Dynamic Simulation of the HTS Maglev Vehicle-Bridge Coupled System Based on Levitation Force Experiment
In this paper, we built a high-temperature superconducting (HTS) maglev vehicle-bridge coupled system model by Universal Mechanism (UM) software, and analyzed the vertical dynamics. The UM model is composed of two parts, the train subsystem involved three vehicles, and the flexible bridge with simpl...
Saved in:
Published in | IEEE transactions on applied superconductivity Vol. 29; no. 5; pp. 1 - 6 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1051-8223 1558-2515 |
DOI | 10.1109/TASC.2019.2895503 |
Cover
Abstract | In this paper, we built a high-temperature superconducting (HTS) maglev vehicle-bridge coupled system model by Universal Mechanism (UM) software, and analyzed the vertical dynamics. The UM model is composed of two parts, the train subsystem involved three vehicles, and the flexible bridge with simple-supports. In the UM modeling system, the expression of levitation force and the parameters related to the maglev vehicle-bridge were indispensable. The levitation force of maglev vehicle was described by an exponential analytical expression simplified by the experimental results of four YBCO bulks above a Halbach permanent magnetic guideway. The parameters related to the maglev vehicle-bridge are based on experimental prototype. Based on the UM model, the vertical dynamic was simulated and analyzed with different bridge spans under different operating velocities. This subject is a basic study for understanding the unique dynamic characteristic of the HTS maglev vehicle-bridge system. The simulation results provided reference for the further design of the HTS maglev vehicle-bridge coupled system in different speed ranges. |
---|---|
AbstractList | In this paper, we built a high-temperature superconducting (HTS) maglev vehicle-bridge coupled system model by Universal Mechanism (UM) software, and analyzed the vertical dynamics. The UM model is composed of two parts, the train subsystem involved three vehicles, and the flexible bridge with simple-supports. In the UM modeling system, the expression of levitation force and the parameters related to the maglev vehicle-bridge were indispensable. The levitation force of maglev vehicle was described by an exponential analytical expression simplified by the experimental results of four YBCO bulks above a Halbach permanent magnetic guideway. The parameters related to the maglev vehicle-bridge are based on experimental prototype. Based on the UM model, the vertical dynamic was simulated and analyzed with different bridge spans under different operating velocities. This subject is a basic study for understanding the unique dynamic characteristic of the HTS maglev vehicle-bridge system. The simulation results provided reference for the further design of the HTS maglev vehicle-bridge coupled system in different speed ranges. |
Author | Haitao Li Shunshun Ma Ruixue Sun Jipeng Li Zigang Deng Hongdi Wang |
Author_xml | – sequence: 1 givenname: Hongdi surname: Wang fullname: Wang, Hongdi – sequence: 2 givenname: Zigang orcidid: 0000-0001-7937-9081 surname: Deng fullname: Deng, Zigang – sequence: 3 givenname: Shunshun surname: Ma fullname: Ma, Shunshun – sequence: 4 givenname: Ruixue orcidid: 0000-0003-2457-1927 surname: Sun fullname: Sun, Ruixue – sequence: 5 givenname: Haitao surname: Li fullname: Li, Haitao – sequence: 6 givenname: Jipeng surname: Li fullname: Li, Jipeng |
BookMark | eNp9kE1PAjEQhhuDiYD-AOOliefFfi7tERDEBOMB9LrpdqdQsuxidyHy712yxIMHTzOTvM9M-_RQpygLQOiekgGlRD-tRsvJgBGqB0xpKQm_Ql0qpYqYpLLT9ETSSDHGb1CvqraEUKGE7KL186kwO2_x0u8Oual9WeDS4XoDeL5a4jezzuGIP2HjbQ7ROPhsDXhSHvY5ZHh5qmrY4bGpmqEBF3D0dbtjVgYLePq9h-B3UNS36NqZvIK7S-2jj9l0NZlHi_eX18loEVmmeR05K2IQwFzKUk6tpsQ6SlIWZ9a6VA-dAeGczJjMhsqZTHCuLRfSEeVSlWreR4_t3n0ovw5Q1cm2PISiOZkwqkhjQQ9Fkxq2KRvKqgrgEnt5eB2MzxNKkrPV5Gw1OVtNLlYbkv4h980HTTj9yzy0jAeA37yKWSw04z_qGYXN |
CODEN | ITASE9 |
CitedBy_id | crossref_primary_10_1177_1369433220913367 crossref_primary_10_1109_TASC_2022_3173517 crossref_primary_10_1109_TASC_2022_3161896 crossref_primary_10_1109_TASC_2020_2995289 crossref_primary_10_1007_s10948_022_06193_w crossref_primary_10_1007_s10948_020_05780_z crossref_primary_10_1080_23248378_2024_2302573 crossref_primary_10_1016_j_physc_2022_1354109 crossref_primary_10_1016_j_physc_2021_1353997 crossref_primary_10_12677_IJM_2021_102011 crossref_primary_10_1142_S0219455425500063 crossref_primary_10_1016_j_physc_2021_1353872 crossref_primary_10_1109_TASC_2021_3052452 crossref_primary_10_1109_TASC_2021_3134011 crossref_primary_10_1109_TASC_2022_3167929 crossref_primary_10_1109_TTE_2022_3225336 crossref_primary_10_1109_TASC_2020_3015022 crossref_primary_10_1109_TASC_2020_2984216 crossref_primary_10_1088_1402_4896_ad16cb crossref_primary_10_1109_ACCESS_2020_3037352 crossref_primary_10_1016_j_ymssp_2021_108614 crossref_primary_10_1109_TTE_2022_3144518 crossref_primary_10_1109_TASC_2023_3282448 crossref_primary_10_1063_5_0104854 crossref_primary_10_1109_TASC_2020_2976995 crossref_primary_10_1109_TASC_2019_2932283 crossref_primary_10_1109_TASC_2021_3053498 crossref_primary_10_3390_act11100295 crossref_primary_10_1088_1361_6668_ab7845 crossref_primary_10_3390_su152316511 crossref_primary_10_1007_s10948_022_06485_1 crossref_primary_10_1109_TASC_2021_3133332 crossref_primary_10_1016_j_cryogenics_2021_103321 |
Cites_doi | 10.1109/TASC.2014.2371432 10.1109/TASC.2017.2673779 10.1007/978-94-017-7524-3 10.1109/TASC.2017.2716842 10.1109/TASC.2016.2524473 10.1088/1361-6668/aac860 10.1088/0953-2048/21/11/115018 10.1016/S0921-4534(02)01548-4 10.1076/vesd.38.3.185.8289 10.1016/0375-9601(94)90140-6 10.1109/TMAG.2006.875842 10.1109/TASC.2005.849636 10.1080/00423114.2017.1377840 10.1016/j.physc.2013.04.043 10.1126/science.243.4889.349 10.1142/5541 10.1080/00423114.2016.1153115 10.1016/j.jallcom.2015.09.116 10.1109/TASC.2010.2093495 10.1109/77.920136 10.1109/MVT.2012.2218437 10.1109/TASC.2017.2652543 10.1007/978-3-662-45673-6 10.1109/TASC.2016.2524471 10.1109/TASC.2016.2555921 10.1063/1.4986896 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TASC.2019.2895503 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-2515 |
EndPage | 6 |
ExternalDocumentID | 10_1109_TASC_2019_2895503 8626492 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science and Technology Partnership Program – fundername: Sichuan Youth Science and Technology Fund grantid: 2016JQ0039 – fundername: Central Universities grantid: 2682018CX72 – fundername: Fundamental Research Funds – fundername: Ministry of Science and Technology of China – fundername: National Natural Science Foundation of China grantid: 51875485 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PZZ RIA RIE RNS TN5 VH1 AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-fc46e4e2fb2b31c910cf10b26dccfb97fae4ff5d25d78fad4339c345f08fb8b93 |
IEDL.DBID | RIE |
ISSN | 1051-8223 |
IngestDate | Mon Jun 30 10:22:16 EDT 2025 Thu Apr 24 22:51:27 EDT 2025 Tue Jul 01 04:05:35 EDT 2025 Wed Aug 27 02:54:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-fc46e4e2fb2b31c910cf10b26dccfb97fae4ff5d25d78fad4339c345f08fb8b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7937-9081 0000-0003-2457-1927 |
PQID | 2180051974 |
PQPubID | 85434 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1109_TASC_2019_2895503 proquest_journals_2180051974 crossref_citationtrail_10_1109_TASC_2019_2895503 ieee_primary_8626492 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on applied superconductivity |
PublicationTitleAbbrev | TASC |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref31 ref30 ref33 ref32 brandt (ref1) 1989; 243 deng (ref24) 2012; 22 yang (ref12) 2004 (ref29) 2017 ref17 ref16 ref18 han (ref10) 2016 liu (ref11) 2015 (ref26) 2017 deng (ref19) 0 ref25 ref22 ref21 deng (ref23) 2012; 22 ref28 ref27 ref8 ref7 erikosuke (ref20) 2002 ref9 ref4 ref3 ref6 ref5 moon (ref2) 1994 |
References_xml | – year: 2017 ident: ref29 publication-title: Code for design of lower/medium maglev transportation CJJ/T 262-2017 – ident: ref17 doi: 10.1109/TASC.2014.2371432 – ident: ref33 doi: 10.1109/TASC.2017.2673779 – year: 2016 ident: ref10 publication-title: Magnetic levitation maglev technology and applications doi: 10.1007/978-94-017-7524-3 – ident: ref5 doi: 10.1109/TASC.2017.2716842 – ident: ref18 doi: 10.1109/TASC.2016.2524473 – ident: ref16 doi: 10.1088/1361-6668/aac860 – volume: 22 year: 2012 ident: ref23 article-title: Trapped flux and levitation properties of multiseeded YBCO bulks for HTS magnetic device applications-Part I: Grain and current features publication-title: IEEE Trans Appl Supercond – ident: ref22 doi: 10.1088/0953-2048/21/11/115018 – ident: ref4 doi: 10.1016/S0921-4534(02)01548-4 – ident: ref30 doi: 10.1076/vesd.38.3.185.8289 – ident: ref25 doi: 10.1016/0375-9601(94)90140-6 – ident: ref3 doi: 10.1109/TMAG.2006.875842 – ident: ref6 doi: 10.1109/TASC.2005.849636 – ident: ref27 doi: 10.1080/00423114.2017.1377840 – ident: ref14 doi: 10.1016/j.physc.2013.04.043 – volume: 243 start-page: 349 year: 1989 ident: ref1 article-title: Levitation in physics publication-title: Science doi: 10.1126/science.243.4889.349 – year: 2004 ident: ref12 publication-title: Vehicle-Bridge Interaction Dynamics With Applications to High-Speed Railways doi: 10.1142/5541 – year: 2017 ident: ref26 – ident: ref28 doi: 10.1080/00423114.2016.1153115 – ident: ref32 doi: 10.1016/j.jallcom.2015.09.116 – ident: ref13 doi: 10.1109/TASC.2010.2093495 – year: 1994 ident: ref2 publication-title: Superconducting Levitation Applications to Bearings and Magnetic Transportation – ident: ref21 doi: 10.1109/77.920136 – ident: ref8 doi: 10.1109/MVT.2012.2218437 – year: 0 ident: ref19 article-title: Dynamic simulation of the vehicle/ bridge coupled system in high temperature superconducting maglev publication-title: Comput Sci Eng – ident: ref31 doi: 10.1109/TASC.2017.2652543 – year: 2015 ident: ref11 publication-title: Maglev Trains Key Underlying Technologies doi: 10.1007/978-3-662-45673-6 – ident: ref7 doi: 10.1109/TASC.2016.2524471 – ident: ref9 doi: 10.1109/TASC.2016.2555921 – year: 2002 ident: ref20 publication-title: Japan HSST Maglev train – volume: 22 year: 2012 ident: ref24 article-title: Trapped flux and levitation properties of multiseeded YBCO bulks for HTS magnetic device applications-Part II: Practical and achievable performance publication-title: IEEE Trans Appl Supercond – ident: ref15 doi: 10.1063/1.4986896 |
SSID | ssj0014845 |
Score | 2.4433997 |
Snippet | In this paper, we built a high-temperature superconducting (HTS) maglev vehicle-bridge coupled system model by Universal Mechanism (UM) software, and analyzed... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Automotive parts Bridges Computer simulation dynamical response Dynamics Force High temperature High-temperature superconductors HTS maglev Levitation levitation force Magnetic levitation vehicles Mathematical model Mathematical models Parameters Simulation Subsystems Universal Mechanism Vehicle dynamics vehicle-bridge coupled model |
Title | Dynamic Simulation of the HTS Maglev Vehicle-Bridge Coupled System Based on Levitation Force Experiment |
URI | https://ieeexplore.ieee.org/document/8626492 https://www.proquest.com/docview/2180051974 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61kZDooUAfIqUgH3qq2HR37X34mIZGEaK9JEW9rdb2uEWEbNQmHPj1jO3Nqi0IcduDbVn6xp7PO48P4EQkiEWaIz1LdB4JxXVUIueRTF1vF51YGRJkr_LJtfh8k91swceuFgYRffIZDtynj-WbRq_dr7Izx76FpAt3m8ws1Gp1EQNRekFiogtJRE6PtxHMJJZns-F05JK45IBeF8TI-RMf5EVV_riJvXsZv4LLzcZCVsn3wXqlBvrXs56N_7vz17Db8kw2DIbxBrZwsQc7j7oP7sELn_2pH_bh9lPQpWfTbz9aOS_WWEbckE1mU3ZZ387xJ_uKd26t6NzXeLFRs17O0bDQ85ydkzs0jCZ-IVcb4vts3NxrZBediMABXI8vZqNJ1CowRJpowCqyWuQoMLUqVTzRRC20TWKV5kZrq2RhaxTWZibNTFHa2gjOpeYis3FpVakkP4TeolngW2DOU6ZGFQqFFDappeEmo8uGLKg2WNg-xBtMKt1u06lkzCv_TIll5WCsHIxVC2MfTrspy9Cb41-D9x0s3cAWkT4cb4Cv2tP7UBHt8dS2EEd_n_UOXrq1QyLgMfRW92t8T-RkpT54q_wNAAPgrA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1VRRX0AKWlYqGAD5wQ2Sax8-Fju3S1hd1edot6i2J7XBDbTdXucuiv79jORnwJ9ZaDnVh6Y8-bzHgewHuRIBZpjhSW6DwSiuuoRM4jmbreLjqxMhTInuWjc_H5IrvYgI_dXRhE9MVn2HePPpdvGr1yv8oOHfsWkg7cRxlFFUW4rdXlDETpJYmJMCQRuT3e5jCTWB7OjqYDV8Yl-xRfECfnv3khL6vy11nsHczwGUzWSwt1JT_6q6Xq67s_ujY-dO078LRlmuwomMZz2MDFLmz_0n9wF7Z8_ae-3YPLT0GZnk2_X7WCXqyxjNghG82mbFJfzvEn-4rf3LuiY3_Liw2a1fUcDQtdz9kxOUTDaOKYnG3I8LNhc6ORnXQyAi_gfHgyG4yiVoMh0kQElpHVIkeBqVWp4okmcqFtEqs0N1pbJQtbo7A2M2lmitLWRnAuNReZjUurSiX5PmwumgW-BOZ8ZWpUoVBIYZNaGm4yOm7IhmqDhe1BvMak0u0ynU7GvPKBSiwrB2PlYKxaGHvwoZtyHbpz_G_wnoOlG9gi0oODNfBVu39vKyI-ntwW4tW_Z72Dx6PZZFyNT8--vIYn7juhLPAANpc3K3xDVGWp3noLvQf2UOP- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Simulation+of+the+HTS+Maglev+Vehicle-Bridge+Coupled+System+Based+on+Levitation+Force+Experiment&rft.jtitle=IEEE+transactions+on+applied+superconductivity&rft.au=Hongdi+Wang&rft.au=Zigang+Deng&rft.au=Shunshun+Ma&rft.au=Ruixue+Sun&rft.date=2019-08-01&rft.pub=IEEE&rft.issn=1051-8223&rft.volume=29&rft.issue=5&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FTASC.2019.2895503&rft.externalDocID=8626492 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8223&client=summon |