Anti-Spoofing for Fingerprint Recognition Using Electric Body Pulse Response

This study presents a highly reliable approach to prevent fingerprint spoofing attacks based on electric body pulse responses (BPRs) in personal Internet of Things (IoT) gadgets. Real fingerprint pulse response (RFPR) and fake fingerprint pulse response (FFPR) data were collected from ten subjects f...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 11; no. 4; pp. 5993 - 6006
Main Authors Kang, Taewook, Oh, Kwang-Il, Lee, Jae-Jin, Kim, Sung-Eun, Lee, Woojoo, Oh, Wangrok, Kim, Seong-Eun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2023.3308654

Cover

Abstract This study presents a highly reliable approach to prevent fingerprint spoofing attacks based on electric body pulse responses (BPRs) in personal Internet of Things (IoT) gadgets. Real fingerprint pulse response (RFPR) and fake fingerprint pulse response (FFPR) data were collected from ten subjects for four weeks. The FFPR was obtained by wearing a fake fingerprint made of artificial substances, such as conductive silicone, over the finger. We analyzed different patterns of FFPR compared to RFPR using an electric circuit model of the proposed fingerprint anti-spoofing system based on BPRs. Simple features comprising ten, five, or three datapoints were selected by the minimum redundancy maximum relevance (MRMR) algorithm and led to reduction in processing complexity. We also validated its robustness to sampling offset errors caused by practical sampling operations in devices based on the evaluation of classification accuracy using machine learning algorithms, such as <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-nearest neighbor (KNN) and support vector machine (SVM). Finally, the effectiveness of the selected feature was evaluated using unsupervised anomaly detection algorithms, such as principal component analysis (PCA), one-class SVM (OC-SVM), and variational autoencoder (VAE), in a practical scenario with sampling offset errors in the training and test data. The VAE outperformed PCA and OC-SVM by achieving a detection accuracy of 99.76% using raw data under 100 datapoints and 97.60% with reduced features having only five datapoints, regardless of sampling offset errors. Therefore, the proposed anomaly detection system based on EPRs can provide promising fingerprint spoof detection in IoT devices with limited computing resources.
AbstractList This study presents a highly reliable approach to prevent fingerprint spoofing attacks based on electric body pulse responses (BPRs) in personal Internet of Things (IoT) gadgets. Real fingerprint pulse response (RFPR) and fake fingerprint pulse response (FFPR) data were collected from ten subjects for four weeks. The FFPR was obtained by wearing a fake fingerprint made of artificial substances, such as conductive silicone, over the finger. We analyzed different patterns of FFPR compared to RFPR using an electric circuit model of the proposed fingerprint anti-spoofing system based on BPRs. Simple features comprising ten, five, or three datapoints were selected by the minimum redundancy maximum relevance (MRMR) algorithm and led to reduction in processing complexity. We also validated its robustness to sampling offset errors caused by practical sampling operations in devices based on the evaluation of classification accuracy using machine learning algorithms, such as <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-nearest neighbor (KNN) and support vector machine (SVM). Finally, the effectiveness of the selected feature was evaluated using unsupervised anomaly detection algorithms, such as principal component analysis (PCA), one-class SVM (OC-SVM), and variational autoencoder (VAE), in a practical scenario with sampling offset errors in the training and test data. The VAE outperformed PCA and OC-SVM by achieving a detection accuracy of 99.76% using raw data under 100 datapoints and 97.60% with reduced features having only five datapoints, regardless of sampling offset errors. Therefore, the proposed anomaly detection system based on EPRs can provide promising fingerprint spoof detection in IoT devices with limited computing resources.
This study presents a highly reliable approach to prevent fingerprint spoofing attacks based on electric body pulse responses (BPRs) in personal Internet of Things (IoT) gadgets. Real fingerprint pulse response (RFPR) and fake fingerprint pulse response (FFPR) data were collected from ten subjects for four weeks. The FFPR was obtained by wearing a fake fingerprint made of artificial substances, such as conductive silicone, over the finger. We analyzed different patterns of FFPR compared to RFPR using an electric circuit model of the proposed fingerprint anti-spoofing system based on BPRs. Simple features comprising ten, five, or three datapoints were selected by the minimum redundancy maximum relevance (MRMR) algorithm and led to reduction in processing complexity. We also validated its robustness to sampling offset errors caused by practical sampling operations in devices based on the evaluation of classification accuracy using machine learning algorithms, such as [Formula Omitted]-nearest neighbor (KNN) and support vector machine (SVM). Finally, the effectiveness of the selected feature was evaluated using unsupervised anomaly detection algorithms, such as principal component analysis (PCA), one-class SVM (OC-SVM), and variational autoencoder (VAE), in a practical scenario with sampling offset errors in the training and test data. The VAE outperformed PCA and OC-SVM by achieving a detection accuracy of 99.76% using raw data under 100 datapoints and 97.60% with reduced features having only five datapoints, regardless of sampling offset errors. Therefore, the proposed anomaly detection system based on EPRs can provide promising fingerprint spoof detection in IoT devices with limited computing resources.
Author Lee, Jae-Jin
Kim, Sung-Eun
Oh, Kwang-Il
Oh, Wangrok
Kang, Taewook
Lee, Woojoo
Kim, Seong-Eun
Author_xml – sequence: 1
  givenname: Taewook
  orcidid: 0000-0001-9147-3898
  surname: Kang
  fullname: Kang, Taewook
  organization: AI SoC Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea
– sequence: 2
  givenname: Kwang-Il
  orcidid: 0000-0002-8715-7929
  surname: Oh
  fullname: Oh, Kwang-Il
  organization: AI SoC Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea
– sequence: 3
  givenname: Jae-Jin
  orcidid: 0000-0003-3260-1620
  surname: Lee
  fullname: Lee, Jae-Jin
  organization: AI SoC Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea
– sequence: 4
  givenname: Sung-Eun
  orcidid: 0000-0001-9039-8902
  surname: Kim
  fullname: Kim, Sung-Eun
  organization: AI SoC Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea
– sequence: 5
  givenname: Woojoo
  orcidid: 0000-0001-5736-4583
  surname: Lee
  fullname: Lee, Woojoo
  organization: School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, South Korea
– sequence: 6
  givenname: Wangrok
  orcidid: 0000-0001-8205-5432
  surname: Oh
  fullname: Oh, Wangrok
  organization: Department of Radio and Information Communications Engineering, Chungnam National University, Daejeon, South Korea
– sequence: 7
  givenname: Seong-Eun
  orcidid: 0000-0002-4518-4208
  surname: Kim
  fullname: Kim, Seong-Eun
  email: sekim@seoultech.ac.kr
  organization: Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea
BookMark eNp9kEFLAzEQhYNUsNb-AMHDguetyWR3kxxrabVSqGh7XrLZpKTUZE22h_57d2kP4sHTPIb3zfDeLRo47zRC9wRPCMHi6W253kwAA51QinmRZ1doCBRYmhUFDH7pGzSOcY8x7rCciGKIVlPX2vSz8d5Yt0uMD8miEzo0wbo2-dDK75xtrXfJNvaO-UGrNliVPPv6lLwfD1F3rth4F_UdujayW4wvc4S2i_lm9pqu1i_L2XSVKhBZmxJTQYFrnTHghuUcKiEk5opmucQyN4ZxXBOhdGE0qyivJeOMgRQMS5NVgo7Q4_luE_z3Uce23PtjcN3LEgRQAhhz6Fzk7FLBxxi0KbtMXzKcSoLLvrey763seysvvXUM-8Mo28o-fhukPfxLPpxJq7X-9QkoBuD0B3S7fDg
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_TIM_2025_3541807
crossref_primary_10_1109_JPHOT_2024_3495829
crossref_primary_10_1109_JIOT_2024_3453920
crossref_primary_10_1007_s00521_024_10423_8
Cites_doi 10.1109/TIFS.2016.2520880
10.1109/ISSCC.2008.4523111
10.1109/TIM.2017.2783059
10.1016/j.future.2013.01.010
10.1109/ACCESS.2019.2959901
10.1007/BF00994018
10.1109/TPAMI.2010.86
10.1145/1254882.1254895
10.1109/ACCESS.2020.3022661
10.1109/TBME.2012.2205382
10.1109/JIOT.2014.2306328
10.1109/TBME.2016.2560881
10.3390/s22187001
10.1109/TIM.2021.3082273
10.1109/ACCESS.2019.2947723
10.1109/ACCESS.2020.3047723
10.1109/ACCESS.2019.2947609
10.1145/2617756
10.1109/TII.2021.3101208
10.1109/MSECP.2003.1193209
10.1109/TIFS.2006.873653
10.1016/j.irbm.2019.10.006
10.1023/B:MACH.0000008084.60811.49
10.1109/BIOMS.2010.5610440
10.2307/2685209
10.1109/TCSVT.2003.818349
10.1109/JIOT.2020.3004077
10.1145/3025453.3025536
10.1109/TIM.2015.2476236
10.1142/S0219720005001004
10.1109/DSAA.2019.00059
10.1002/047174882x
10.1145/3023359
10.1109/TBME.2018.2879462
10.1088/1757-899x/1033/1/012026
10.1109/TIM.2015.2420391
10.1186/s41935-020-00190-7
10.1049/el.2012.3129
10.1109/JIOT.2022.3215916
10.1109/ICWR.2018.8387240
10.1038/s41598-019-49792-9
10.1109/ACCESS.2019.2909497
10.1109/ACCESS.2020.2990909
10.1109/TIM.2021.3106132
10.1109/TIM.2020.2970870
10.1109/TEMC.2016.2598582
10.1109/IJCB52358.2021.9484399
10.1007/978-3-030-18732-3_8
10.1016/j.jestch.2019.06.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2023.3308654
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 6006
ExternalDocumentID 10_1109_JIOT_2023_3308654
10230228
Genre orig-research
GrantInformation_xml – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant
– fundername: Korea Government (MSIT) through Development of IoT-Based Edge Computing Ultra-Low Power Artificial Intelligent Processor
  grantid: 2020-0-01294
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-1fb260de4728f7582b99a08c345a0a5ff780d19ce6fe7b38da78772a970af4b93
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Sun Jun 29 15:36:24 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Wed Oct 01 04:45:59 EDT 2025
Wed Aug 27 01:53:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-1fb260de4728f7582b99a08c345a0a5ff780d19ce6fe7b38da78772a970af4b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4518-4208
0000-0001-9147-3898
0000-0002-8715-7929
0000-0001-5736-4583
0000-0001-9039-8902
0000-0003-3260-1620
0000-0001-8205-5432
PQID 2923120082
PQPubID 2040421
PageCount 14
ParticipantIDs proquest_journals_2923120082
crossref_primary_10_1109_JIOT_2023_3308654
ieee_primary_10230228
crossref_citationtrail_10_1109_JIOT_2023_3308654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-15
PublicationDateYYYYMMDD 2024-02-15
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref11
ref55
ref10
ref17
ref16
ref19
ref18
Jolliffe (ref36) 2002
Hinton (ref37)
ref46
ref48
(ref53) 2019
ref47
ref42
ref41
ref44
ref43
(ref50) 2021
(ref45) 2010
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
(ref51) 2021
ref31
ref30
ref32
ref2
ref1
ref39
Kingma (ref59) 2022
ref24
ref23
ref26
(ref52) 2021
ref25
ref20
ref22
Zhao (ref33) 2019
ref21
Maaten (ref38) 2008; 9
Marasco (ref54) 2015; 47
ref28
(ref49) 2021
ref27
ref29
References_xml – ident: ref21
  doi: 10.1109/TIFS.2016.2520880
– volume: 9
  start-page: 2579
  issue: 86
  year: 2008
  ident: ref38
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume-title: TLV350x 4.5-ns, rail-to-rail, high-speed comparator in microsize packages
  year: 2019
  ident: ref53
– ident: ref22
  doi: 10.1109/ISSCC.2008.4523111
– ident: ref46
  doi: 10.1109/TIM.2017.2783059
– ident: ref1
  doi: 10.1016/j.future.2013.01.010
– ident: ref26
  doi: 10.1109/ACCESS.2019.2959901
– ident: ref40
  doi: 10.1007/BF00994018
– ident: ref35
  doi: 10.1109/TPAMI.2010.86
– ident: ref57
  doi: 10.1145/1254882.1254895
– ident: ref6
  doi: 10.1109/ACCESS.2020.3022661
– volume-title: TPS6104x low-power DC-DC boost converter in SOT-23 and WSON packages
  year: 2021
  ident: ref51
– ident: ref28
  doi: 10.1109/TBME.2012.2205382
– ident: ref5
  doi: 10.1109/JIOT.2014.2306328
– ident: ref31
  doi: 10.1109/TBME.2016.2560881
– ident: ref4
  doi: 10.3390/s22187001
– ident: ref44
  doi: 10.1109/TIM.2021.3082273
– volume-title: Spartan-6 FPGA family data sheet: DC and switching characteristics
  year: 2021
  ident: ref49
– ident: ref2
  doi: 10.1109/ACCESS.2019.2947723
– ident: ref19
  doi: 10.1109/ACCESS.2020.3047723
– ident: ref23
  doi: 10.1109/ACCESS.2019.2947609
– volume: 47
  start-page: 1
  issue: 2
  year: 2015
  ident: ref54
  article-title: A survey on antispoofing schemes for fingerprint recognition systems
  publication-title: ACM Comput. Surveys
  doi: 10.1145/2617756
– ident: ref14
  doi: 10.1109/TII.2021.3101208
– volume-title: Principal Component Analysis
  year: 2002
  ident: ref36
– ident: ref13
  doi: 10.1109/MSECP.2003.1193209
– ident: ref8
  doi: 10.1109/TIFS.2006.873653
– ident: ref34
  doi: 10.1016/j.irbm.2019.10.006
– ident: ref58
  doi: 10.1023/B:MACH.0000008084.60811.49
– ident: ref16
  doi: 10.1109/BIOMS.2010.5610440
– ident: ref39
  doi: 10.2307/2685209
– volume-title: TLV7211, TLV7211A CMOS comparators with rail-to-rail input and push-pull output
  year: 2021
  ident: ref52
– volume-title: STM32L486xx datasheet
  year: 2021
  ident: ref50
– ident: ref7
  doi: 10.1109/TCSVT.2003.818349
– ident: ref10
  doi: 10.1109/JIOT.2020.3004077
– ident: ref41
  doi: 10.1145/3025453.3025536
– ident: ref24
  doi: 10.1109/TIM.2015.2476236
– ident: ref32
  doi: 10.1142/S0219720005001004
– volume-title: Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform
  year: 2019
  ident: ref33
  doi: 10.1109/DSAA.2019.00059
– ident: ref56
  doi: 10.1002/047174882x
– ident: ref43
  doi: 10.1145/3023359
– ident: ref29
  doi: 10.1109/TBME.2018.2879462
– ident: ref17
  doi: 10.1088/1757-899x/1033/1/012026
– ident: ref30
  doi: 10.1109/TIM.2015.2420391
– ident: ref55
  doi: 10.1186/s41935-020-00190-7
– ident: ref47
  doi: 10.1049/el.2012.3129
– ident: ref9
  doi: 10.1109/JIOT.2022.3215916
– ident: ref12
  doi: 10.1109/ICWR.2018.8387240
– ident: ref42
  doi: 10.1038/s41598-019-49792-9
– ident: ref11
  doi: 10.1109/ACCESS.2019.2909497
– ident: ref20
  doi: 10.1109/ACCESS.2020.2990909
– ident: ref25
  doi: 10.1109/TIM.2021.3106132
– volume-title: Auto-encoding variational bayes
  year: 2022
  ident: ref59
– ident: ref27
  doi: 10.1109/TIM.2020.2970870
– start-page: 857
  volume-title: Proc. NeurIPS
  ident: ref37
  article-title: Stochastic neighbor embedding
– volume-title: Channel Model for Body Area Network (BAN)
  year: 2010
  ident: ref45
– ident: ref48
  doi: 10.1109/TEMC.2016.2598582
– ident: ref18
  doi: 10.1109/IJCB52358.2021.9484399
– ident: ref3
  doi: 10.1007/978-3-030-18732-3_8
– ident: ref15
  doi: 10.1016/j.jestch.2019.06.005
SSID ssj0001105196
Score 2.3339658
Snippet This study presents a highly reliable approach to prevent fingerprint spoofing attacks based on electric body pulse responses (BPRs) in personal Internet of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5993
SubjectTerms Accuracy
Algorithms
Anomalies
Anomaly detection
Biometric recognition systems
Business process re-engineering
Circuits
Couplings
Cybersecurity
Detection algorithms
electric pulse response
Electric variables measurement
Errors
Feature extraction
fingerprint anti-spoofing
fingerprint authentication
Fingerprint recognition
Fingerprint verification
Internet of Things
liveness detection
Machine learning
Principal components analysis
Redundancy
Sampling
Spoofing
Support vector machines
Title Anti-Spoofing for Fingerprint Recognition Using Electric Body Pulse Response
URI https://ieeexplore.ieee.org/document/10230228
https://www.proquest.com/docview/2923120082
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZoJxbKUUShIA9MSElz2HE8FtQKECoIWqlb5BNVoKSCdIBfj-0knAKxeXi2LD_b7_Dn9wFwLKTmJODU4-b695CQoZfiRHppEkpNMBNYu2qfk-R8hi7neF5_Vnd_YZRSDnymfNt0b_myECubKhvYMgO2XksLtAih1Wetj4RKaL2RpH65DAM6uLy4nvqWHtw3QXuaYPTF9jgylR83sDMr4w6YNBOq0CQP_qrkvnj9Vqvx3zPeBBu1gwmH1Y7YAmsq3wadhrwB1md5B1wN83Lh3S0Ls7vye2h8Vzh2KT6b6SvhbQMsKnLoYAVw5AhzFgKeFvIF3qyMTTVSDmGrumA2Hk3Pzr2aWsETEUWlF2puAhmpEIlSo5I04pSyIBUxwixgWGuSBjKkQiVaER6nkpmDTSJGScA04jTeBe28yNUegCzG0vhtCkmkkBmAhozEVFgOD2zCa90DQbPomajrjlv6i8fMxR8BzayeMqunrNZTD5y8d1lWRTf-Eu7adf8kWC15D_Qb1Wb1uXzOIuvPWshHtP9LtwOwbkZHFpgd4j5ol08rdWj8jpIfuf32Bk6b1EI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T-QwEB7xKKDhcQdiebq4CikhDzuOS0CsFthb0N0i0UV-ohUoQZAt4NdjOwkcoEN0KcaO5fHYM-PP8wH8ksoIGgkWCLv9B1iqOMhJpoI8i5WhhEtifLXPUTa4wmfX5Lp9rO7fwmitPfhMh-7T3-WrSk5dquzAlRlw9VpmYZ7YsII2z7XeUiqx80ey9u4yjtjB2enFOHQE4aEN2_OM4Henj6dT-bQH-4OlvwyjbkgNnuQ2nNYilM8fqjV-e8wrsNS6mOiwWROrMKPLH7Dc0Teg1pp_wvCwrCfB3_vKrq_yBlnvFfV9ks_l-mr0p4MWVSXywAJ04ilzJhIdVeoJXU7tqWqlPMZWr8FV_2R8PAhacoVAJgzXQWyEDWWUxjTJrVLyRDDGo1ymmPCIE2NoHqmYSZ0ZTUWaK25Nmyac0YgbLFi6DnNlVeoNQDwlynpuGiusse2AxZymTDoWD2IDbNODqJv0QraVxx0Bxl3hI5CIFU5PhdNT0eqpB_uvTe6bshtfCa-5ef9HsJnyHmx3qi1ay3wsEufROtBHsvmfZnuwMBj_HhbD09H5FizaP2EH047JNszVD1O9Y72QWuz6tfcCoGDXkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-Spoofing+for+Fingerprint+Recognition+Using+Electric+Body+Pulse+Response&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Kang%2C+Taewook&rft.au=Oh%2C+Kwang-Il&rft.au=Jae-Jin%2C+Lee&rft.au=Sung-Eun%2C+Kim&rft.date=2024-02-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=11&rft.issue=4&rft.spage=5993&rft_id=info:doi/10.1109%2FJIOT.2023.3308654&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon