Weighted Joint Collaborative Representation Based On Median-Mean Line and Angular Separation

Representation-based classifiers such as nearest regularized subspace (NRS) have been recently developed for hyperspectral image classification. The joint collaborative representation (JCR) and the weighted JCR (WJCR) methods added spatial information to the pixel-wise NRS classifier. While JCR adop...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 55; no. 10; pp. 5612 - 5624
Main Authors Imani, Maryam, Ghassemian, Hassan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2017.2710355

Cover

Abstract Representation-based classifiers such as nearest regularized subspace (NRS) have been recently developed for hyperspectral image classification. The joint collaborative representation (JCR) and the weighted JCR (WJCR) methods added spatial information to the pixel-wise NRS classifier. While JCR adopts the same weights for extraction of spatial features from the surrounding pixels, WJCR uses the similarity between the central pixel and its surroundings to assign different weights to neighbor pixels. Two improved versions of WJCR are introduced in this paper. The first method, WJCR based on median-mean line, is proposed to cope with the negative effect of outlying neighbors. The second method, WJCR based on angular separation (AS), uses the benefits of the AS measurement to decrease the contribution of redundant information due to the highly correlated neighbors. The experimental results on some real hyperspectral data sets show the good efficiency of the proposed methods compared to other state-of-the-art NRS-based classifiers.
AbstractList Representation-based classifiers such as nearest regularized subspace (NRS) have been recently developed for hyperspectral image classification. The joint collaborative representation (JCR) and the weighted JCR (WJCR) methods added spatial information to the pixel-wise NRS classifier. While JCR adopts the same weights for extraction of spatial features from the surrounding pixels, WJCR uses the similarity between the central pixel and its surroundings to assign different weights to neighbor pixels. Two improved versions of WJCR are introduced in this paper. The first method, WJCR based on median-mean line, is proposed to cope with the negative effect of outlying neighbors. The second method, WJCR based on angular separation (AS), uses the benefits of the AS measurement to decrease the contribution of redundant information due to the highly correlated neighbors. The experimental results on some real hyperspectral data sets show the good efficiency of the proposed methods compared to other state-of-the-art NRS-based classifiers.
Author Ghassemian, Hassan
Imani, Maryam
Author_xml – sequence: 1
  givenname: Maryam
  surname: Imani
  fullname: Imani, Maryam
  email: maryam.imani@modares.ac.ir
  organization: Fac. of Electr. & Comput. Eng, Tarbiat Modares Univ., Tehran, Iran
– sequence: 2
  givenname: Hassan
  surname: Ghassemian
  fullname: Ghassemian, Hassan
  email: ghassemi@modares.ac.ir
  organization: Fac. of Electr. & Comput. Eng, Tarbiat Modares Univ., Tehran, Iran
BookMark eNp9kEFLwzAUgINMcJv-APES8NyZpEnaHOfQqWwMtokXoaTN68yo6Uw6wX9vZ4cHD57Cg-97j3wD1HO1A4QuKRlRStTNerpcjRihyYgllMRCnKA-FSKNiOS8h_qEKhmxVLEzNAhhSwjlgiZ99PoCdvPWgMFPtXUNntRVpfPa68Z-Al7CzkMA17Rj7fCtDi24cHgOxmoXzUE7PLMOsHYGj91mX2mPV7DT_kc4R6elrgJcHN8her6_W08eotli-jgZz6KCqbiJSjB5kRvFpGFKSjAqFQWPNaFSCiZFXhguOOTKsJKLtIC8SGWZkhRikeSGxkN03e3d-fpjD6HJtvXeu_ZkxmjCeSwk4S2VdFTh6xA8lFlhu481XtsqoyQ7pMwOKbNDyuyYsjXpH3Pn7bv2X_86V51jAeCXT5TkCZPxN4uZgaM
CODEN IGRSD2
CitedBy_id crossref_primary_10_1007_s11760_022_02140_3
crossref_primary_10_1016_j_future_2019_05_004
crossref_primary_10_1016_j_asr_2018_02_027
crossref_primary_10_1049_rsn2_12204
crossref_primary_10_1016_j_neucom_2018_06_006
crossref_primary_10_1016_j_ejrs_2022_01_011
crossref_primary_10_1007_s00521_024_10421_w
crossref_primary_10_1016_j_inffus_2020_01_007
crossref_primary_10_1109_JSTARS_2018_2851791
Cites_doi 10.1109/TGRS.2011.2129595
10.1109/TPAMI.2008.79
10.1109/TGRS.2014.2333539
10.1080/2150704X.2015.1101180
10.1177/001316446002000104
10.1109/JSTARS.2014.2306956
10.14358/PERS.70.5.627
10.1109/TGRS.2013.2241773
10.1109/TGRS.2012.2190079
10.1109/JPROC.2012.2229082
10.1109/TGRS.2009.2016214
10.1109/TGRS.2015.2410991
10.1109/TGRS.2015.2466657
10.1109/TNNLS.2013.2287275
10.1109/TGRS.2012.2230268
10.1109/TGRS.2010.2051554
10.1109/TGRS.2008.922034
10.1109/TGRS.2010.2048116
10.1109/TGRS.2012.2211882
10.1109/TIT.1968.1054102
10.1109/TGRS.2003.814625
10.1109/LGRS.2015.2388703
10.1109/37.476
10.1109/JSTARS.2013.2295313
10.1109/ICCV.2011.6126277
10.1109/LGRS.2015.2402167
10.1109/TGRS.2014.2361618
10.1109/TGRS.2011.2176341
10.1109/TGRS.2014.2321405
10.1109/LGRS.2014.2363586
10.1109/LGRS.2005.857031
10.1016/j.ins.2016.01.032
10.1080/01431161.2010.512425
10.1016/j.isprsjprs.2014.12.024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2017.2710355
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 5624
ExternalDocumentID 10_1109_TGRS_2017_2710355
7964726
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c293t-fedbcbd926d2966ed985c43a01665265bcd454eb9d2f458cebc86f808e357bd13
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:27:57 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Wed Oct 01 02:19:46 EDT 2025
Tue Aug 26 16:43:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-fedbcbd926d2966ed985c43a01665265bcd454eb9d2f458cebc86f808e357bd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1924-9776
0000-0002-2303-1753
PQID 2174435604
PQPubID 85465
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2017_2710355
proquest_journals_2174435604
ieee_primary_7964726
crossref_primary_10_1109_TGRS_2017_2710355
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Oct.
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
fukunaga (ref29) 1990
ref30
ref33
ref11
liu (ref6) 2014; 25
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref13
  doi: 10.1109/TGRS.2011.2129595
– ident: ref12
  doi: 10.1109/TPAMI.2008.79
– ident: ref3
  doi: 10.1109/TGRS.2014.2333539
– ident: ref8
  doi: 10.1080/2150704X.2015.1101180
– ident: ref34
  doi: 10.1177/001316446002000104
– ident: ref30
  doi: 10.1109/JSTARS.2014.2306956
– ident: ref35
  doi: 10.14358/PERS.70.5.627
– ident: ref14
  doi: 10.1109/TGRS.2013.2241773
– ident: ref19
  doi: 10.1109/TGRS.2012.2190079
– ident: ref2
  doi: 10.1109/JPROC.2012.2229082
– ident: ref18
  doi: 10.1109/TGRS.2009.2016214
– ident: ref11
  doi: 10.1109/TGRS.2015.2410991
– ident: ref16
  doi: 10.1109/TGRS.2015.2466657
– volume: 25
  start-page: 1083
  year: 2014
  ident: ref6
  article-title: Global and local structure preservation for feature selection
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2287275
– ident: ref27
  doi: 10.1109/TGRS.2012.2230268
– ident: ref24
  doi: 10.1109/TGRS.2010.2051554
– ident: ref23
  doi: 10.1109/TGRS.2008.922034
– ident: ref32
  doi: 10.1109/TGRS.2010.2048116
– ident: ref10
  doi: 10.1109/TGRS.2012.2211882
– ident: ref1
  doi: 10.1109/TIT.1968.1054102
– ident: ref22
  doi: 10.1109/TGRS.2003.814625
– ident: ref31
  doi: 10.1109/LGRS.2015.2388703
– ident: ref21
  doi: 10.1109/37.476
– ident: ref28
  doi: 10.1109/JSTARS.2013.2295313
– ident: ref15
  doi: 10.1109/ICCV.2011.6126277
– ident: ref7
  doi: 10.1109/LGRS.2015.2402167
– ident: ref17
  doi: 10.1109/TGRS.2014.2361618
– ident: ref25
  doi: 10.1109/TGRS.2011.2176341
– ident: ref5
  doi: 10.1109/TGRS.2014.2321405
– ident: ref20
  doi: 10.1109/LGRS.2014.2363586
– ident: ref26
  doi: 10.1109/LGRS.2005.857031
– ident: ref4
  doi: 10.1016/j.ins.2016.01.032
– ident: ref33
  doi: 10.1080/01431161.2010.512425
– ident: ref9
  doi: 10.1016/j.isprsjprs.2014.12.024
– year: 1990
  ident: ref29
  publication-title: Introduction to statistical pattern recognition
SSID ssj0014517
Score 2.2947876
Snippet Representation-based classifiers such as nearest regularized subspace (NRS) have been recently developed for hyperspectral image classification. The joint...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5612
SubjectTerms Classification
Classifiers
Collaboration
collaborative representation
Correlation
Feature extraction
Hyperspectral imaging
Image classification
Kernel
Methods
nearest regularized subspace (NRS)
Pixels
Representations
Separation
Spatial data
spectral–spatial information
State of the art
Testing
Training
Title Weighted Joint Collaborative Representation Based On Median-Mean Line and Angular Separation
URI https://ieeexplore.ieee.org/document/7964726
https://www.proquest.com/docview/2174435604
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEB5UKOiDbf2BZ68lD30Sc-5ls9nk8Sq1IlwFf6APwrJJZkGUnJx7PvjXN8nmrqJF-rYPyRL4Znfmy3wzA_Ddal3UeohUs9JQXvKMKqkZ5Z5L6DD0SESiOP4tji_5yXVxvQT7i1oYRIziMxyEx5jLtxMzC1dlB7FskollWC6l6Gq1FhkDXgxTabSgnkSwlMEcZurg4tfZeRBxlQPm_Wkeqvpe-KA4VOXNnzi6l6OPMJ4frFOV3A1mrR6Y51c9G__35J9gPcWZZNQZxmdYQrcBay-6D27Ah6j-NI-bcHMVL0jRkpPJrWvJ4V_jeEJyFsWyqUbJkR_e71ly6kjI8dSOjrF2xFNaJLWzZOTCbPspOceuqfjEbcHl0c-Lw2Oaxi5Q431_Sxu02mirmLDMkyG0ShaG57UPDkVopq-N5QVHrSxreCENaiNFIzOJeVFqO8y3YcVNHO4AyQWvZcNMU6PlKtdKN0KxsuGWNyqXvAfZHIjKpJ7kYTTGfRW5SaaqgF0VsKsSdj3YW2x56BpyvLd4M2CxWJhg6EF_jnaVPtnHKnAzHzuKjO_-e9cXWA3v7pR8fVhppzP86iOSVn-LpvgHw-vcZg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VIgQc-GhBLBTwgRPC26wzduJjqShL6Rap3YoekKLYnkgI5EVtlgO_HtvxLhUgxC0HW7H0Jpl5njczAC-cMbI1E-JGVJZjhQXXtREcA5cwceiRSkRxdqymZ3h4Ls834NW6FoaIkviMxvEx5fLdwi7jVdluKpsU6hpcl4goh2qtdc4A5SQXRyseaITIOcxJoXfnb09Oo4yrGovgUctY13fFC6WxKn_8i5ODObgLs9XRBl3Jl_GyN2P747eujf979ntwJ0eabG8wjfuwQX4Lbl_pP7gFN5L-015uw6eP6YqUHDtcfPY92_9lHt-JnSS5bK5S8ux18HyOffAsZnlaz2fUehZILbHWO7bn43T7C3ZKQ1vxhX8AZwdv5vtTngcvcBu8f887csYap4VyItAhcrqWFss2hIcqttM31qFEMtqJDmVtydhadXVRUykr4yblQ9j0C0-PgJUK27oTtmvJoS6NNp3SourQYafLGkdQrIBobO5KHodjfG0SOyl0E7FrInZNxm4EL9dbvg0tOf61eDtisV6YYRjBzgrtJn-0l01kZyF6VAU-_vuu53BzOp8dNUfvjt8_gVvxPYOubwc2-4slPQ3xSW-eJbP8CXYh37M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+Joint+Collaborative+Representation+Based+On+Median-Mean+Line+and+Angular+Separation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Imani%2C+Maryam&rft.au=Ghassemian%2C+Hassan&rft.date=2017-10-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=55&rft.issue=10&rft.spage=5612&rft.epage=5624&rft_id=info:doi/10.1109%2FTGRS.2017.2710355&rft.externalDocID=7964726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon