A 65 nm Wireless Image SoC Supporting On-Chip DNN Optimization and Real-Time Computation-Communication Trade-Off via Actor-Critical Neuro-Controller
The widespread proliferation of smart sensors has led to hardware that enable edge intelligence (EI) with extreme energy efficiencies. This decreases the volume of data that is transmitted to the cloud, thus reducing: 1) processing latency; 2) communication energy; and 3) network congestion. However...
Saved in:
| Published in | IEEE journal of solid-state circuits Vol. 57; no. 8; pp. 2545 - 2559 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9200 1558-173X |
| DOI | 10.1109/JSSC.2022.3159473 |
Cover
| Abstract | The widespread proliferation of smart sensors has led to hardware that enable edge intelligence (EI) with extreme energy efficiencies. This decreases the volume of data that is transmitted to the cloud, thus reducing: 1) processing latency; 2) communication energy; and 3) network congestion. However, this comes with an added cost of computation at the edge node. The cost (energy/latency) of edge computation and the cost of communication to the cloud vary widely depending on operating conditions, which include: 1) information content in the data; 2) algorithm selection; 3) channel conditions (noise, path-loss, etc.); 4) network size, available bandwidth; and 5) resources at the cloud. This article presents a 65 nm wireless image processing SoC for real-time computation-communication trade-off on resource-constrained edge devices. The test-chip includes: 1) an all-digital, near-memory, reconfigurable, and programmable neural-network (NN)-based systolic image processor; 2) a digitally adaptive radio-frequency digital-to-analog converter (RF-DAC)-based transceiver; and 3) a mixed-signal, time-based, actor-critic (AC) neuro-controller with compute-in-memory (CIM) and in-place weight updates that provide online learning and adaptation for efficiently controlling the computation, communication blocks separately as well as jointly. The major contributions of the proposed SoC are threefold: 1) a wireless Internet of Things (IoT) SoC architecture enabling a generic computation-communication trade-off scheme; 2) a novel CIM circuit design enabling effective AC control and online learning (0.59 pJ/MAC, 0.4 pJ/update); 3) integration of programmable deep NN (DNN) accelerator (1.05 TOPS/W) and reconfigurable transceiver (184 pJ/b @ -15 dBm) supporting versatile cloud-edge collaborations; and 4) significant system-level energy efficiency improvement (5.7<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>) with real-time on-chip smart control enabled by seamless chip integration and AI-enabled decision-making. Furthermore, this SoC serves as a system-level IoT prototype for next-generation context-aware EI. |
|---|---|
| AbstractList | The widespread proliferation of smart sensors has led to hardware that enable edge intelligence (EI) with extreme energy efficiencies. This decreases the volume of data that is transmitted to the cloud, thus reducing: 1) processing latency; 2) communication energy; and 3) network congestion. However, this comes with an added cost of computation at the edge node. The cost (energy/latency) of edge computation and the cost of communication to the cloud vary widely depending on operating conditions, which include: 1) information content in the data; 2) algorithm selection; 3) channel conditions (noise, path-loss, etc.); 4) network size, available bandwidth; and 5) resources at the cloud. This article presents a 65 nm wireless image processing SoC for real-time computation-communication trade-off on resource-constrained edge devices. The test-chip includes: 1) an all-digital, near-memory, reconfigurable, and programmable neural-network (NN)-based systolic image processor; 2) a digitally adaptive radio-frequency digital-to-analog converter (RF-DAC)-based transceiver; and 3) a mixed-signal, time-based, actor-critic (AC) neuro-controller with compute-in-memory (CIM) and in-place weight updates that provide online learning and adaptation for efficiently controlling the computation, communication blocks separately as well as jointly. The major contributions of the proposed SoC are threefold: 1) a wireless Internet of Things (IoT) SoC architecture enabling a generic computation-communication trade-off scheme; 2) a novel CIM circuit design enabling effective AC control and online learning (0.59 pJ/MAC, 0.4 pJ/update); 3) integration of programmable deep NN (DNN) accelerator (1.05 TOPS/W) and reconfigurable transceiver (184 pJ/b @ –15 dBm) supporting versatile cloud-edge collaborations; and 4) significant system-level energy efficiency improvement (5.7[Formula Omitted]) with real-time on-chip smart control enabled by seamless chip integration and AI-enabled decision-making. Furthermore, this SoC serves as a system-level IoT prototype for next-generation context-aware EI. The widespread proliferation of smart sensors has led to hardware that enable edge intelligence (EI) with extreme energy efficiencies. This decreases the volume of data that is transmitted to the cloud, thus reducing: 1) processing latency; 2) communication energy; and 3) network congestion. However, this comes with an added cost of computation at the edge node. The cost (energy/latency) of edge computation and the cost of communication to the cloud vary widely depending on operating conditions, which include: 1) information content in the data; 2) algorithm selection; 3) channel conditions (noise, path-loss, etc.); 4) network size, available bandwidth; and 5) resources at the cloud. This article presents a 65 nm wireless image processing SoC for real-time computation-communication trade-off on resource-constrained edge devices. The test-chip includes: 1) an all-digital, near-memory, reconfigurable, and programmable neural-network (NN)-based systolic image processor; 2) a digitally adaptive radio-frequency digital-to-analog converter (RF-DAC)-based transceiver; and 3) a mixed-signal, time-based, actor-critic (AC) neuro-controller with compute-in-memory (CIM) and in-place weight updates that provide online learning and adaptation for efficiently controlling the computation, communication blocks separately as well as jointly. The major contributions of the proposed SoC are threefold: 1) a wireless Internet of Things (IoT) SoC architecture enabling a generic computation-communication trade-off scheme; 2) a novel CIM circuit design enabling effective AC control and online learning (0.59 pJ/MAC, 0.4 pJ/update); 3) integration of programmable deep NN (DNN) accelerator (1.05 TOPS/W) and reconfigurable transceiver (184 pJ/b @ -15 dBm) supporting versatile cloud-edge collaborations; and 4) significant system-level energy efficiency improvement (5.7<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>) with real-time on-chip smart control enabled by seamless chip integration and AI-enabled decision-making. Furthermore, this SoC serves as a system-level IoT prototype for next-generation context-aware EI. |
| Author | Raychowdhury, Arijit Chatterjee, Baibhab Cao, Ningyuan Liu, Jianbo Chang, Muya Cheng, Boyang Sen, Shreyas Gong, Minxiang |
| Author_xml | – sequence: 1 givenname: Ningyuan orcidid: 0000-0002-5323-1051 surname: Cao fullname: Cao, Ningyuan email: ncao@nd.edu organization: Department of Electrical Engineering, University of Notre Dame, South Bend, IN, USA – sequence: 2 givenname: Baibhab orcidid: 0000-0002-2688-281X surname: Chatterjee fullname: Chatterjee, Baibhab email: bchatte@purdue.edu organization: Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 3 givenname: Jianbo surname: Liu fullname: Liu, Jianbo email: jliu32@nd.edu organization: Department of Electrical Engineering, University of Notre Dame, South Bend, IN, USA – sequence: 4 givenname: Boyang orcidid: 0000-0003-1003-4960 surname: Cheng fullname: Cheng, Boyang email: bcheng4@nd.edu organization: Department of Electrical Engineering, University of Notre Dame, South Bend, IN, USA – sequence: 5 givenname: Minxiang orcidid: 0000-0002-5426-7697 surname: Gong fullname: Gong, Minxiang email: mxgong@gatech.edu organization: Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 6 givenname: Muya orcidid: 0000-0002-3035-1106 surname: Chang fullname: Chang, Muya email: mchang87@gatech.edu organization: Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA – sequence: 7 givenname: Shreyas orcidid: 0000-0001-5566-8946 surname: Sen fullname: Sen, Shreyas email: shreyas@purdue.edu organization: Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 8 givenname: Arijit orcidid: 0000-0001-8391-0576 surname: Raychowdhury fullname: Raychowdhury, Arijit email: arijit.raychowdhury@ece.gatech.edu organization: Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA |
| BookMark | eNp9kc9q3DAQxkVJoJukD1B6EfSsrf5a1nFxk3RL2IXulvZmtN5xqmBLjiwH0ufIA8cbLznkkNPM8H2_GYbvDJ344AGhz4zOGaPm28_NpphzyvlcMGWkFh_QjCmVE6bF3xM0o5TlxHBKP6Kzvr8bRylzNkNPC5wp7Fv8x0VooO_xsrW3gDehwJuh60JMzt_itSfFP9fh76sVXnfJte6_TS54bP0e_wLbkK1rAReh7Yb0opCxbwfvqsm3jXYPZF3X-MFZvKhSiKSILo16g1cwxDACPsXQNBAv0Gltmx4-Hes5-n11uS1-kJv19bJY3JCKG5EIgGa5Pnxi-Q4yltfW5qbOpNgZYFxwJWkmhKaGGm1rupNgssqYva4yZY0U5-jrtLeL4X6APpV3YYh-PFnyzPCcUanY6NKTq4qh7yPUZeWmH1O0rikZLQ8RlIcIykME5TGCkWRvyC661sbHd5kvE-MA4NVvtBRKSfEMu7SThw |
| CODEN | IJSCBC |
| CitedBy_id | crossref_primary_10_1146_annurev_bioeng_110220_112448 crossref_primary_10_1109_JSSC_2022_3221143 crossref_primary_10_1109_TMTT_2023_3248957 crossref_primary_10_1109_TCAD_2023_3266370 |
| Cites_doi | 10.1109/JSSC.2019.2899521 10.1109/CICC48029.2020.9075915 10.1109/TCSI.2012.2191314 10.1109/TCSI.2010.2072410 10.1109/JSSC.2020.3021661 10.1109/JPROC.2017.2761740 10.1109/LMWC.2021.3067912 10.1109/TCSI.2017.2716358 10.23919/DATE.2018.8342102 10.1109/AIPR.2008.4906450 10.1109/JSSC.2019.2941010 10.1109/JSSC.2020.3030264 10.1109/JSSC.2015.2462345 10.1145/2463209.2488802 10.1109/TMTT.2017.2731309 10.1109/VLSICircuits18222.2020.9162878 10.35940/ijeat.d6658.049420 10.1109/ISSCC42613.2021.9365926 10.1145/1391469.1391595 10.1109/TCSI.2016.2608962 10.1109/JSSC.2019.2953831 10.1109/IISWC47752.2019.9042000 10.1109/IAEAC.2017.8054377 10.1109/MDAT.2019.2899334 10.1109/JSSC.2018.2865489 10.1109/MWSYM.2017.8059047 10.1109/JSSC.2012.2185555 10.1109/JSSC.2013.2239001 10.1145/2897937.2905005 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/JSSC.2022.3159473 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-173X |
| EndPage | 2559 |
| ExternalDocumentID | 10_1109_JSSC_2022_3159473 9743554 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: JUMP CBRIC grantid: 2777.006 – fundername: Semiconductor Research Corporation grantid: 2720.001 funderid: 10.13039/100000028 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TAE TN5 UKR VH1 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c293t-ee71870144a2be618faa89f643b9e1232540633709097af0b4e96c99d7c65a943 |
| IEDL.DBID | RIE |
| ISSN | 0018-9200 |
| IngestDate | Mon Jun 30 10:15:28 EDT 2025 Wed Oct 01 02:17:28 EDT 2025 Thu Apr 24 22:56:49 EDT 2025 Wed Aug 27 02:25:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-ee71870144a2be618faa89f643b9e1232540633709097af0b4e96c99d7c65a943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5426-7697 0000-0001-8391-0576 0000-0002-5323-1051 0000-0002-3035-1106 0000-0003-1003-4960 0000-0002-2688-281X 0000-0001-5566-8946 |
| PQID | 2692810451 |
| PQPubID | 85482 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9743554 crossref_citationtrail_10_1109_JSSC_2022_3159473 proquest_journals_2692810451 crossref_primary_10_1109_JSSC_2022_3159473 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal of solid-state circuits |
| PublicationTitleAbbrev | JSSC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 Cao (ref5) ref11 ref33 ref10 ref32 ref2 ref17 ref16 ref19 Amravati (ref1) 2018 ref18 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Iandola (ref7) 2016 ref29 Karnik (ref35) ref9 ref4 ref3 ref6 Howard (ref8) 2017 Haykin (ref23) 2009 |
| References_xml | – ident: ref34 doi: 10.1109/JSSC.2019.2899521 – ident: ref24 doi: 10.1109/CICC48029.2020.9075915 – start-page: 222 volume-title: IEEE ISSCC Dig. Tech. Papers ident: ref5 article-title: 14.1 A 65 nm 1.1-to-9.1TOPS/W hybrid-digital-mixed-signal computing platform for accelerating model-based and model-free swarm robotics – ident: ref20 doi: 10.1109/TCSI.2012.2191314 – volume-title: Communication Systems year: 2009 ident: ref23 – ident: ref19 doi: 10.1109/TCSI.2010.2072410 – ident: ref32 doi: 10.1109/JSSC.2020.3021661 – ident: ref14 doi: 10.1109/JPROC.2017.2761740 – ident: ref22 doi: 10.1109/LMWC.2021.3067912 – ident: ref9 doi: 10.1109/TCSI.2017.2716358 – ident: ref11 doi: 10.23919/DATE.2018.8342102 – ident: ref12 doi: 10.1109/AIPR.2008.4906450 – ident: ref28 doi: 10.1109/JSSC.2019.2941010 – ident: ref31 doi: 10.1109/JSSC.2020.3030264 – ident: ref33 doi: 10.1109/JSSC.2015.2462345 – ident: ref17 doi: 10.1145/2463209.2488802 – ident: ref25 doi: 10.1109/TMTT.2017.2731309 – ident: ref4 doi: 10.1109/VLSICircuits18222.2020.9162878 – ident: ref13 doi: 10.35940/ijeat.d6658.049420 – ident: ref3 doi: 10.1109/ISSCC42613.2021.9365926 – ident: ref16 doi: 10.1145/1391469.1391595 – ident: ref21 doi: 10.1109/TCSI.2016.2608962 – ident: ref2 doi: 10.1109/JSSC.2019.2953831 – ident: ref15 doi: 10.1109/IISWC47752.2019.9042000 – ident: ref29 doi: 10.1109/IAEAC.2017.8054377 – ident: ref6 doi: 10.1109/MDAT.2019.2899334 – ident: ref30 doi: 10.1109/JSSC.2018.2865489 – year: 2016 ident: ref7 article-title: SqueezeNet: AlexNet-level accuracy with 50X fewer parameters and 0.5 MB model size publication-title: arXiv:1602.07360 – ident: ref10 doi: 10.1109/MWSYM.2017.8059047 – ident: ref26 doi: 10.1109/JSSC.2012.2185555 – start-page: 124 year: 2018 ident: ref1 article-title: A 55 nm time-domain mixed-signal neuromorphic accelerator with stochastic synapses and embedded reinforcement learning for autonomous micro-robots publication-title: IEEE ISSCC Dig. Tech. Papers – ident: ref27 doi: 10.1109/JSSC.2013.2239001 – ident: ref18 doi: 10.1145/2897937.2905005 – start-page: 46 volume-title: IEEE ISSCC Dig. Tech. Papers ident: ref35 article-title: A cm-scale self-powered intelligent and secure IoT edge mote featuring an ultra-low-power SoC in 14 nm tri-gate CMOS – year: 2017 ident: ref8 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 |
| SSID | ssj0014481 |
| Score | 2.4284754 |
| Snippet | The widespread proliferation of smart sensors has led to hardware that enable edge intelligence (EI) with extreme energy efficiencies. This decreases the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2545 |
| SubjectTerms | Algorithms Artificial neural networks Circuit design Cloud computing Communication Computing time Controllers Costs Decision making Digital imaging Digital to analog converters Distance learning Edge computing Edge intelligence (EI) edge-cloud trade-off Handheld computers Image edge detection Image processing Internet of Things Internet of Things (IoT) Machine learning Microprocessors Network latency Neural networks Optimization Radio frequency Real time Reconfiguration Smart sensors System on chip Tradeoffs Transceivers Wireless communication Wireless sensor networks wireless system-on-chip |
| Title | A 65 nm Wireless Image SoC Supporting On-Chip DNN Optimization and Real-Time Computation-Communication Trade-Off via Actor-Critical Neuro-Controller |
| URI | https://ieeexplore.ieee.org/document/9743554 https://www.proquest.com/docview/2692810451 |
| Volume | 57 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-173X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014481 issn: 0018-9200 databaseCode: RIE dateStart: 19660101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbansqBRwtioaA59FThrZ2HHR9XgapU6q7EtlJvkZOM24rdbFV2OfA7-MHMJNkVLQhxixTbsvKNZz5nXkIchuCCwkzLKEtTmdjYSV-mTkY2YwMam8pyNvL52JxeJmdX6dWW-LDJhUHENvgMh_zY-vLrRbXiX2XHxH3ZPG6LbZuZLldr4zGga0bXHU_TASboew-mVu74bDrN6SYYRXRBTV1i4wc2qG2q8ocmbs3LyTNxvt5YF1XydbhalsPqx6Oajf-78-fiac8zYdQJxguxhc2eePJb9cF98XMEJoVmDhwBOyONB5_npF1gusiBm30uuMDANUwamd_c3sHH8RgmpGDmfeYm-KaGL8QzJaeRQNceon0jH2SdAJnDGuUkBPh-62HEXgK57rAAbXEQmXcB8zO8fykuTz5d5Keyb9IgK2IKS4lI1s3y9_dRiUZnwfvMBSI6pUPma0QJTRxb5ZSzPqgyQWcq52pbmdS7JH4ldppFg68FaG18TRKlS18SmiReKqUlMApY1V7pgVBr2Iqqr2DOjTRmRXuTUa5gpAtGuuiRHoijzZS7rnzHvwbvM3KbgT1oA3Gwlo2iP-Dfisi4KNNcnOfN32e9Fbu8dhcreCB2lvcrfEf8ZVm-bwX3F7LU644 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcgAOvAoi0MIcOCE29dretfcYua3S0iQSaaXerLW9WyoSpyoJB34HP5gZ24loQYibJe_aK3-zM996XgDvvTc-cKkUYaqUiJPICFsoI8IkZQMa6TLhbOTRWA_P45MLdbEFHze5MM65JvjM9fmy8eVXi3LFv8r2ifuyebwH91Ucx6rN1tr4DOig0fbHk7SFCfzOhykDs38ynWZ0FgxDOqIqEyfRLSvUtFX5Qxc3BuboCYzWS2vjSr72V8uiX_64U7Xxf9f-FB53TBMHrWg8gy1XP4dHv9Uf3IGfA9QK6zlyDOyMdB4ez0m_4HSRIbf7XHCJgUuc1CL7cnWNB-MxTkjFzLvcTbR1hZ-JaQpOJMG2QURzR9zKO0EyiJUTE-_x-5XFAfsJxLrHAjblQUTWhszP3M0LOD86PMuGomvTIEriCkvhHNm3hL-_DQunZeqtTY0nqlMYx4yNSKGOoiQwgUmsD4rYGV0aUyWlVtbE0UvYrhe1ewUopbYVyZQsbEFokoAFih7hQu_KygayB8EatrzsaphzK41Z3pxlApMz0jkjnXdI9-DDZsp1W8DjX4N3GLnNwA60HuyuZSPvtvi3PNQmTCWX53n991nv4MHwbHSanx6PP72Bh_yeNnJwF7aXNyu3R2xmWbxthPgXLBfu2w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+65+nm+Wireless+Image+SoC+Supporting+On-Chip+DNN+Optimization+and+Real-Time+Computation-Communication+Trade-Off+via+Actor-Critical+Neuro-Controller&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Cao%2C+Ningyuan&rft.au=Chatterjee%2C+Baibhab&rft.au=Liu%2C+Jianbo&rft.au=Cheng%2C+Boyang&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=57&rft.issue=8&rft.spage=2545&rft_id=info:doi/10.1109%2FJSSC.2022.3159473&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon |