Weighted Joint Collaborative Representation Based On Median-Mean Line and Angular Separation
Representation-based classifiers such as nearest regularized subspace (NRS) have been recently developed for hyperspectral image classification. The joint collaborative representation (JCR) and the weighted JCR (WJCR) methods added spatial information to the pixel-wise NRS classifier. While JCR adop...
        Saved in:
      
    
          | Published in | IEEE transactions on geoscience and remote sensing Vol. 55; no. 10; pp. 5612 - 5624 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.10.2017
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0196-2892 1558-0644  | 
| DOI | 10.1109/TGRS.2017.2710355 | 
Cover
| Abstract | Representation-based classifiers such as nearest regularized subspace (NRS) have been recently developed for hyperspectral image classification. The joint collaborative representation (JCR) and the weighted JCR (WJCR) methods added spatial information to the pixel-wise NRS classifier. While JCR adopts the same weights for extraction of spatial features from the surrounding pixels, WJCR uses the similarity between the central pixel and its surroundings to assign different weights to neighbor pixels. Two improved versions of WJCR are introduced in this paper. The first method, WJCR based on median-mean line, is proposed to cope with the negative effect of outlying neighbors. The second method, WJCR based on angular separation (AS), uses the benefits of the AS measurement to decrease the contribution of redundant information due to the highly correlated neighbors. The experimental results on some real hyperspectral data sets show the good efficiency of the proposed methods compared to other state-of-the-art NRS-based classifiers. | 
    
|---|---|
| AbstractList | Representation-based classifiers such as nearest regularized subspace (NRS) have been recently developed for hyperspectral image classification. The joint collaborative representation (JCR) and the weighted JCR (WJCR) methods added spatial information to the pixel-wise NRS classifier. While JCR adopts the same weights for extraction of spatial features from the surrounding pixels, WJCR uses the similarity between the central pixel and its surroundings to assign different weights to neighbor pixels. Two improved versions of WJCR are introduced in this paper. The first method, WJCR based on median-mean line, is proposed to cope with the negative effect of outlying neighbors. The second method, WJCR based on angular separation (AS), uses the benefits of the AS measurement to decrease the contribution of redundant information due to the highly correlated neighbors. The experimental results on some real hyperspectral data sets show the good efficiency of the proposed methods compared to other state-of-the-art NRS-based classifiers. | 
    
| Author | Ghassemian, Hassan Imani, Maryam  | 
    
| Author_xml | – sequence: 1 givenname: Maryam surname: Imani fullname: Imani, Maryam email: maryam.imani@modares.ac.ir organization: Fac. of Electr. & Comput. Eng, Tarbiat Modares Univ., Tehran, Iran – sequence: 2 givenname: Hassan surname: Ghassemian fullname: Ghassemian, Hassan email: ghassemi@modares.ac.ir organization: Fac. of Electr. & Comput. Eng, Tarbiat Modares Univ., Tehran, Iran  | 
    
| BookMark | eNp9kEFLwzAUgINMcJv-APES8NyZpEnaHOfQqWwMtokXoaTN68yo6Uw6wX9vZ4cHD57Cg-97j3wD1HO1A4QuKRlRStTNerpcjRihyYgllMRCnKA-FSKNiOS8h_qEKhmxVLEzNAhhSwjlgiZ99PoCdvPWgMFPtXUNntRVpfPa68Z-Al7CzkMA17Rj7fCtDi24cHgOxmoXzUE7PLMOsHYGj91mX2mPV7DT_kc4R6elrgJcHN8her6_W08eotli-jgZz6KCqbiJSjB5kRvFpGFKSjAqFQWPNaFSCiZFXhguOOTKsJKLtIC8SGWZkhRikeSGxkN03e3d-fpjD6HJtvXeu_ZkxmjCeSwk4S2VdFTh6xA8lFlhu481XtsqoyQ7pMwOKbNDyuyYsjXpH3Pn7bv2X_86V51jAeCXT5TkCZPxN4uZgaM | 
    
| CODEN | IGRSD2 | 
    
| CitedBy_id | crossref_primary_10_1007_s11760_022_02140_3 crossref_primary_10_1016_j_future_2019_05_004 crossref_primary_10_1016_j_asr_2018_02_027 crossref_primary_10_1049_rsn2_12204 crossref_primary_10_1016_j_neucom_2018_06_006 crossref_primary_10_1016_j_ejrs_2022_01_011 crossref_primary_10_1007_s00521_024_10421_w crossref_primary_10_1016_j_inffus_2020_01_007 crossref_primary_10_1109_JSTARS_2018_2851791  | 
    
| Cites_doi | 10.1109/TGRS.2011.2129595 10.1109/TPAMI.2008.79 10.1109/TGRS.2014.2333539 10.1080/2150704X.2015.1101180 10.1177/001316446002000104 10.1109/JSTARS.2014.2306956 10.14358/PERS.70.5.627 10.1109/TGRS.2013.2241773 10.1109/TGRS.2012.2190079 10.1109/JPROC.2012.2229082 10.1109/TGRS.2009.2016214 10.1109/TGRS.2015.2410991 10.1109/TGRS.2015.2466657 10.1109/TNNLS.2013.2287275 10.1109/TGRS.2012.2230268 10.1109/TGRS.2010.2051554 10.1109/TGRS.2008.922034 10.1109/TGRS.2010.2048116 10.1109/TGRS.2012.2211882 10.1109/TIT.1968.1054102 10.1109/TGRS.2003.814625 10.1109/LGRS.2015.2388703 10.1109/37.476 10.1109/JSTARS.2013.2295313 10.1109/ICCV.2011.6126277 10.1109/LGRS.2015.2402167 10.1109/TGRS.2014.2361618 10.1109/TGRS.2011.2176341 10.1109/TGRS.2014.2321405 10.1109/LGRS.2014.2363586 10.1109/LGRS.2005.857031 10.1016/j.ins.2016.01.032 10.1080/01431161.2010.512425 10.1016/j.isprsjprs.2014.12.024  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M  | 
    
| DOI | 10.1109/TGRS.2017.2710355 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Aerospace Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1558-0644 | 
    
| EndPage | 5624 | 
    
| ExternalDocumentID | 10_1109_TGRS_2017_2710355 7964726  | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG  | 
    
| ID | FETCH-LOGICAL-c293t-fedbcbd926d2966ed985c43a01665265bcd454eb9d2f458cebc86f808e357bd13 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0196-2892 | 
    
| IngestDate | Mon Jun 30 08:27:57 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 Wed Oct 01 02:19:46 EDT 2025 Tue Aug 26 16:43:24 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c293t-fedbcbd926d2966ed985c43a01665265bcd454eb9d2f458cebc86f808e357bd13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-1924-9776 0000-0002-2303-1753  | 
    
| PQID | 2174435604 | 
    
| PQPubID | 85465 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2017_2710355 proquest_journals_2174435604 ieee_primary_7964726 crossref_primary_10_1109_TGRS_2017_2710355  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-Oct. 2017-10-00 20171001  | 
    
| PublicationDateYYYYMMDD | 2017-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on geoscience and remote sensing | 
    
| PublicationTitleAbbrev | TGRS | 
    
| PublicationYear | 2017 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 fukunaga (ref29) 1990 ref30 ref33 ref11 liu (ref6) 2014; 25 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref5  | 
    
| References_xml | – ident: ref13 doi: 10.1109/TGRS.2011.2129595 – ident: ref12 doi: 10.1109/TPAMI.2008.79 – ident: ref3 doi: 10.1109/TGRS.2014.2333539 – ident: ref8 doi: 10.1080/2150704X.2015.1101180 – ident: ref34 doi: 10.1177/001316446002000104 – ident: ref30 doi: 10.1109/JSTARS.2014.2306956 – ident: ref35 doi: 10.14358/PERS.70.5.627 – ident: ref14 doi: 10.1109/TGRS.2013.2241773 – ident: ref19 doi: 10.1109/TGRS.2012.2190079 – ident: ref2 doi: 10.1109/JPROC.2012.2229082 – ident: ref18 doi: 10.1109/TGRS.2009.2016214 – ident: ref11 doi: 10.1109/TGRS.2015.2410991 – ident: ref16 doi: 10.1109/TGRS.2015.2466657 – volume: 25 start-page: 1083 year: 2014 ident: ref6 article-title: Global and local structure preservation for feature selection publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2287275 – ident: ref27 doi: 10.1109/TGRS.2012.2230268 – ident: ref24 doi: 10.1109/TGRS.2010.2051554 – ident: ref23 doi: 10.1109/TGRS.2008.922034 – ident: ref32 doi: 10.1109/TGRS.2010.2048116 – ident: ref10 doi: 10.1109/TGRS.2012.2211882 – ident: ref1 doi: 10.1109/TIT.1968.1054102 – ident: ref22 doi: 10.1109/TGRS.2003.814625 – ident: ref31 doi: 10.1109/LGRS.2015.2388703 – ident: ref21 doi: 10.1109/37.476 – ident: ref28 doi: 10.1109/JSTARS.2013.2295313 – ident: ref15 doi: 10.1109/ICCV.2011.6126277 – ident: ref7 doi: 10.1109/LGRS.2015.2402167 – ident: ref17 doi: 10.1109/TGRS.2014.2361618 – ident: ref25 doi: 10.1109/TGRS.2011.2176341 – ident: ref5 doi: 10.1109/TGRS.2014.2321405 – ident: ref20 doi: 10.1109/LGRS.2014.2363586 – ident: ref26 doi: 10.1109/LGRS.2005.857031 – ident: ref4 doi: 10.1016/j.ins.2016.01.032 – ident: ref33 doi: 10.1080/01431161.2010.512425 – ident: ref9 doi: 10.1016/j.isprsjprs.2014.12.024 – year: 1990 ident: ref29 publication-title: Introduction to statistical pattern recognition  | 
    
| SSID | ssj0014517 | 
    
| Score | 2.2947876 | 
    
| Snippet | Representation-based classifiers such as nearest regularized subspace (NRS) have been recently developed for hyperspectral image classification. The joint... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 5612 | 
    
| SubjectTerms | Classification Classifiers Collaboration collaborative representation Correlation Feature extraction Hyperspectral imaging Image classification Kernel Methods nearest regularized subspace (NRS) Pixels Representations Separation Spatial data spectral–spatial information State of the art Testing Training  | 
    
| Title | Weighted Joint Collaborative Representation Based On Median-Mean Line and Angular Separation | 
    
| URI | https://ieeexplore.ieee.org/document/7964726 https://www.proquest.com/docview/2174435604  | 
    
| Volume | 55 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEB5UKOiDbf2BZ68lD30Sc-5ls9nk8Sq1IlwFf6APwrJJZkGUnJx7PvjXN8nmrqJF-rYPyRL4Znfmy3wzA_Ddal3UeohUs9JQXvKMKqkZ5Z5L6DD0SESiOP4tji_5yXVxvQT7i1oYRIziMxyEx5jLtxMzC1dlB7FskollWC6l6Gq1FhkDXgxTabSgnkSwlMEcZurg4tfZeRBxlQPm_Wkeqvpe-KA4VOXNnzi6l6OPMJ4frFOV3A1mrR6Y51c9G__35J9gPcWZZNQZxmdYQrcBay-6D27Ah6j-NI-bcHMVL0jRkpPJrWvJ4V_jeEJyFsWyqUbJkR_e71ly6kjI8dSOjrF2xFNaJLWzZOTCbPspOceuqfjEbcHl0c-Lw2Oaxi5Q431_Sxu02mirmLDMkyG0ShaG57UPDkVopq-N5QVHrSxreCENaiNFIzOJeVFqO8y3YcVNHO4AyQWvZcNMU6PlKtdKN0KxsuGWNyqXvAfZHIjKpJ7kYTTGfRW5SaaqgF0VsKsSdj3YW2x56BpyvLd4M2CxWJhg6EF_jnaVPtnHKnAzHzuKjO_-e9cXWA3v7pR8fVhppzP86iOSVn-LpvgHw-vcZg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VIgQc-GhBLBTwgRPC26wzduJjqShL6Rap3YoekKLYnkgI5EVtlgO_HtvxLhUgxC0HW7H0Jpl5njczAC-cMbI1E-JGVJZjhQXXtREcA5cwceiRSkRxdqymZ3h4Ls834NW6FoaIkviMxvEx5fLdwi7jVdluKpsU6hpcl4goh2qtdc4A5SQXRyseaITIOcxJoXfnb09Oo4yrGovgUctY13fFC6WxKn_8i5ODObgLs9XRBl3Jl_GyN2P747eujf979ntwJ0eabG8wjfuwQX4Lbl_pP7gFN5L-015uw6eP6YqUHDtcfPY92_9lHt-JnSS5bK5S8ux18HyOffAsZnlaz2fUehZILbHWO7bn43T7C3ZKQ1vxhX8AZwdv5vtTngcvcBu8f887csYap4VyItAhcrqWFss2hIcqttM31qFEMtqJDmVtydhadXVRUykr4yblQ9j0C0-PgJUK27oTtmvJoS6NNp3SourQYafLGkdQrIBobO5KHodjfG0SOyl0E7FrInZNxm4EL9dbvg0tOf61eDtisV6YYRjBzgrtJn-0l01kZyF6VAU-_vuu53BzOp8dNUfvjt8_gVvxPYOubwc2-4slPQ3xSW-eJbP8CXYh37M | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+Joint+Collaborative+Representation+Based+On+Median-Mean+Line+and+Angular+Separation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Imani%2C+Maryam&rft.au=Ghassemian%2C+Hassan&rft.date=2017-10-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=55&rft.issue=10&rft.spage=5612&rft.epage=5624&rft_id=info:doi/10.1109%2FTGRS.2017.2710355&rft.externalDocID=7964726 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |