Time-Shift Denoising Combined With DWT-Enhanced Condition Domain Adaptation for Motor Bearing Fault Diagnosis via Current Signals
Traditional fault diagnosis often relies on vibration signals for experimentation. However, vibration diagnostic techniques demand high precision from sensors and stringent requirements for data collection points. Moreover, in environments with significant noise, vibration signals are subject to sev...
        Saved in:
      
    
          | Published in | IEEE sensors journal Vol. 24; no. 21; pp. 35019 - 35035 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.11.2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1530-437X 1558-1748  | 
| DOI | 10.1109/JSEN.2024.3455099 | 
Cover
| Abstract | Traditional fault diagnosis often relies on vibration signals for experimentation. However, vibration diagnostic techniques demand high precision from sensors and stringent requirements for data collection points. Moreover, in environments with significant noise, vibration signals are subject to severe interference. Therefore, this article proposes a novel method for diagnosing bearing faults in motor stator currents across different operating conditions. It leverages time-shift denoising (TSD) and discrete wavelet transform (DWT)-enhanced conditional domain adaptation (CDA) techniques. Initially, the TSD method effectively eliminates the fundamental frequency and odd harmonic components from the motor stator currents, extracting residual signals with more significant valid components. By integrating the DWT-enhanced CDA technique, the feature learning space of the convolutional neural network (CNN) is expanded into the wavelet domain, which enhances frequency domain decomposition, retains low-frequency components, and filters out noise and irrelevant information. This approach aligns low-frequency features and strengthens the network's adaptability to different data distributions without requiring target domain labels. We conducted experiments on two public datasets and one real-world dataset, achieving an accuracy of up to 93.94%. The results demonstrate that the proposed method offers significant advantages in diagnosing bearing faults in motor stator currents under varying operating conditions. | 
    
|---|---|
| AbstractList | Traditional fault diagnosis often relies on vibration signals for experimentation. However, vibration diagnostic techniques demand high precision from sensors and stringent requirements for data collection points. Moreover, in environments with significant noise, vibration signals are subject to severe interference. Therefore, this article proposes a novel method for diagnosing bearing faults in motor stator currents across different operating conditions. It leverages time-shift denoising (TSD) and discrete wavelet transform (DWT)-enhanced conditional domain adaptation (CDA) techniques. Initially, the TSD method effectively eliminates the fundamental frequency and odd harmonic components from the motor stator currents, extracting residual signals with more significant valid components. By integrating the DWT-enhanced CDA technique, the feature learning space of the convolutional neural network (CNN) is expanded into the wavelet domain, which enhances frequency domain decomposition, retains low-frequency components, and filters out noise and irrelevant information. This approach aligns low-frequency features and strengthens the network's adaptability to different data distributions without requiring target domain labels. We conducted experiments on two public datasets and one real-world dataset, achieving an accuracy of up to 93.94%. The results demonstrate that the proposed method offers significant advantages in diagnosing bearing faults in motor stator currents under varying operating conditions. | 
    
| Author | Li, Wenru Liu, Zhiliang Dai, Menghang Tang, Jinlong Wang, Xindan  | 
    
| Author_xml | – sequence: 1 givenname: Xindan orcidid: 0009-0001-2727-5683 surname: Wang fullname: Wang, Xindan organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Zhiliang orcidid: 0000-0002-4133-8230 surname: Liu fullname: Liu, Zhiliang email: Zhiliang_Liu@uestc.edu.cn organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Menghang surname: Dai fullname: Dai, Menghang organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Wenru surname: Li fullname: Li, Wenru organization: Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China – sequence: 5 givenname: Jinlong surname: Tang fullname: Tang, Jinlong organization: Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China  | 
    
| BookMark | eNp9kDFv2zAQhYnABRq7_QEFMhDILJekSFEaE9lOG7jtYBfuJlDSyb7AJh2SDpAx_7xSnKHI0OXe4XDv3eEbk5F1Fgj5wtmUc1Z8vV_Nf04FE3KaSqVYUVyQS65UnnAt89HQpyyRqf7zkYxDeGCMF1rpS_KyxgMkqx12kc7AOgxot7R0hxottHSDcUdnm3Uytztjm35SOttiRGfpzB0MWnrTmmM0r5POefrDxb7egvFD0MKc9n0wmq11AQN9QkPLk_dgI13h1pp9-EQ-dL3A5zedkN-L-br8lix_3X0vb5ZJIwoZE25kVmeNLETKpSg4M6DqtqtVq6SsZdrlAAI0Y6bjWZspJbRkQmWF1k2nW0gn5Pqce_Tu8QQhVg_u5IcPqpT3oT08pfotft5qvAvBQ1cdPR6Mf644qwbS1UC6GkhXb6R7j37nafBMJHqD-_86r85OBIB_LmU6z3OR_gV5sY4I | 
    
| CODEN | ISJEAZ | 
    
| CitedBy_id | crossref_primary_10_1016_j_knosys_2025_113275 | 
    
| Cites_doi | 10.1016/j.ymssp.2013.08.023 10.1007/s41095-023-0362-4 10.1109/tim.2024.3352689 10.1109/tie.2014.2360068 10.1109/TIM.2021.3055786 10.1109/ECCE47101.2021.9595144 10.1109/access.2023.3343157 10.1109/jsen.2023.3348143 10.3390/en14092509 10.1007/978-3-319-49409-8_35 10.1109/CAC59555.2023.10450402 10.1109/tim.2023.3280506 10.1145/3582935.3582990 10.1109/IMCEC59810.2024.10575909 10.1109/tip.2021.3101395 10.1109/JSEN.2022.3232707 10.1117/12.2679793 10.36001/phme.2016.v3i1.1577 10.3390/s24134251 10.1016/j.dib.2023.109049 10.1109/tpwrd.2024.3391895 10.1088/1361-6501/ad099b 10.1088/1361-6501/acefed 10.1109/tim.2023.3323048 10.1109/tim.2023.3265088 10.1109/tmag.2021.3082138 10.3390/s21175865 10.1177/0954408920910290 10.1016/j.ress.2022.108715 10.1016/j.jsv.2012.07.035 10.1109/tie.2007.909060 10.1016/j.engappai.2023.107082 10.1109/TIM.2020.3031198 10.1088/1361-6501/ad1fcd  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| DOI | 10.1109/JSEN.2024.3455099 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Engineering  | 
    
| EISSN | 1558-1748 | 
    
| EndPage | 35035 | 
    
| ExternalDocumentID | 10_1109_JSEN_2024_3455099 10678882  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52475091 funderid: 10.13039/501100001809 – fundername: Sichuan Science and Technology Program grantid: 2024NSFSC0185; 2024JDHJ0057 funderid: 10.13039/501100019065  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c294t-1a46b6c4923142910ae5bdfb5d544b43f8ee2e700af16d6552740256977cf7de3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1530-437X | 
    
| IngestDate | Mon Jun 30 10:08:24 EDT 2025 Thu Apr 24 23:06:00 EDT 2025 Wed Oct 01 03:42:41 EDT 2025 Wed Aug 27 01:57:01 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 21 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-1a46b6c4923142910ae5bdfb5d544b43f8ee2e700af16d6552740256977cf7de3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0001-2727-5683 0000-0002-4133-8230  | 
    
| PQID | 3123120255 | 
    
| PQPubID | 75733 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2024_3455099 ieee_primary_10678882 proquest_journals_3123120255 crossref_primary_10_1109_JSEN_2024_3455099  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-11-01 | 
    
| PublicationDateYYYYMMDD | 2024-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE sensors journal | 
    
| PublicationTitleAbbrev | JSEN | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | Long (ref11); 31 ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 Ganin (ref29); 2 ref33 ref10 ref32 van der Maaten (ref38) 2008; 9 ref2 ref1 ref17 ref16 ref19 Long (ref30); 70 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref8 doi: 10.1016/j.ymssp.2013.08.023 – ident: ref35 doi: 10.1007/s41095-023-0362-4 – ident: ref2 doi: 10.1109/tim.2024.3352689 – volume: 2 start-page: 1180 volume-title: Proc. 32nd Int. Conf. Mach. Learn. (ICML) ident: ref29 article-title: Unsupervised domain adaptation by backpropagation – ident: ref13 doi: 10.1109/tie.2014.2360068 – ident: ref25 doi: 10.1109/TIM.2021.3055786 – ident: ref16 doi: 10.1109/ECCE47101.2021.9595144 – ident: ref22 doi: 10.1109/access.2023.3343157 – ident: ref9 doi: 10.1109/jsen.2023.3348143 – ident: ref21 doi: 10.3390/en14092509 – ident: ref28 doi: 10.1007/978-3-319-49409-8_35 – ident: ref36 doi: 10.1109/CAC59555.2023.10450402 – ident: ref7 doi: 10.1109/tim.2023.3280506 – ident: ref4 doi: 10.1145/3582935.3582990 – ident: ref37 doi: 10.1109/IMCEC59810.2024.10575909 – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. process. Syst. ident: ref11 article-title: Conditional adversarial domain adaptation – ident: ref10 doi: 10.1109/tip.2021.3101395 – ident: ref18 doi: 10.1109/JSEN.2022.3232707 – ident: ref17 doi: 10.1117/12.2679793 – ident: ref26 doi: 10.36001/phme.2016.v3i1.1577 – ident: ref33 doi: 10.3390/s24134251 – ident: ref27 doi: 10.1016/j.dib.2023.109049 – volume: 9 start-page: 1 issue: 11 year: 2008 ident: ref38 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 70 start-page: 2208 volume-title: Proc. 34th Int. Conf. Mach. Learn. ident: ref30 article-title: Deep transfer learning with joint adaptation networks – ident: ref31 doi: 10.1109/tpwrd.2024.3391895 – ident: ref6 doi: 10.1088/1361-6501/ad099b – ident: ref20 doi: 10.1088/1361-6501/acefed – ident: ref24 doi: 10.1109/tim.2023.3323048 – ident: ref1 doi: 10.1109/tim.2023.3265088 – ident: ref19 doi: 10.1109/tmag.2021.3082138 – ident: ref15 doi: 10.3390/s21175865 – ident: ref5 doi: 10.1177/0954408920910290 – ident: ref14 doi: 10.1016/j.ress.2022.108715 – ident: ref3 doi: 10.1016/j.jsv.2012.07.035 – ident: ref12 doi: 10.1109/tie.2007.909060 – ident: ref32 doi: 10.1016/j.engappai.2023.107082 – ident: ref34 doi: 10.1109/TIM.2020.3031198 – ident: ref23 doi: 10.1088/1361-6501/ad1fcd  | 
    
| SSID | ssj0019757 | 
    
| Score | 2.4380205 | 
    
| Snippet | Traditional fault diagnosis often relies on vibration signals for experimentation. However, vibration diagnostic techniques demand high precision from sensors... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 35019 | 
    
| SubjectTerms | Adaptation Artificial neural networks Conditional domain adaptation (CDA) cross-working condition current fault diagnosis Data collection Datasets Discrete Wavelet Transform discrete wavelet transformation Discrete wavelet transforms Fault diagnosis Feature extraction Machine learning Motor stators Motors Noise reduction Resonant frequencies Sensors Stators time-shift denoising (TSD) Vibration Wavelet transforms  | 
    
| Title | Time-Shift Denoising Combined With DWT-Enhanced Condition Domain Adaptation for Motor Bearing Fault Diagnosis via Current Signals | 
    
| URI | https://ieeexplore.ieee.org/document/10678882 https://www.proquest.com/docview/3123120255  | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoF9oDr1KxQJEPPVXK4iSOkxyB3RVCYi8LYm-RE0-6EZAgyCLBjX_OjOOlqKiIm6XED2lsz4xnvm8Y-yUTMLEygSdApZ6MQumlpRbUgkQVcVoYwg6fjdXJhTydRlMHVrdYGACwyWfQp6aN5ZummNNT2QHRnaHHhjfulzhRHVjrNWSQxpbWE08wzhTGUxfC9EV6cDoZjtEVDGQ_JBCv5Xn9q4RsVZV3V7HVL6M1Nl6srEsruerP27xfPP1D2vjppa-zVWdp8sNua2ywJag32bc3_IObbMWVQJ89fmfPBAbxJrOqbPkA6qaiRwSO1wW6zmD4ZdXO-ODy3BvWM5s0gJ8o2o1i5YPmRlc1PzT6tgvsc7SE-VmD7jw_wpNEA430_BoH7hL7qnv-UGnuuKH4pPpDLM5b7GI0PD8-8Vx9Bq8IUtl6vpYqV4WleEO15gsNUW7KPDKRlLkMywQggFgIXfrKKOJ6k2RioclZlLGB8AdbrpsathmPgJR1Euq4NDLRkaYAaAkaUoNzadFjYiGwrHDk5VRD4zqzToxIM5JxRjLOnIx77Pdrl9uOueOjn7dIZm9-7MTVY3uLbZG5w32fhajt_YCcsZ3_dNtlX2n0DrO4x5bbuzn8ROOlzfftpn0BuCLrFw | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6hcigceJQiUgrsgROS07W9fh0LSRRKk0tSNTdr7R03FsWuWgcJbvxzZtabUoFA3Fay9yF9uzszOzPfALxVKZokNoEnMc48FYXKyyotuYVpXCZZaTh3eDaPp2fqZBWtXLK6zYVBRBt8hkNuWl--acsNP5UdMd0ZWWx0496PlFJRn6516zTIEkvsSWeY5gqTlXNi-jI7OlmM52QMBmoYchqvZXr9JYZsXZU_LmMrYSaPYb5dWx9Y8nm46Yph-f032sb_XvwTeOR0TXHcb46ncA-bPXh4h4FwD3ZdEfT1t2fwg9NBvMW6rjoxwqat-RlB0IVBxjMacV53azE6X3rjZm3DBugT-7sJWDFqv-i6EcdGX_WufUG6sJi1ZNCL93SWeKCJ3lzSwH1oX30jvtZaOHYosagvmMd5H84m4-WHqecqNHhlkKnO87WKi7i0JG8k2HypMSpMVUSG8ClUWKWIASZS6sqPTcxsb4qVLFI6yyoxGD6HnaZt8AWICFlcp6FOKqNSHWl2gVaoMTM0l5YDkFvA8tLRl3MVjcvcmjEyyxnjnDHOHcYDeHfb5arn7vjXz_uM2Z0fe7gGcLjdFrk73jd5SPLeD9gcO_hLtzewO13OTvPTj_NPL-EBz9RnMB7CTne9wVekynTFa7uBfwIr--5k | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-Shift+Denoising+Combined+With+DWT-Enhanced+Condition+Domain+Adaptation+for+Motor+Bearing+Fault+Diagnosis+via+Current+Signals&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Xindan&rft.au=Liu%2C+Zhiliang&rft.au=Dai%2C+Menghang&rft.au=Li%2C+Wenru&rft.date=2024-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=21&rft.spage=35019&rft_id=info:doi/10.1109%2FJSEN.2024.3455099&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |