article-title: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks publication-title: J. Mach. Learn. Res. – ident: ref14 doi: 10.1109/CVPR.2017.106 – ident: ref29 doi: 10.4324/9781410605337-29 – ident: ref13 doi: 10.1109/ICCV48922.2021.00675 – ident: ref17 doi: 10.3390/rs15020370 – ident: ref10 doi: 10.1109/JSTARS.2018.2794888 – start-page: 5113 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref28 article-title: Collaborative channel pruning for deep networks – volume: 29 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref50 article-title: Dynamic network surgery for efficient DNNs – ident: ref32 doi: 10.1109/ICCV.2017.522 – ident: ref41 doi: 10.1109/ICCV51070.2023.01587 – ident: ref64 doi: 10.24963/ijcai.2020/94 – ident: ref65 doi: 10.1109/TGRS.2023.3277077 – ident: ref8 doi: 10.1016/j.isprsjprs.2016.01.004 – ident: ref36 doi: 10.1109/JSTARS.2023.3271312 – ident: ref21 doi: 10.1016/j.eswa.2023.119858 – year: 2016 ident: ref44 article-title: Pruning filters for efficient ConvNets publication-title: arXiv:1608.08710 – year: 2018 ident: ref22 article-title: Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers publication-title: arXiv:1802.00124 – ident: ref54 doi: 10.1109/TNNLS.2023.3248871 – ident: ref40 doi: 10.1109/ICCV.2017.298 – ident: ref67 doi: 10.1145/1869790.1869829 – year: 2017 ident: ref49 article-title: Learning sparse neural networks through L0 regularization publication-title: arXiv:1712.01312 – ident: ref24 doi: 10.1109/TNNLS.2023.3294495 – ident: ref18 doi: 10.1109/TGRS.2023.3235717 – ident: ref60 doi: 10.1109/TPAMI.2020.3013269 – ident: ref37 doi: 10.1109/TGRS.2024.3428360 – ident: ref62 doi: 10.1109/CVPR.2016.90 – ident: ref63 doi: 10.1109/TGRS.2021.3077062 – ident: ref16 doi: 10.1109/ACCESS.2018.2877890 – ident: ref42 doi: 10.1109/ICCV.2017.155 – ident: ref15 doi: 10.1109/ICCV48922.2021.00061 – ident: ref57 doi: 10.1109/CVPR46437.2021.01352 – volume: 677 year: 2024 ident: ref69 article-title: CAT: A causal graph attention network for trimming heterophilic graphs publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120916 – ident: ref46 doi: 10.48550/arXiv.l803.03635 – ident: ref4 doi: 10.1109/TGRS.2023.3336791  | 
    
| SSID | ssj0014517 | 
    
| Score | 2.438223 | 
    
| Snippet | Effective feature representation is pivotal in numerous remote sensing image (RSI) interpretation tasks. Notably, a distinct attribute of RSIs is their... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Accuracy Adaptation models Artificial neural networks Compact representation learning Compression Compression ratio Computational modeling Computer architecture Effectiveness Feature extraction Image coding Kernel Learning multiscale information augmentation learning Neural networks parameter-scale overload Remote sensing remote sensing image (RSI) feature extraction Representation learning Representations Source code Task complexity Training  | 
    
| Title | Adaptive Multiscale Slimming Network Learning for Remote Sensing Image Feature Extraction | 
    
| URI | https://ieeexplore.ieee.org/document/10741575 https://www.proquest.com/docview/3128836627  | 
    
| Volume | 62 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xdJQdPQtemTdPmKLK-wD34AD2VpE1F3F1ltwvir3cmzYoPFG-lJCXwJTPfNDPfAOwbkmBHkxio2CSBiI0MTBXzQKpIi0hn6BGodviyJ89uxcVdcueL1V0tjLXWJZ_ZDj26u_zyuZjQr7JD7vxfmszCbJrJpljr48pAJNzXRssAo4jIX2HyUB3enF5dYygYiU4sFBH2L07IdVX5YYqdfzlZht50ZU1ayVNnUptO8fZNtPHfS1-BJc802VGzNVZhxg7XYPGT_uAazLv8z2K8DvdHpX4hy8dcRe4YkbPsuv84GOBA1mtyxZkXY31gyHTZlUWUcRBlwOOr8wFaJkaMcjKyrPtaj5qSiQ24PeneHJ8FvutCUERK1AExglIneJgLXYWpLDMkKdIKzZW2mayQoumMayFMWPIsrbhJrdJRqW2sbWHCeBPmhs9DuwWslBHXioRGTYzwJDpTFcZHpsIwCG2BbkE4hSEvvCQ5dcbo5y40CVVOyOWEXO6Ra8HBx5SXRo_jr8EbhMSngQ0ILWhPwc79kR3nMafGy6SHv_3LtB1YoK83P2DaMFePJnYXKUlt9txWfAfhntrP | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50RdSDb3F95uBJ6Nq0abc5LqKurz3oCnoqSZuK6K6y2wXx1zuTZsUHirdSEhr4kplvmplvAPY0SbCjSfRkqCNPhDr2dBFyL5aBEoFK0CNQ7fBlJ27fiLPb6NYVq9taGGOMTT4zDXq0d_n5czaiX2UH3Pq_ZjQJU5EQIqrKtT4uDUTEXXV07GEcEbhLTO7Lg-7J1TUGg4FohEISZf_ihmxflR_G2HqY4wXojNdWJZY8NkalbmRv32Qb_734RZh3XJO1qs2xBBOmvwxznxQIl2HaZoBmwxW4a-XqhWwfszW5Q8TOsOunh14PB7JOlS3OnBzrPUOuy64M4oyDKAceX5320DYx4pSjgWFHr-WgKppYhZvjo-5h23N9F7wskKL0iBPkKsLjnKnCb8Z5gjQlNkJxqUwSF0jSVMKVENrPedIsuG4aqYJcmVCZTPvhGtT6z32zDiyPA64kSY3qEOGJVCILjJB0gYEQWgNVB38MQ5o5UXLqjfGU2uDElykhlxJyqUOuDvsfU14qRY6_Bq8SEp8GViDUYWsMduoO7TANObVeJkX8jV-m7cJMu3t5kV6cds43YZa-VP2O2YJaORiZbSQopd6x2_IdgGjeHA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Multiscale+Slimming+Network+Learning+for+Remote+Sensing+Image+Feature+Extraction&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Ye%2C+Dingqi&rft.au=Peng%2C+Jian&rft.au=Guo%2C+Wang&rft.au=Li%2C+Haifeng&rft.date=2024&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=62&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2024.3490666&rft.externalDocID=10741575 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |