Anti-Spoofing for Fingerprint Recognition Using Electric Body Pulse Response
This study presents a highly reliable approach to prevent fingerprint spoofing attacks based on electric body pulse responses (BPRs) in personal Internet of Things (IoT) gadgets. Real fingerprint pulse response (RFPR) and fake fingerprint pulse response (FFPR) data were collected from ten subjects f...
Saved in:
Published in | IEEE internet of things journal Vol. 11; no. 4; pp. 5993 - 6006 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
15.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4662 2327-4662 |
DOI | 10.1109/JIOT.2023.3308654 |
Cover
Abstract | This study presents a highly reliable approach to prevent fingerprint spoofing attacks based on electric body pulse responses (BPRs) in personal Internet of Things (IoT) gadgets. Real fingerprint pulse response (RFPR) and fake fingerprint pulse response (FFPR) data were collected from ten subjects for four weeks. The FFPR was obtained by wearing a fake fingerprint made of artificial substances, such as conductive silicone, over the finger. We analyzed different patterns of FFPR compared to RFPR using an electric circuit model of the proposed fingerprint anti-spoofing system based on BPRs. Simple features comprising ten, five, or three datapoints were selected by the minimum redundancy maximum relevance (MRMR) algorithm and led to reduction in processing complexity. We also validated its robustness to sampling offset errors caused by practical sampling operations in devices based on the evaluation of classification accuracy using machine learning algorithms, such as <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-nearest neighbor (KNN) and support vector machine (SVM). Finally, the effectiveness of the selected feature was evaluated using unsupervised anomaly detection algorithms, such as principal component analysis (PCA), one-class SVM (OC-SVM), and variational autoencoder (VAE), in a practical scenario with sampling offset errors in the training and test data. The VAE outperformed PCA and OC-SVM by achieving a detection accuracy of 99.76% using raw data under 100 datapoints and 97.60% with reduced features having only five datapoints, regardless of sampling offset errors. Therefore, the proposed anomaly detection system based on EPRs can provide promising fingerprint spoof detection in IoT devices with limited computing resources. |
---|---|
AbstractList | This study presents a highly reliable approach to prevent fingerprint spoofing attacks based on electric body pulse responses (BPRs) in personal Internet of Things (IoT) gadgets. Real fingerprint pulse response (RFPR) and fake fingerprint pulse response (FFPR) data were collected from ten subjects for four weeks. The FFPR was obtained by wearing a fake fingerprint made of artificial substances, such as conductive silicone, over the finger. We analyzed different patterns of FFPR compared to RFPR using an electric circuit model of the proposed fingerprint anti-spoofing system based on BPRs. Simple features comprising ten, five, or three datapoints were selected by the minimum redundancy maximum relevance (MRMR) algorithm and led to reduction in processing complexity. We also validated its robustness to sampling offset errors caused by practical sampling operations in devices based on the evaluation of classification accuracy using machine learning algorithms, such as <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-nearest neighbor (KNN) and support vector machine (SVM). Finally, the effectiveness of the selected feature was evaluated using unsupervised anomaly detection algorithms, such as principal component analysis (PCA), one-class SVM (OC-SVM), and variational autoencoder (VAE), in a practical scenario with sampling offset errors in the training and test data. The VAE outperformed PCA and OC-SVM by achieving a detection accuracy of 99.76% using raw data under 100 datapoints and 97.60% with reduced features having only five datapoints, regardless of sampling offset errors. Therefore, the proposed anomaly detection system based on EPRs can provide promising fingerprint spoof detection in IoT devices with limited computing resources. This study presents a highly reliable approach to prevent fingerprint spoofing attacks based on electric body pulse responses (BPRs) in personal Internet of Things (IoT) gadgets. Real fingerprint pulse response (RFPR) and fake fingerprint pulse response (FFPR) data were collected from ten subjects for four weeks. The FFPR was obtained by wearing a fake fingerprint made of artificial substances, such as conductive silicone, over the finger. We analyzed different patterns of FFPR compared to RFPR using an electric circuit model of the proposed fingerprint anti-spoofing system based on BPRs. Simple features comprising ten, five, or three datapoints were selected by the minimum redundancy maximum relevance (MRMR) algorithm and led to reduction in processing complexity. We also validated its robustness to sampling offset errors caused by practical sampling operations in devices based on the evaluation of classification accuracy using machine learning algorithms, such as [Formula Omitted]-nearest neighbor (KNN) and support vector machine (SVM). Finally, the effectiveness of the selected feature was evaluated using unsupervised anomaly detection algorithms, such as principal component analysis (PCA), one-class SVM (OC-SVM), and variational autoencoder (VAE), in a practical scenario with sampling offset errors in the training and test data. The VAE outperformed PCA and OC-SVM by achieving a detection accuracy of 99.76% using raw data under 100 datapoints and 97.60% with reduced features having only five datapoints, regardless of sampling offset errors. Therefore, the proposed anomaly detection system based on EPRs can provide promising fingerprint spoof detection in IoT devices with limited computing resources. |
Author | Lee, Jae-Jin Kim, Sung-Eun Oh, Kwang-Il Oh, Wangrok Kang, Taewook Lee, Woojoo Kim, Seong-Eun |
Author_xml | – sequence: 1 givenname: Taewook orcidid: 0000-0001-9147-3898 surname: Kang fullname: Kang, Taewook organization: AI SoC Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea – sequence: 2 givenname: Kwang-Il orcidid: 0000-0002-8715-7929 surname: Oh fullname: Oh, Kwang-Il organization: AI SoC Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea – sequence: 3 givenname: Jae-Jin orcidid: 0000-0003-3260-1620 surname: Lee fullname: Lee, Jae-Jin organization: AI SoC Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea – sequence: 4 givenname: Sung-Eun orcidid: 0000-0001-9039-8902 surname: Kim fullname: Kim, Sung-Eun organization: AI SoC Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea – sequence: 5 givenname: Woojoo orcidid: 0000-0001-5736-4583 surname: Lee fullname: Lee, Woojoo organization: School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, South Korea – sequence: 6 givenname: Wangrok orcidid: 0000-0001-8205-5432 surname: Oh fullname: Oh, Wangrok organization: Department of Radio and Information Communications Engineering, Chungnam National University, Daejeon, South Korea – sequence: 7 givenname: Seong-Eun orcidid: 0000-0002-4518-4208 surname: Kim fullname: Kim, Seong-Eun email: sekim@seoultech.ac.kr organization: Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea |
BookMark | eNp9kEFLAzEQhYNUsNb-AMHDguetyWR3kxxrabVSqGh7XrLZpKTUZE22h_57d2kP4sHTPIb3zfDeLRo47zRC9wRPCMHi6W253kwAA51QinmRZ1doCBRYmhUFDH7pGzSOcY8x7rCciGKIVlPX2vSz8d5Yt0uMD8miEzo0wbo2-dDK75xtrXfJNvaO-UGrNliVPPv6lLwfD1F3rth4F_UdujayW4wvc4S2i_lm9pqu1i_L2XSVKhBZmxJTQYFrnTHghuUcKiEk5opmucQyN4ZxXBOhdGE0qyivJeOMgRQMS5NVgo7Q4_luE_z3Uce23PtjcN3LEgRQAhhz6Fzk7FLBxxi0KbtMXzKcSoLLvrey763seysvvXUM-8Mo28o-fhukPfxLPpxJq7X-9QkoBuD0B3S7fDg |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1109_TIM_2025_3541807 crossref_primary_10_1109_JPHOT_2024_3495829 crossref_primary_10_1109_JIOT_2024_3453920 crossref_primary_10_1007_s00521_024_10423_8 |
Cites_doi | 10.1109/TIFS.2016.2520880 10.1109/ISSCC.2008.4523111 10.1109/TIM.2017.2783059 10.1016/j.future.2013.01.010 10.1109/ACCESS.2019.2959901 10.1007/BF00994018 10.1109/TPAMI.2010.86 10.1145/1254882.1254895 10.1109/ACCESS.2020.3022661 10.1109/TBME.2012.2205382 10.1109/JIOT.2014.2306328 10.1109/TBME.2016.2560881 10.3390/s22187001 10.1109/TIM.2021.3082273 10.1109/ACCESS.2019.2947723 10.1109/ACCESS.2020.3047723 10.1109/ACCESS.2019.2947609 10.1145/2617756 10.1109/TII.2021.3101208 10.1109/MSECP.2003.1193209 10.1109/TIFS.2006.873653 10.1016/j.irbm.2019.10.006 10.1023/B:MACH.0000008084.60811.49 10.1109/BIOMS.2010.5610440 10.2307/2685209 10.1109/TCSVT.2003.818349 10.1109/JIOT.2020.3004077 10.1145/3025453.3025536 10.1109/TIM.2015.2476236 10.1142/S0219720005001004 10.1109/DSAA.2019.00059 10.1002/047174882x 10.1145/3023359 10.1109/TBME.2018.2879462 10.1088/1757-899x/1033/1/012026 10.1109/TIM.2015.2420391 10.1186/s41935-020-00190-7 10.1049/el.2012.3129 10.1109/JIOT.2022.3215916 10.1109/ICWR.2018.8387240 10.1038/s41598-019-49792-9 10.1109/ACCESS.2019.2909497 10.1109/ACCESS.2020.2990909 10.1109/TIM.2021.3106132 10.1109/TIM.2020.2970870 10.1109/TEMC.2016.2598582 10.1109/IJCB52358.2021.9484399 10.1007/978-3-030-18732-3_8 10.1016/j.jestch.2019.06.005 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2023.3308654 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 6006 |
ExternalDocumentID | 10_1109_JIOT_2023_3308654 10230228 |
Genre | orig-research |
GrantInformation_xml | – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant – fundername: Korea Government (MSIT) through Development of IoT-Based Edge Computing Ultra-Low Power Artificial Intelligent Processor grantid: 2020-0-01294 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c294t-1fb260de4728f7582b99a08c345a0a5ff780d19ce6fe7b38da78772a970af4b93 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Sun Jun 29 15:36:24 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Wed Oct 01 04:45:59 EDT 2025 Wed Aug 27 01:53:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c294t-1fb260de4728f7582b99a08c345a0a5ff780d19ce6fe7b38da78772a970af4b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4518-4208 0000-0001-9147-3898 0000-0002-8715-7929 0000-0001-5736-4583 0000-0001-9039-8902 0000-0003-3260-1620 0000-0001-8205-5432 |
PQID | 2923120082 |
PQPubID | 2040421 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2923120082 crossref_primary_10_1109_JIOT_2023_3308654 ieee_primary_10230228 crossref_citationtrail_10_1109_JIOT_2023_3308654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-15 |
PublicationDateYYYYMMDD | 2024-02-15 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref11 ref55 ref10 ref17 ref16 ref19 ref18 Jolliffe (ref36) 2002 Hinton (ref37) ref46 ref48 (ref53) 2019 ref47 ref42 ref41 ref44 ref43 (ref50) 2021 (ref45) 2010 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 (ref51) 2021 ref31 ref30 ref32 ref2 ref1 ref39 Kingma (ref59) 2022 ref24 ref23 ref26 (ref52) 2021 ref25 ref20 ref22 Zhao (ref33) 2019 ref21 Maaten (ref38) 2008; 9 Marasco (ref54) 2015; 47 ref28 (ref49) 2021 ref27 ref29 |
References_xml | – ident: ref21 doi: 10.1109/TIFS.2016.2520880 – volume: 9 start-page: 2579 issue: 86 year: 2008 ident: ref38 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume-title: TLV350x 4.5-ns, rail-to-rail, high-speed comparator in microsize packages year: 2019 ident: ref53 – ident: ref22 doi: 10.1109/ISSCC.2008.4523111 – ident: ref46 doi: 10.1109/TIM.2017.2783059 – ident: ref1 doi: 10.1016/j.future.2013.01.010 – ident: ref26 doi: 10.1109/ACCESS.2019.2959901 – ident: ref40 doi: 10.1007/BF00994018 – ident: ref35 doi: 10.1109/TPAMI.2010.86 – ident: ref57 doi: 10.1145/1254882.1254895 – ident: ref6 doi: 10.1109/ACCESS.2020.3022661 – volume-title: TPS6104x low-power DC-DC boost converter in SOT-23 and WSON packages year: 2021 ident: ref51 – ident: ref28 doi: 10.1109/TBME.2012.2205382 – ident: ref5 doi: 10.1109/JIOT.2014.2306328 – ident: ref31 doi: 10.1109/TBME.2016.2560881 – ident: ref4 doi: 10.3390/s22187001 – ident: ref44 doi: 10.1109/TIM.2021.3082273 – volume-title: Spartan-6 FPGA family data sheet: DC and switching characteristics year: 2021 ident: ref49 – ident: ref2 doi: 10.1109/ACCESS.2019.2947723 – ident: ref19 doi: 10.1109/ACCESS.2020.3047723 – ident: ref23 doi: 10.1109/ACCESS.2019.2947609 – volume: 47 start-page: 1 issue: 2 year: 2015 ident: ref54 article-title: A survey on antispoofing schemes for fingerprint recognition systems publication-title: ACM Comput. Surveys doi: 10.1145/2617756 – ident: ref14 doi: 10.1109/TII.2021.3101208 – volume-title: Principal Component Analysis year: 2002 ident: ref36 – ident: ref13 doi: 10.1109/MSECP.2003.1193209 – ident: ref8 doi: 10.1109/TIFS.2006.873653 – ident: ref34 doi: 10.1016/j.irbm.2019.10.006 – ident: ref58 doi: 10.1023/B:MACH.0000008084.60811.49 – ident: ref16 doi: 10.1109/BIOMS.2010.5610440 – ident: ref39 doi: 10.2307/2685209 – volume-title: TLV7211, TLV7211A CMOS comparators with rail-to-rail input and push-pull output year: 2021 ident: ref52 – volume-title: STM32L486xx datasheet year: 2021 ident: ref50 – ident: ref7 doi: 10.1109/TCSVT.2003.818349 – ident: ref10 doi: 10.1109/JIOT.2020.3004077 – ident: ref41 doi: 10.1145/3025453.3025536 – ident: ref24 doi: 10.1109/TIM.2015.2476236 – ident: ref32 doi: 10.1142/S0219720005001004 – volume-title: Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform year: 2019 ident: ref33 doi: 10.1109/DSAA.2019.00059 – ident: ref56 doi: 10.1002/047174882x – ident: ref43 doi: 10.1145/3023359 – ident: ref29 doi: 10.1109/TBME.2018.2879462 – ident: ref17 doi: 10.1088/1757-899x/1033/1/012026 – ident: ref30 doi: 10.1109/TIM.2015.2420391 – ident: ref55 doi: 10.1186/s41935-020-00190-7 – ident: ref47 doi: 10.1049/el.2012.3129 – ident: ref9 doi: 10.1109/JIOT.2022.3215916 – ident: ref12 doi: 10.1109/ICWR.2018.8387240 – ident: ref42 doi: 10.1038/s41598-019-49792-9 – ident: ref11 doi: 10.1109/ACCESS.2019.2909497 – ident: ref20 doi: 10.1109/ACCESS.2020.2990909 – ident: ref25 doi: 10.1109/TIM.2021.3106132 – volume-title: Auto-encoding variational bayes year: 2022 ident: ref59 – ident: ref27 doi: 10.1109/TIM.2020.2970870 – start-page: 857 volume-title: Proc. NeurIPS ident: ref37 article-title: Stochastic neighbor embedding – volume-title: Channel Model for Body Area Network (BAN) year: 2010 ident: ref45 – ident: ref48 doi: 10.1109/TEMC.2016.2598582 – ident: ref18 doi: 10.1109/IJCB52358.2021.9484399 – ident: ref3 doi: 10.1007/978-3-030-18732-3_8 – ident: ref15 doi: 10.1016/j.jestch.2019.06.005 |
SSID | ssj0001105196 |
Score | 2.3339658 |
Snippet | This study presents a highly reliable approach to prevent fingerprint spoofing attacks based on electric body pulse responses (BPRs) in personal Internet of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5993 |
SubjectTerms | Accuracy Algorithms Anomalies Anomaly detection Biometric recognition systems Business process re-engineering Circuits Couplings Cybersecurity Detection algorithms electric pulse response Electric variables measurement Errors Feature extraction fingerprint anti-spoofing fingerprint authentication Fingerprint recognition Fingerprint verification Internet of Things liveness detection Machine learning Principal components analysis Redundancy Sampling Spoofing Support vector machines |
Title | Anti-Spoofing for Fingerprint Recognition Using Electric Body Pulse Response |
URI | https://ieeexplore.ieee.org/document/10230228 https://www.proquest.com/docview/2923120082 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZoJxbKUUShIA9MSElz2HE8FtQKECoIWqlb5BNVoKSCdIBfj-0knAKxeXi2LD_b7_Dn9wFwLKTmJODU4-b695CQoZfiRHppEkpNMBNYu2qfk-R8hi7neF5_Vnd_YZRSDnymfNt0b_myECubKhvYMgO2XksLtAih1Wetj4RKaL2RpH65DAM6uLy4nvqWHtw3QXuaYPTF9jgylR83sDMr4w6YNBOq0CQP_qrkvnj9Vqvx3zPeBBu1gwmH1Y7YAmsq3wadhrwB1md5B1wN83Lh3S0Ls7vye2h8Vzh2KT6b6SvhbQMsKnLoYAVw5AhzFgKeFvIF3qyMTTVSDmGrumA2Hk3Pzr2aWsETEUWlF2puAhmpEIlSo5I04pSyIBUxwixgWGuSBjKkQiVaER6nkpmDTSJGScA04jTeBe28yNUegCzG0vhtCkmkkBmAhozEVFgOD2zCa90DQbPomajrjlv6i8fMxR8BzayeMqunrNZTD5y8d1lWRTf-Eu7adf8kWC15D_Qb1Wb1uXzOIuvPWshHtP9LtwOwbkZHFpgd4j5ol08rdWj8jpIfuf32Bk6b1EI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T-QwEB7xKKDhcQdiebq4CikhDzuOS0CsFthb0N0i0UV-ohUoQZAt4NdjOwkcoEN0KcaO5fHYM-PP8wH8ksoIGgkWCLv9B1iqOMhJpoI8i5WhhEtifLXPUTa4wmfX5Lp9rO7fwmitPfhMh-7T3-WrSk5dquzAlRlw9VpmYZ7YsII2z7XeUiqx80ey9u4yjtjB2enFOHQE4aEN2_OM4Henj6dT-bQH-4OlvwyjbkgNnuQ2nNYilM8fqjV-e8wrsNS6mOiwWROrMKPLH7Dc0Teg1pp_wvCwrCfB3_vKrq_yBlnvFfV9ks_l-mr0p4MWVSXywAJ04ilzJhIdVeoJXU7tqWqlPMZWr8FV_2R8PAhacoVAJgzXQWyEDWWUxjTJrVLyRDDGo1ymmPCIE2NoHqmYSZ0ZTUWaK25Nmyac0YgbLFi6DnNlVeoNQDwlynpuGiusse2AxZymTDoWD2IDbNODqJv0QraVxx0Bxl3hI5CIFU5PhdNT0eqpB_uvTe6bshtfCa-5ef9HsJnyHmx3qi1ay3wsEufROtBHsvmfZnuwMBj_HhbD09H5FizaP2EH047JNszVD1O9Y72QWuz6tfcCoGDXkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-Spoofing+for+Fingerprint+Recognition+Using+Electric+Body+Pulse+Response&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Kang%2C+Taewook&rft.au=Oh%2C+Kwang-Il&rft.au=Jae-Jin%2C+Lee&rft.au=Sung-Eun%2C+Kim&rft.date=2024-02-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=11&rft.issue=4&rft.spage=5993&rft_id=info:doi/10.1109%2FJIOT.2023.3308654&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |