Time-Shift Denoising Combined With DWT-Enhanced Condition Domain Adaptation for Motor Bearing Fault Diagnosis via Current Signals

Traditional fault diagnosis often relies on vibration signals for experimentation. However, vibration diagnostic techniques demand high precision from sensors and stringent requirements for data collection points. Moreover, in environments with significant noise, vibration signals are subject to sev...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 21; pp. 35019 - 35035
Main Authors Wang, Xindan, Liu, Zhiliang, Dai, Menghang, Li, Wenru, Tang, Jinlong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3455099

Cover

Abstract Traditional fault diagnosis often relies on vibration signals for experimentation. However, vibration diagnostic techniques demand high precision from sensors and stringent requirements for data collection points. Moreover, in environments with significant noise, vibration signals are subject to severe interference. Therefore, this article proposes a novel method for diagnosing bearing faults in motor stator currents across different operating conditions. It leverages time-shift denoising (TSD) and discrete wavelet transform (DWT)-enhanced conditional domain adaptation (CDA) techniques. Initially, the TSD method effectively eliminates the fundamental frequency and odd harmonic components from the motor stator currents, extracting residual signals with more significant valid components. By integrating the DWT-enhanced CDA technique, the feature learning space of the convolutional neural network (CNN) is expanded into the wavelet domain, which enhances frequency domain decomposition, retains low-frequency components, and filters out noise and irrelevant information. This approach aligns low-frequency features and strengthens the network's adaptability to different data distributions without requiring target domain labels. We conducted experiments on two public datasets and one real-world dataset, achieving an accuracy of up to 93.94%. The results demonstrate that the proposed method offers significant advantages in diagnosing bearing faults in motor stator currents under varying operating conditions.
AbstractList Traditional fault diagnosis often relies on vibration signals for experimentation. However, vibration diagnostic techniques demand high precision from sensors and stringent requirements for data collection points. Moreover, in environments with significant noise, vibration signals are subject to severe interference. Therefore, this article proposes a novel method for diagnosing bearing faults in motor stator currents across different operating conditions. It leverages time-shift denoising (TSD) and discrete wavelet transform (DWT)-enhanced conditional domain adaptation (CDA) techniques. Initially, the TSD method effectively eliminates the fundamental frequency and odd harmonic components from the motor stator currents, extracting residual signals with more significant valid components. By integrating the DWT-enhanced CDA technique, the feature learning space of the convolutional neural network (CNN) is expanded into the wavelet domain, which enhances frequency domain decomposition, retains low-frequency components, and filters out noise and irrelevant information. This approach aligns low-frequency features and strengthens the network's adaptability to different data distributions without requiring target domain labels. We conducted experiments on two public datasets and one real-world dataset, achieving an accuracy of up to 93.94%. The results demonstrate that the proposed method offers significant advantages in diagnosing bearing faults in motor stator currents under varying operating conditions.
Author Li, Wenru
Liu, Zhiliang
Dai, Menghang
Tang, Jinlong
Wang, Xindan
Author_xml – sequence: 1
  givenname: Xindan
  orcidid: 0009-0001-2727-5683
  surname: Wang
  fullname: Wang, Xindan
  organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Zhiliang
  orcidid: 0000-0002-4133-8230
  surname: Liu
  fullname: Liu, Zhiliang
  email: Zhiliang_Liu@uestc.edu.cn
  organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Menghang
  surname: Dai
  fullname: Dai, Menghang
  organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Wenru
  surname: Li
  fullname: Li, Wenru
  organization: Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China
– sequence: 5
  givenname: Jinlong
  surname: Tang
  fullname: Tang, Jinlong
  organization: Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China
BookMark eNp9kDFv2zAQhYnABRq7_QEFMhDILJekSFEaE9lOG7jtYBfuJlDSyb7AJh2SDpAx_7xSnKHI0OXe4XDv3eEbk5F1Fgj5wtmUc1Z8vV_Nf04FE3KaSqVYUVyQS65UnnAt89HQpyyRqf7zkYxDeGCMF1rpS_KyxgMkqx12kc7AOgxot7R0hxottHSDcUdnm3Uytztjm35SOttiRGfpzB0MWnrTmmM0r5POefrDxb7egvFD0MKc9n0wmq11AQN9QkPLk_dgI13h1pp9-EQ-dL3A5zedkN-L-br8lix_3X0vb5ZJIwoZE25kVmeNLETKpSg4M6DqtqtVq6SsZdrlAAI0Y6bjWZspJbRkQmWF1k2nW0gn5Pqce_Tu8QQhVg_u5IcPqpT3oT08pfotft5qvAvBQ1cdPR6Mf644qwbS1UC6GkhXb6R7j37nafBMJHqD-_86r85OBIB_LmU6z3OR_gV5sY4I
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_knosys_2025_113275
Cites_doi 10.1016/j.ymssp.2013.08.023
10.1007/s41095-023-0362-4
10.1109/tim.2024.3352689
10.1109/tie.2014.2360068
10.1109/TIM.2021.3055786
10.1109/ECCE47101.2021.9595144
10.1109/access.2023.3343157
10.1109/jsen.2023.3348143
10.3390/en14092509
10.1007/978-3-319-49409-8_35
10.1109/CAC59555.2023.10450402
10.1109/tim.2023.3280506
10.1145/3582935.3582990
10.1109/IMCEC59810.2024.10575909
10.1109/tip.2021.3101395
10.1109/JSEN.2022.3232707
10.1117/12.2679793
10.36001/phme.2016.v3i1.1577
10.3390/s24134251
10.1016/j.dib.2023.109049
10.1109/tpwrd.2024.3391895
10.1088/1361-6501/ad099b
10.1088/1361-6501/acefed
10.1109/tim.2023.3323048
10.1109/tim.2023.3265088
10.1109/tmag.2021.3082138
10.3390/s21175865
10.1177/0954408920910290
10.1016/j.ress.2022.108715
10.1016/j.jsv.2012.07.035
10.1109/tie.2007.909060
10.1016/j.engappai.2023.107082
10.1109/TIM.2020.3031198
10.1088/1361-6501/ad1fcd
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3455099
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 35035
ExternalDocumentID 10_1109_JSEN_2024_3455099
10678882
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52475091
  funderid: 10.13039/501100001809
– fundername: Sichuan Science and Technology Program
  grantid: 2024NSFSC0185; 2024JDHJ0057
  funderid: 10.13039/501100019065
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c294t-1a46b6c4923142910ae5bdfb5d544b43f8ee2e700af16d6552740256977cf7de3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:08:24 EDT 2025
Thu Apr 24 23:06:00 EDT 2025
Wed Oct 01 03:42:41 EDT 2025
Wed Aug 27 01:57:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-1a46b6c4923142910ae5bdfb5d544b43f8ee2e700af16d6552740256977cf7de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-2727-5683
0000-0002-4133-8230
PQID 3123120255
PQPubID 75733
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2024_3455099
ieee_primary_10678882
proquest_journals_3123120255
crossref_primary_10_1109_JSEN_2024_3455099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Long (ref11); 31
ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
Ganin (ref29); 2
ref33
ref10
ref32
van der Maaten (ref38) 2008; 9
ref2
ref1
ref17
ref16
ref19
Long (ref30); 70
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1016/j.ymssp.2013.08.023
– ident: ref35
  doi: 10.1007/s41095-023-0362-4
– ident: ref2
  doi: 10.1109/tim.2024.3352689
– volume: 2
  start-page: 1180
  volume-title: Proc. 32nd Int. Conf. Mach. Learn. (ICML)
  ident: ref29
  article-title: Unsupervised domain adaptation by backpropagation
– ident: ref13
  doi: 10.1109/tie.2014.2360068
– ident: ref25
  doi: 10.1109/TIM.2021.3055786
– ident: ref16
  doi: 10.1109/ECCE47101.2021.9595144
– ident: ref22
  doi: 10.1109/access.2023.3343157
– ident: ref9
  doi: 10.1109/jsen.2023.3348143
– ident: ref21
  doi: 10.3390/en14092509
– ident: ref28
  doi: 10.1007/978-3-319-49409-8_35
– ident: ref36
  doi: 10.1109/CAC59555.2023.10450402
– ident: ref7
  doi: 10.1109/tim.2023.3280506
– ident: ref4
  doi: 10.1145/3582935.3582990
– ident: ref37
  doi: 10.1109/IMCEC59810.2024.10575909
– volume: 31
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. process. Syst.
  ident: ref11
  article-title: Conditional adversarial domain adaptation
– ident: ref10
  doi: 10.1109/tip.2021.3101395
– ident: ref18
  doi: 10.1109/JSEN.2022.3232707
– ident: ref17
  doi: 10.1117/12.2679793
– ident: ref26
  doi: 10.36001/phme.2016.v3i1.1577
– ident: ref33
  doi: 10.3390/s24134251
– ident: ref27
  doi: 10.1016/j.dib.2023.109049
– volume: 9
  start-page: 1
  issue: 11
  year: 2008
  ident: ref38
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 70
  start-page: 2208
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref30
  article-title: Deep transfer learning with joint adaptation networks
– ident: ref31
  doi: 10.1109/tpwrd.2024.3391895
– ident: ref6
  doi: 10.1088/1361-6501/ad099b
– ident: ref20
  doi: 10.1088/1361-6501/acefed
– ident: ref24
  doi: 10.1109/tim.2023.3323048
– ident: ref1
  doi: 10.1109/tim.2023.3265088
– ident: ref19
  doi: 10.1109/tmag.2021.3082138
– ident: ref15
  doi: 10.3390/s21175865
– ident: ref5
  doi: 10.1177/0954408920910290
– ident: ref14
  doi: 10.1016/j.ress.2022.108715
– ident: ref3
  doi: 10.1016/j.jsv.2012.07.035
– ident: ref12
  doi: 10.1109/tie.2007.909060
– ident: ref32
  doi: 10.1016/j.engappai.2023.107082
– ident: ref34
  doi: 10.1109/TIM.2020.3031198
– ident: ref23
  doi: 10.1088/1361-6501/ad1fcd
SSID ssj0019757
Score 2.4380205
Snippet Traditional fault diagnosis often relies on vibration signals for experimentation. However, vibration diagnostic techniques demand high precision from sensors...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35019
SubjectTerms Adaptation
Artificial neural networks
Conditional domain adaptation (CDA)
cross-working condition
current fault diagnosis
Data collection
Datasets
Discrete Wavelet Transform
discrete wavelet transformation
Discrete wavelet transforms
Fault diagnosis
Feature extraction
Machine learning
Motor stators
Motors
Noise reduction
Resonant frequencies
Sensors
Stators
time-shift denoising (TSD)
Vibration
Wavelet transforms
Title Time-Shift Denoising Combined With DWT-Enhanced Condition Domain Adaptation for Motor Bearing Fault Diagnosis via Current Signals
URI https://ieeexplore.ieee.org/document/10678882
https://www.proquest.com/docview/3123120255
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoF9oDr1KxQJEPPVXK4iSOkxyB3RVCYi8LYm-RE0-6EZAgyCLBjX_OjOOlqKiIm6XED2lsz4xnvm8Y-yUTMLEygSdApZ6MQumlpRbUgkQVcVoYwg6fjdXJhTydRlMHVrdYGACwyWfQp6aN5ZummNNT2QHRnaHHhjfulzhRHVjrNWSQxpbWE08wzhTGUxfC9EV6cDoZjtEVDGQ_JBCv5Xn9q4RsVZV3V7HVL6M1Nl6srEsruerP27xfPP1D2vjppa-zVWdp8sNua2ywJag32bc3_IObbMWVQJ89fmfPBAbxJrOqbPkA6qaiRwSO1wW6zmD4ZdXO-ODy3BvWM5s0gJ8o2o1i5YPmRlc1PzT6tgvsc7SE-VmD7jw_wpNEA430_BoH7hL7qnv-UGnuuKH4pPpDLM5b7GI0PD8-8Vx9Bq8IUtl6vpYqV4WleEO15gsNUW7KPDKRlLkMywQggFgIXfrKKOJ6k2RioclZlLGB8AdbrpsathmPgJR1Euq4NDLRkaYAaAkaUoNzadFjYiGwrHDk5VRD4zqzToxIM5JxRjLOnIx77Pdrl9uOueOjn7dIZm9-7MTVY3uLbZG5w32fhajt_YCcsZ3_dNtlX2n0DrO4x5bbuzn8ROOlzfftpn0BuCLrFw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6hcigceJQiUgrsgROS07W9fh0LSRRKk0tSNTdr7R03FsWuWgcJbvxzZtabUoFA3Fay9yF9uzszOzPfALxVKZokNoEnMc48FYXKyyotuYVpXCZZaTh3eDaPp2fqZBWtXLK6zYVBRBt8hkNuWl--acsNP5UdMd0ZWWx0496PlFJRn6516zTIEkvsSWeY5gqTlXNi-jI7OlmM52QMBmoYchqvZXr9JYZsXZU_LmMrYSaPYb5dWx9Y8nm46Yph-f032sb_XvwTeOR0TXHcb46ncA-bPXh4h4FwD3ZdEfT1t2fwg9NBvMW6rjoxwqat-RlB0IVBxjMacV53azE6X3rjZm3DBugT-7sJWDFqv-i6EcdGX_WufUG6sJi1ZNCL93SWeKCJ3lzSwH1oX30jvtZaOHYosagvmMd5H84m4-WHqecqNHhlkKnO87WKi7i0JG8k2HypMSpMVUSG8ClUWKWIASZS6sqPTcxsb4qVLFI6yyoxGD6HnaZt8AWICFlcp6FOKqNSHWl2gVaoMTM0l5YDkFvA8tLRl3MVjcvcmjEyyxnjnDHOHcYDeHfb5arn7vjXz_uM2Z0fe7gGcLjdFrk73jd5SPLeD9gcO_hLtzewO13OTvPTj_NPL-EBz9RnMB7CTne9wVekynTFa7uBfwIr--5k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-Shift+Denoising+Combined+With+DWT-Enhanced+Condition+Domain+Adaptation+for+Motor+Bearing+Fault+Diagnosis+via+Current+Signals&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Xindan&rft.au=Liu%2C+Zhiliang&rft.au=Dai%2C+Menghang&rft.au=Li%2C+Wenru&rft.date=2024-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=21&rft.spage=35019&rft_id=info:doi/10.1109%2FJSEN.2024.3455099&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon