Adaptive Multiscale Slimming Network Learning for Remote Sensing Image Feature Extraction

Effective feature representation is pivotal in numerous remote sensing image (RSI) interpretation tasks. Notably, a distinct attribute of RSIs is their inclination toward multiscale feature dependence. Previous research predominantly focuses on designing intricate and complex networks or modules to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 13
Main Authors Ye, Dingqi, Peng, Jian, Guo, Wang, Li, Haifeng
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2024.3490666

Cover

Abstract Effective feature representation is pivotal in numerous remote sensing image (RSI) interpretation tasks. Notably, a distinct attribute of RSIs is their inclination toward multiscale feature dependence. Previous research predominantly focuses on designing intricate and complex networks or modules to encapsulate rich multiscale features. However, these approaches compromise on either the model's compactness or its representational efficacy, thereby constraining the practical deployment of remote sensing technologies, particularly in limited-capacity environments like small-scale devices or on-orbit satellites. In this study, we explore the problem of how to augment the diversity of encoded features while avoiding heavy parameter scale growth in deep convolutional neural networks (CNNs). We proposed an adaptive multiscale framework RISV which presents two key features: 1) rich scale information: during training, RISV decomposes each convolutional layer into various-sized convolutions, extracting multiscale characteristics; and 2) small model volume: RISV incorporates a differentiable elect layer after each convolutional layer, adaptively calculating and polarizing channel importance during learning. After training, the added convolution kernel and the significant channels selected by the elect layer will be linearly equivalent merged, minimizing the impact of pruning on the model's feature extraction capability. Different from traditional model slimming, it focused on a slimmed-down network while enhancing the representation of multiscale features in RSIs. Versatile and adaptable across various model frameworks like VGG and ResNet. Experimental results demonstrate that our methodology not only preserves accuracy across standard skeletal frameworks but also attains a compression ratio exceeding 80%, surpassing the baseline by an average of 40%. Furthermore, the application of GradCAM on the NWPU dataset reveals our method's proficiency in acquiring detailed and accurate subject information from RSIs. The source code can be available at https://github.com/GeoX-Lab/RISV .
AbstractList Effective feature representation is pivotal in numerous remote sensing image (RSI) interpretation tasks. Notably, a distinct attribute of RSIs is their inclination toward multiscale feature dependence. Previous research predominantly focuses on designing intricate and complex networks or modules to encapsulate rich multiscale features. However, these approaches compromise on either the model’s compactness or its representational efficacy, thereby constraining the practical deployment of remote sensing technologies, particularly in limited-capacity environments like small-scale devices or on-orbit satellites. In this study, we explore the problem of how to augment the diversity of encoded features while avoiding heavy parameter scale growth in deep convolutional neural networks (CNNs). We proposed an adaptive multiscale framework RISV which presents two key features: 1) rich scale information: during training, RISV decomposes each convolutional layer into various-sized convolutions, extracting multiscale characteristics; and 2) small model volume: RISV incorporates a differentiable elect layer after each convolutional layer, adaptively calculating and polarizing channel importance during learning. After training, the added convolution kernel and the significant channels selected by the elect layer will be linearly equivalent merged, minimizing the impact of pruning on the model’s feature extraction capability. Different from traditional model slimming, it focused on a slimmed-down network while enhancing the representation of multiscale features in RSIs. Versatile and adaptable across various model frameworks like VGG and ResNet. Experimental results demonstrate that our methodology not only preserves accuracy across standard skeletal frameworks but also attains a compression ratio exceeding 80%, surpassing the baseline by an average of 40%. Furthermore, the application of GradCAM on the NWPU dataset reveals our method’s proficiency in acquiring detailed and accurate subject information from RSIs. The source code can be available at https://github.com/GeoX-Lab/RISV .
Author Ye, Dingqi
Guo, Wang
Li, Haifeng
Peng, Jian
Author_xml – sequence: 1
  givenname: Dingqi
  orcidid: 0000-0003-2260-7551
  surname: Ye
  fullname: Ye, Dingqi
  email: yedingqi@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
– sequence: 2
  givenname: Jian
  orcidid: 0000-0002-1820-4015
  surname: Peng
  fullname: Peng, Jian
  email: pengj2022@mail.tsinghua.edu.cn
  organization: Xiangjiang Laboratory, Changsha, China
– sequence: 3
  givenname: Wang
  orcidid: 0009-0005-2478-2558
  surname: Guo
  fullname: Guo, Wang
  email: wang_guo@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
– sequence: 4
  givenname: Haifeng
  orcidid: 0000-0003-1173-6593
  surname: Li
  fullname: Li, Haifeng
  email: lihaifeng@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
BookMark eNp9kEtLw0AUhQepYK3-AMFFwHXq3MlkMlmW0tZCVWjrwlW4TW7K1DzqZOrj35vQLsSFqwuH893DOZesV9UVMXYDfAjA4_v1bLkaCi7kMJAxV0qdsT6Eofa5krLH-hxi5Qsdiwt22TQ7zkGGEPXZ6yjDvTMf5D0eCmeaFAvyVoUpS1NtvSdyn7V98xaEtuqEvLbeksratSaqmk6al7glb0roDpa8yZezmDpTV1fsPMeioevTHbCX6WQ9fvAXz7P5eLTwUxFL5wsOkGHIpUgx55HKtAq1IokQI2mV6xBQA0q54RnoKIdNRDGKDClASjc8GLC749-9rd8P1LhkVx9s1UYmAQitA6VE1Lrg6Ept3TSW8mRvTYn2OwGedAsm3YJJt2ByWrBloj9Mahx23dqOpviXvD2Shoh-JUUSwigMfgBsCoD_
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102742
crossref_primary_10_1016_j_engappai_2025_110513
Cites_doi 10.1109/MGRS.2017.2762307
10.1109/TGRS.2023.3336285
10.1109/ICCV.2017.74
10.1016/j.ins.2021.12.077
10.1109/TITS.2021.3136287
10.1109/ICCV.2019.00339
10.1016/j.isprsjprs.2024.09.009
10.1109/CVPR.2018.00913
10.1109/TGRS.2024.3367765
10.1109/TNNLS.2021.3056201
10.48550/arXiv.1511.07122
10.1109/JSTARS.2020.3005403
10.1109/TPAMI.2019.2938758
10.1109/ICCV48922.2021.00447
10.1109/CVPR42600.2020.00804
10.1109/TGRS.2022.3190392
10.1109/TGRS.2023.3320650
10.1109/TGRS.2022.3167644
10.1007/978-3-319-46448-0_2
10.1016/j.knosys.2024.111637
10.1016/j.physa.2023.128913
10.1016/j.inffus.2024.102383
10.1109/TGRS.2019.2954328
10.1109/ICCV48922.2021.00519
10.1109/TMI.2019.2959609
10.1109/CVPR.2017.106
10.4324/9781410605337-29
10.1109/ICCV48922.2021.00675
10.3390/rs15020370
10.1109/JSTARS.2018.2794888
10.1109/ICCV.2017.522
10.1109/ICCV51070.2023.01587
10.24963/ijcai.2020/94
10.1109/TGRS.2023.3277077
10.1016/j.isprsjprs.2016.01.004
10.1109/JSTARS.2023.3271312
10.1016/j.eswa.2023.119858
10.1109/TNNLS.2023.3248871
10.1109/ICCV.2017.298
10.1145/1869790.1869829
10.1109/TNNLS.2023.3294495
10.1109/TGRS.2023.3235717
10.1109/TPAMI.2020.3013269
10.1109/TGRS.2024.3428360
10.1109/CVPR.2016.90
10.1109/TGRS.2021.3077062
10.1109/ACCESS.2018.2877890
10.1109/ICCV.2017.155
10.1109/ICCV48922.2021.00061
10.1109/CVPR46437.2021.01352
10.1016/j.ins.2024.120916
10.48550/arXiv.l803.03635
10.1109/TGRS.2023.3336791
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3490666
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 13
ExternalDocumentID 10_1109_TGRS_2024_3490666
10741575
Genre orig-research
GrantInformation_xml – fundername: Major Program Project of Xiangjiang Laboratory
  grantid: 22XJ01010
– fundername: High-Performance Computing Center of Central South University
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 41871364; 42301381; 41871302
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-2011da5042caf076d86586e4a19ae86f851a81a44b0d187f1b7e9a2dae3aecb03
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:09:02 EDT 2025
Wed Oct 01 02:58:14 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Aug 27 03:04:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-2011da5042caf076d86586e4a19ae86f851a81a44b0d187f1b7e9a2dae3aecb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1173-6593
0000-0002-1820-4015
0000-0003-2260-7551
0009-0005-2478-2558
PQID 3128836627
PQPubID 85465
PageCount 13
ParticipantIDs crossref_primary_10_1109_TGRS_2024_3490666
proquest_journals_3128836627
ieee_primary_10741575
crossref_citationtrail_10_1109_TGRS_2024_3490666
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref53
ref11
ref55
ref10
ref54
He (ref69) 2024; 677
ref17
ref16
ref19
ref18
Simonyan (ref61) 2014
Peng (ref58) 2021
ref46
ref45
ref42
Guo (ref50); 29
ref41
ref43
Hoefler (ref39) 2021; 22
Li (ref44) 2016
ref8
ref7
Louizos (ref49) 2017
ref9
Wen (ref26); 29
ref4
ref3
ref5
ref40
Jang (ref48) 2016
ref35
ref34
ref37
ref36
Han (ref52); 28
ref31
ref30
ref32
ref2
ref1
Huang (ref33) 2017
ref38
Ding (ref27); 32
Ye (ref22) 2018
ref24
ref68
ref23
ref67
ref25
ref20
Han (ref51) 2015
ref64
ref63
ref66
ref21
ref65
Hernandez (ref6) 2020
ref29
ref60
Kang (ref47)
ref62
Peng (ref28)
References_xml – ident: ref1
  doi: 10.1109/MGRS.2017.2762307
– ident: ref3
  doi: 10.1109/TGRS.2023.3336285
– ident: ref59
  doi: 10.1109/ICCV.2017.74
– volume: 32
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: Global sparse momentum sgd for pruning very deep neural networks
– ident: ref53
  doi: 10.1016/j.ins.2021.12.077
– ident: ref55
  doi: 10.1109/TITS.2021.3136287
– year: 2020
  ident: ref6
  article-title: Measuring the algorithmic efficiency of neural networks
  publication-title: arXiv:2005.04305
– ident: ref43
  doi: 10.1109/ICCV.2019.00339
– ident: ref11
  doi: 10.1016/j.isprsjprs.2024.09.009
– year: 2016
  ident: ref48
  article-title: Categorical reparameterization with gumbel-softmax
  publication-title: arXiv:1611.01144
– ident: ref34
  doi: 10.1109/CVPR.2018.00913
– ident: ref19
  doi: 10.1109/TGRS.2024.3367765
– ident: ref25
  doi: 10.1109/TNNLS.2021.3056201
– ident: ref30
  doi: 10.48550/arXiv.1511.07122
– year: 2017
  ident: ref33
  article-title: Multi-scale dense networks for resource efficient image classification
  publication-title: arXiv:1703.09844
– ident: ref2
  doi: 10.1109/JSTARS.2020.3005403
– ident: ref12
  doi: 10.1109/TPAMI.2019.2938758
– ident: ref23
  doi: 10.1109/ICCV48922.2021.00447
– year: 2015
  ident: ref51
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: arXiv:1510.00149
– year: 2014
  ident: ref61
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– volume: 28
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref52
  article-title: Learning both weights and connections for efficient neural network
– ident: ref38
  doi: 10.1109/CVPR42600.2020.00804
– ident: ref5
  doi: 10.1109/TGRS.2022.3190392
– ident: ref66
  doi: 10.1109/TGRS.2023.3320650
– ident: ref7
  doi: 10.1109/TGRS.2022.3167644
– ident: ref31
  doi: 10.1007/978-3-319-46448-0_2
– start-page: 5122
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref47
  article-title: Operation-aware soft channel pruning using differentiable masks
– ident: ref56
  doi: 10.1016/j.knosys.2024.111637
– ident: ref68
  doi: 10.1016/j.physa.2023.128913
– ident: ref20
  doi: 10.1016/j.inffus.2024.102383
– ident: ref9
  doi: 10.1109/TGRS.2019.2954328
– volume: 29
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref26
  article-title: Learning structured sparsity in deep neural networks
– ident: ref45
  doi: 10.1109/ICCV48922.2021.00519
– year: 2021
  ident: ref58
  article-title: Learning by active forgetting for neural networks
  publication-title: arXiv:2111.10831
– ident: ref35
  doi: 10.1109/TMI.2019.2959609
– volume: 22
  start-page: 10882
  issue: 1
  year: 2021
  ident: ref39
  article-title: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks
  publication-title: J. Mach. Learn. Res.
– ident: ref14
  doi: 10.1109/CVPR.2017.106
– ident: ref29
  doi: 10.4324/9781410605337-29
– ident: ref13
  doi: 10.1109/ICCV48922.2021.00675
– ident: ref17
  doi: 10.3390/rs15020370
– ident: ref10
  doi: 10.1109/JSTARS.2018.2794888
– start-page: 5113
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref28
  article-title: Collaborative channel pruning for deep networks
– volume: 29
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref50
  article-title: Dynamic network surgery for efficient DNNs
– ident: ref32
  doi: 10.1109/ICCV.2017.522
– ident: ref41
  doi: 10.1109/ICCV51070.2023.01587
– ident: ref64
  doi: 10.24963/ijcai.2020/94
– ident: ref65
  doi: 10.1109/TGRS.2023.3277077
– ident: ref8
  doi: 10.1016/j.isprsjprs.2016.01.004
– ident: ref36
  doi: 10.1109/JSTARS.2023.3271312
– ident: ref21
  doi: 10.1016/j.eswa.2023.119858
– year: 2016
  ident: ref44
  article-title: Pruning filters for efficient ConvNets
  publication-title: arXiv:1608.08710
– year: 2018
  ident: ref22
  article-title: Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers
  publication-title: arXiv:1802.00124
– ident: ref54
  doi: 10.1109/TNNLS.2023.3248871
– ident: ref40
  doi: 10.1109/ICCV.2017.298
– ident: ref67
  doi: 10.1145/1869790.1869829
– year: 2017
  ident: ref49
  article-title: Learning sparse neural networks through L0 regularization
  publication-title: arXiv:1712.01312
– ident: ref24
  doi: 10.1109/TNNLS.2023.3294495
– ident: ref18
  doi: 10.1109/TGRS.2023.3235717
– ident: ref60
  doi: 10.1109/TPAMI.2020.3013269
– ident: ref37
  doi: 10.1109/TGRS.2024.3428360
– ident: ref62
  doi: 10.1109/CVPR.2016.90
– ident: ref63
  doi: 10.1109/TGRS.2021.3077062
– ident: ref16
  doi: 10.1109/ACCESS.2018.2877890
– ident: ref42
  doi: 10.1109/ICCV.2017.155
– ident: ref15
  doi: 10.1109/ICCV48922.2021.00061
– ident: ref57
  doi: 10.1109/CVPR46437.2021.01352
– volume: 677
  year: 2024
  ident: ref69
  article-title: CAT: A causal graph attention network for trimming heterophilic graphs
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120916
– ident: ref46
  doi: 10.48550/arXiv.l803.03635
– ident: ref4
  doi: 10.1109/TGRS.2023.3336791
SSID ssj0014517
Score 2.438223
Snippet Effective feature representation is pivotal in numerous remote sensing image (RSI) interpretation tasks. Notably, a distinct attribute of RSIs is their...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Adaptation models
Artificial neural networks
Compact representation learning
Compression
Compression ratio
Computational modeling
Computer architecture
Effectiveness
Feature extraction
Image coding
Kernel
Learning
multiscale information augmentation learning
Neural networks
parameter-scale overload
Remote sensing
remote sensing image (RSI) feature extraction
Representation learning
Representations
Source code
Task complexity
Training
Title Adaptive Multiscale Slimming Network Learning for Remote Sensing Image Feature Extraction
URI https://ieeexplore.ieee.org/document/10741575
https://www.proquest.com/docview/3128836627
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xdJQdPQtemTdPmKLK-wD34AD2VpE1F3F1ltwvir3cmzYoPFG-lJCXwJTPfNDPfAOwbkmBHkxio2CSBiI0MTBXzQKpIi0hn6BGodviyJ89uxcVdcueL1V0tjLXWJZ_ZDj26u_zyuZjQr7JD7vxfmszCbJrJpljr48pAJNzXRssAo4jIX2HyUB3enF5dYygYiU4sFBH2L07IdVX5YYqdfzlZht50ZU1ayVNnUptO8fZNtPHfS1-BJc802VGzNVZhxg7XYPGT_uAazLv8z2K8DvdHpX4hy8dcRe4YkbPsuv84GOBA1mtyxZkXY31gyHTZlUWUcRBlwOOr8wFaJkaMcjKyrPtaj5qSiQ24PeneHJ8FvutCUERK1AExglIneJgLXYWpLDMkKdIKzZW2mayQoumMayFMWPIsrbhJrdJRqW2sbWHCeBPmhs9DuwWslBHXioRGTYzwJDpTFcZHpsIwCG2BbkE4hSEvvCQ5dcbo5y40CVVOyOWEXO6Ra8HBx5SXRo_jr8EbhMSngQ0ILWhPwc79kR3nMafGy6SHv_3LtB1YoK83P2DaMFePJnYXKUlt9txWfAfhntrP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50RdSDb3F95uBJ6Nq0abc5LqKurz3oCnoqSZuK6K6y2wXx1zuTZsUHirdSEhr4kplvmplvAPY0SbCjSfRkqCNPhDr2dBFyL5aBEoFK0CNQ7fBlJ27fiLPb6NYVq9taGGOMTT4zDXq0d_n5czaiX2UH3Pq_ZjQJU5EQIqrKtT4uDUTEXXV07GEcEbhLTO7Lg-7J1TUGg4FohEISZf_ihmxflR_G2HqY4wXojNdWJZY8NkalbmRv32Qb_734RZh3XJO1qs2xBBOmvwxznxQIl2HaZoBmwxW4a-XqhWwfszW5Q8TOsOunh14PB7JOlS3OnBzrPUOuy64M4oyDKAceX5320DYx4pSjgWFHr-WgKppYhZvjo-5h23N9F7wskKL0iBPkKsLjnKnCb8Z5gjQlNkJxqUwSF0jSVMKVENrPedIsuG4aqYJcmVCZTPvhGtT6z32zDiyPA64kSY3qEOGJVCILjJB0gYEQWgNVB38MQ5o5UXLqjfGU2uDElykhlxJyqUOuDvsfU14qRY6_Bq8SEp8GViDUYWsMduoO7TANObVeJkX8jV-m7cJMu3t5kV6cds43YZa-VP2O2YJaORiZbSQopd6x2_IdgGjeHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Multiscale+Slimming+Network+Learning+for+Remote+Sensing+Image+Feature+Extraction&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Ye%2C+Dingqi&rft.au=Peng%2C+Jian&rft.au=Guo%2C+Wang&rft.au=Li%2C+Haifeng&rft.date=2024&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=62&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2024.3490666&rft.externalDocID=10741575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon