A 65 nm Wireless Image SoC Supporting On-Chip DNN Optimization and Real-Time Computation-Communication Trade-Off via Actor-Critical Neuro-Controller

The widespread proliferation of smart sensors has led to hardware that enable edge intelligence (EI) with extreme energy efficiencies. This decreases the volume of data that is transmitted to the cloud, thus reducing: 1) processing latency; 2) communication energy; and 3) network congestion. However...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 57; no. 8; pp. 2545 - 2559
Main Authors Cao, Ningyuan, Chatterjee, Baibhab, Liu, Jianbo, Cheng, Boyang, Gong, Minxiang, Chang, Muya, Sen, Shreyas, Raychowdhury, Arijit
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9200
1558-173X
DOI10.1109/JSSC.2022.3159473

Cover

Abstract The widespread proliferation of smart sensors has led to hardware that enable edge intelligence (EI) with extreme energy efficiencies. This decreases the volume of data that is transmitted to the cloud, thus reducing: 1) processing latency; 2) communication energy; and 3) network congestion. However, this comes with an added cost of computation at the edge node. The cost (energy/latency) of edge computation and the cost of communication to the cloud vary widely depending on operating conditions, which include: 1) information content in the data; 2) algorithm selection; 3) channel conditions (noise, path-loss, etc.); 4) network size, available bandwidth; and 5) resources at the cloud. This article presents a 65 nm wireless image processing SoC for real-time computation-communication trade-off on resource-constrained edge devices. The test-chip includes: 1) an all-digital, near-memory, reconfigurable, and programmable neural-network (NN)-based systolic image processor; 2) a digitally adaptive radio-frequency digital-to-analog converter (RF-DAC)-based transceiver; and 3) a mixed-signal, time-based, actor-critic (AC) neuro-controller with compute-in-memory (CIM) and in-place weight updates that provide online learning and adaptation for efficiently controlling the computation, communication blocks separately as well as jointly. The major contributions of the proposed SoC are threefold: 1) a wireless Internet of Things (IoT) SoC architecture enabling a generic computation-communication trade-off scheme; 2) a novel CIM circuit design enabling effective AC control and online learning (0.59 pJ/MAC, 0.4 pJ/update); 3) integration of programmable deep NN (DNN) accelerator (1.05 TOPS/W) and reconfigurable transceiver (184 pJ/b @ -15 dBm) supporting versatile cloud-edge collaborations; and 4) significant system-level energy efficiency improvement (5.7<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>) with real-time on-chip smart control enabled by seamless chip integration and AI-enabled decision-making. Furthermore, this SoC serves as a system-level IoT prototype for next-generation context-aware EI.
AbstractList The widespread proliferation of smart sensors has led to hardware that enable edge intelligence (EI) with extreme energy efficiencies. This decreases the volume of data that is transmitted to the cloud, thus reducing: 1) processing latency; 2) communication energy; and 3) network congestion. However, this comes with an added cost of computation at the edge node. The cost (energy/latency) of edge computation and the cost of communication to the cloud vary widely depending on operating conditions, which include: 1) information content in the data; 2) algorithm selection; 3) channel conditions (noise, path-loss, etc.); 4) network size, available bandwidth; and 5) resources at the cloud. This article presents a 65 nm wireless image processing SoC for real-time computation-communication trade-off on resource-constrained edge devices. The test-chip includes: 1) an all-digital, near-memory, reconfigurable, and programmable neural-network (NN)-based systolic image processor; 2) a digitally adaptive radio-frequency digital-to-analog converter (RF-DAC)-based transceiver; and 3) a mixed-signal, time-based, actor-critic (AC) neuro-controller with compute-in-memory (CIM) and in-place weight updates that provide online learning and adaptation for efficiently controlling the computation, communication blocks separately as well as jointly. The major contributions of the proposed SoC are threefold: 1) a wireless Internet of Things (IoT) SoC architecture enabling a generic computation-communication trade-off scheme; 2) a novel CIM circuit design enabling effective AC control and online learning (0.59 pJ/MAC, 0.4 pJ/update); 3) integration of programmable deep NN (DNN) accelerator (1.05 TOPS/W) and reconfigurable transceiver (184 pJ/b @ –15 dBm) supporting versatile cloud-edge collaborations; and 4) significant system-level energy efficiency improvement (5.7[Formula Omitted]) with real-time on-chip smart control enabled by seamless chip integration and AI-enabled decision-making. Furthermore, this SoC serves as a system-level IoT prototype for next-generation context-aware EI.
The widespread proliferation of smart sensors has led to hardware that enable edge intelligence (EI) with extreme energy efficiencies. This decreases the volume of data that is transmitted to the cloud, thus reducing: 1) processing latency; 2) communication energy; and 3) network congestion. However, this comes with an added cost of computation at the edge node. The cost (energy/latency) of edge computation and the cost of communication to the cloud vary widely depending on operating conditions, which include: 1) information content in the data; 2) algorithm selection; 3) channel conditions (noise, path-loss, etc.); 4) network size, available bandwidth; and 5) resources at the cloud. This article presents a 65 nm wireless image processing SoC for real-time computation-communication trade-off on resource-constrained edge devices. The test-chip includes: 1) an all-digital, near-memory, reconfigurable, and programmable neural-network (NN)-based systolic image processor; 2) a digitally adaptive radio-frequency digital-to-analog converter (RF-DAC)-based transceiver; and 3) a mixed-signal, time-based, actor-critic (AC) neuro-controller with compute-in-memory (CIM) and in-place weight updates that provide online learning and adaptation for efficiently controlling the computation, communication blocks separately as well as jointly. The major contributions of the proposed SoC are threefold: 1) a wireless Internet of Things (IoT) SoC architecture enabling a generic computation-communication trade-off scheme; 2) a novel CIM circuit design enabling effective AC control and online learning (0.59 pJ/MAC, 0.4 pJ/update); 3) integration of programmable deep NN (DNN) accelerator (1.05 TOPS/W) and reconfigurable transceiver (184 pJ/b @ -15 dBm) supporting versatile cloud-edge collaborations; and 4) significant system-level energy efficiency improvement (5.7<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>) with real-time on-chip smart control enabled by seamless chip integration and AI-enabled decision-making. Furthermore, this SoC serves as a system-level IoT prototype for next-generation context-aware EI.
Author Raychowdhury, Arijit
Chatterjee, Baibhab
Cao, Ningyuan
Liu, Jianbo
Chang, Muya
Cheng, Boyang
Sen, Shreyas
Gong, Minxiang
Author_xml – sequence: 1
  givenname: Ningyuan
  orcidid: 0000-0002-5323-1051
  surname: Cao
  fullname: Cao, Ningyuan
  email: ncao@nd.edu
  organization: Department of Electrical Engineering, University of Notre Dame, South Bend, IN, USA
– sequence: 2
  givenname: Baibhab
  orcidid: 0000-0002-2688-281X
  surname: Chatterjee
  fullname: Chatterjee, Baibhab
  email: bchatte@purdue.edu
  organization: Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 3
  givenname: Jianbo
  surname: Liu
  fullname: Liu, Jianbo
  email: jliu32@nd.edu
  organization: Department of Electrical Engineering, University of Notre Dame, South Bend, IN, USA
– sequence: 4
  givenname: Boyang
  orcidid: 0000-0003-1003-4960
  surname: Cheng
  fullname: Cheng, Boyang
  email: bcheng4@nd.edu
  organization: Department of Electrical Engineering, University of Notre Dame, South Bend, IN, USA
– sequence: 5
  givenname: Minxiang
  orcidid: 0000-0002-5426-7697
  surname: Gong
  fullname: Gong, Minxiang
  email: mxgong@gatech.edu
  organization: Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 6
  givenname: Muya
  orcidid: 0000-0002-3035-1106
  surname: Chang
  fullname: Chang, Muya
  email: mchang87@gatech.edu
  organization: Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 7
  givenname: Shreyas
  orcidid: 0000-0001-5566-8946
  surname: Sen
  fullname: Sen, Shreyas
  email: shreyas@purdue.edu
  organization: Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 8
  givenname: Arijit
  orcidid: 0000-0001-8391-0576
  surname: Raychowdhury
  fullname: Raychowdhury, Arijit
  email: arijit.raychowdhury@ece.gatech.edu
  organization: Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
BookMark eNp9kc9q3DAQxkVJoJukD1B6EfSsrf5a1nFxk3RL2IXulvZmtN5xqmBLjiwH0ufIA8cbLznkkNPM8H2_GYbvDJ344AGhz4zOGaPm28_NpphzyvlcMGWkFh_QjCmVE6bF3xM0o5TlxHBKP6Kzvr8bRylzNkNPC5wp7Fv8x0VooO_xsrW3gDehwJuh60JMzt_itSfFP9fh76sVXnfJte6_TS54bP0e_wLbkK1rAReh7Yb0opCxbwfvqsm3jXYPZF3X-MFZvKhSiKSILo16g1cwxDACPsXQNBAv0Gltmx4-Hes5-n11uS1-kJv19bJY3JCKG5EIgGa5Pnxi-Q4yltfW5qbOpNgZYFxwJWkmhKaGGm1rupNgssqYva4yZY0U5-jrtLeL4X6APpV3YYh-PFnyzPCcUanY6NKTq4qh7yPUZeWmH1O0rikZLQ8RlIcIykME5TGCkWRvyC661sbHd5kvE-MA4NVvtBRKSfEMu7SThw
CODEN IJSCBC
CitedBy_id crossref_primary_10_1146_annurev_bioeng_110220_112448
crossref_primary_10_1109_JSSC_2022_3221143
crossref_primary_10_1109_TMTT_2023_3248957
crossref_primary_10_1109_TCAD_2023_3266370
Cites_doi 10.1109/JSSC.2019.2899521
10.1109/CICC48029.2020.9075915
10.1109/TCSI.2012.2191314
10.1109/TCSI.2010.2072410
10.1109/JSSC.2020.3021661
10.1109/JPROC.2017.2761740
10.1109/LMWC.2021.3067912
10.1109/TCSI.2017.2716358
10.23919/DATE.2018.8342102
10.1109/AIPR.2008.4906450
10.1109/JSSC.2019.2941010
10.1109/JSSC.2020.3030264
10.1109/JSSC.2015.2462345
10.1145/2463209.2488802
10.1109/TMTT.2017.2731309
10.1109/VLSICircuits18222.2020.9162878
10.35940/ijeat.d6658.049420
10.1109/ISSCC42613.2021.9365926
10.1145/1391469.1391595
10.1109/TCSI.2016.2608962
10.1109/JSSC.2019.2953831
10.1109/IISWC47752.2019.9042000
10.1109/IAEAC.2017.8054377
10.1109/MDAT.2019.2899334
10.1109/JSSC.2018.2865489
10.1109/MWSYM.2017.8059047
10.1109/JSSC.2012.2185555
10.1109/JSSC.2013.2239001
10.1145/2897937.2905005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSSC.2022.3159473
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-173X
EndPage 2559
ExternalDocumentID 10_1109_JSSC_2022_3159473
9743554
Genre orig-research
GrantInformation_xml – fundername: JUMP CBRIC
  grantid: 2777.006
– fundername: Semiconductor Research Corporation
  grantid: 2720.001
  funderid: 10.13039/100000028
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TAE
TN5
UKR
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-ee71870144a2be618faa89f643b9e1232540633709097af0b4e96c99d7c65a943
IEDL.DBID RIE
ISSN 0018-9200
IngestDate Mon Jun 30 10:15:28 EDT 2025
Wed Oct 01 02:17:28 EDT 2025
Thu Apr 24 22:56:49 EDT 2025
Wed Aug 27 02:25:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ee71870144a2be618faa89f643b9e1232540633709097af0b4e96c99d7c65a943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5426-7697
0000-0001-8391-0576
0000-0002-5323-1051
0000-0002-3035-1106
0000-0003-1003-4960
0000-0002-2688-281X
0000-0001-5566-8946
PQID 2692810451
PQPubID 85482
PageCount 15
ParticipantIDs ieee_primary_9743554
crossref_citationtrail_10_1109_JSSC_2022_3159473
proquest_journals_2692810451
crossref_primary_10_1109_JSSC_2022_3159473
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
Cao (ref5)
ref11
ref33
ref10
ref32
ref2
ref17
ref16
ref19
Amravati (ref1) 2018
ref18
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Iandola (ref7) 2016
ref29
Karnik (ref35)
ref9
ref4
ref3
ref6
Howard (ref8) 2017
Haykin (ref23) 2009
References_xml – ident: ref34
  doi: 10.1109/JSSC.2019.2899521
– ident: ref24
  doi: 10.1109/CICC48029.2020.9075915
– start-page: 222
  volume-title: IEEE ISSCC Dig. Tech. Papers
  ident: ref5
  article-title: 14.1 A 65 nm 1.1-to-9.1TOPS/W hybrid-digital-mixed-signal computing platform for accelerating model-based and model-free swarm robotics
– ident: ref20
  doi: 10.1109/TCSI.2012.2191314
– volume-title: Communication Systems
  year: 2009
  ident: ref23
– ident: ref19
  doi: 10.1109/TCSI.2010.2072410
– ident: ref32
  doi: 10.1109/JSSC.2020.3021661
– ident: ref14
  doi: 10.1109/JPROC.2017.2761740
– ident: ref22
  doi: 10.1109/LMWC.2021.3067912
– ident: ref9
  doi: 10.1109/TCSI.2017.2716358
– ident: ref11
  doi: 10.23919/DATE.2018.8342102
– ident: ref12
  doi: 10.1109/AIPR.2008.4906450
– ident: ref28
  doi: 10.1109/JSSC.2019.2941010
– ident: ref31
  doi: 10.1109/JSSC.2020.3030264
– ident: ref33
  doi: 10.1109/JSSC.2015.2462345
– ident: ref17
  doi: 10.1145/2463209.2488802
– ident: ref25
  doi: 10.1109/TMTT.2017.2731309
– ident: ref4
  doi: 10.1109/VLSICircuits18222.2020.9162878
– ident: ref13
  doi: 10.35940/ijeat.d6658.049420
– ident: ref3
  doi: 10.1109/ISSCC42613.2021.9365926
– ident: ref16
  doi: 10.1145/1391469.1391595
– ident: ref21
  doi: 10.1109/TCSI.2016.2608962
– ident: ref2
  doi: 10.1109/JSSC.2019.2953831
– ident: ref15
  doi: 10.1109/IISWC47752.2019.9042000
– ident: ref29
  doi: 10.1109/IAEAC.2017.8054377
– ident: ref6
  doi: 10.1109/MDAT.2019.2899334
– ident: ref30
  doi: 10.1109/JSSC.2018.2865489
– year: 2016
  ident: ref7
  article-title: SqueezeNet: AlexNet-level accuracy with 50X fewer parameters and 0.5 MB model size
  publication-title: arXiv:1602.07360
– ident: ref10
  doi: 10.1109/MWSYM.2017.8059047
– ident: ref26
  doi: 10.1109/JSSC.2012.2185555
– start-page: 124
  year: 2018
  ident: ref1
  article-title: A 55 nm time-domain mixed-signal neuromorphic accelerator with stochastic synapses and embedded reinforcement learning for autonomous micro-robots
  publication-title: IEEE ISSCC Dig. Tech. Papers
– ident: ref27
  doi: 10.1109/JSSC.2013.2239001
– ident: ref18
  doi: 10.1145/2897937.2905005
– start-page: 46
  volume-title: IEEE ISSCC Dig. Tech. Papers
  ident: ref35
  article-title: A cm-scale self-powered intelligent and secure IoT edge mote featuring an ultra-low-power SoC in 14 nm tri-gate CMOS
– year: 2017
  ident: ref8
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
SSID ssj0014481
Score 2.4284754
Snippet The widespread proliferation of smart sensors has led to hardware that enable edge intelligence (EI) with extreme energy efficiencies. This decreases the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2545
SubjectTerms Algorithms
Artificial neural networks
Circuit design
Cloud computing
Communication
Computing time
Controllers
Costs
Decision making
Digital imaging
Digital to analog converters
Distance learning
Edge computing
Edge intelligence (EI)
edge-cloud trade-off
Handheld computers
Image edge detection
Image processing
Internet of Things
Internet of Things (IoT)
Machine learning
Microprocessors
Network latency
Neural networks
Optimization
Radio frequency
Real time
Reconfiguration
Smart sensors
System on chip
Tradeoffs
Transceivers
Wireless communication
Wireless sensor networks
wireless system-on-chip
Title A 65 nm Wireless Image SoC Supporting On-Chip DNN Optimization and Real-Time Computation-Communication Trade-Off via Actor-Critical Neuro-Controller
URI https://ieeexplore.ieee.org/document/9743554
https://www.proquest.com/docview/2692810451
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-173X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014481
  issn: 0018-9200
  databaseCode: RIE
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbansqBRwtioaA59FThrZ2HHR9XgapU6q7EtlJvkZOM24rdbFV2OfA7-MHMJNkVLQhxixTbsvKNZz5nXkIchuCCwkzLKEtTmdjYSV-mTkY2YwMam8pyNvL52JxeJmdX6dWW-LDJhUHENvgMh_zY-vLrRbXiX2XHxH3ZPG6LbZuZLldr4zGga0bXHU_TASboew-mVu74bDrN6SYYRXRBTV1i4wc2qG2q8ocmbs3LyTNxvt5YF1XydbhalsPqx6Oajf-78-fiac8zYdQJxguxhc2eePJb9cF98XMEJoVmDhwBOyONB5_npF1gusiBm30uuMDANUwamd_c3sHH8RgmpGDmfeYm-KaGL8QzJaeRQNceon0jH2SdAJnDGuUkBPh-62HEXgK57rAAbXEQmXcB8zO8fykuTz5d5Keyb9IgK2IKS4lI1s3y9_dRiUZnwfvMBSI6pUPma0QJTRxb5ZSzPqgyQWcq52pbmdS7JH4ldppFg68FaG18TRKlS18SmiReKqUlMApY1V7pgVBr2Iqqr2DOjTRmRXuTUa5gpAtGuuiRHoijzZS7rnzHvwbvM3KbgT1oA3Gwlo2iP-Dfisi4KNNcnOfN32e9Fbu8dhcreCB2lvcrfEf8ZVm-bwX3F7LU644
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcgAOvAoi0MIcOCE29dretfcYua3S0iQSaaXerLW9WyoSpyoJB34HP5gZ24loQYibJe_aK3-zM996XgDvvTc-cKkUYaqUiJPICFsoI8IkZQMa6TLhbOTRWA_P45MLdbEFHze5MM65JvjM9fmy8eVXi3LFv8r2ifuyebwH91Ucx6rN1tr4DOig0fbHk7SFCfzOhykDs38ynWZ0FgxDOqIqEyfRLSvUtFX5Qxc3BuboCYzWS2vjSr72V8uiX_64U7Xxf9f-FB53TBMHrWg8gy1XP4dHv9Uf3IGfA9QK6zlyDOyMdB4ez0m_4HSRIbf7XHCJgUuc1CL7cnWNB-MxTkjFzLvcTbR1hZ-JaQpOJMG2QURzR9zKO0EyiJUTE-_x-5XFAfsJxLrHAjblQUTWhszP3M0LOD86PMuGomvTIEriCkvhHNm3hL-_DQunZeqtTY0nqlMYx4yNSKGOoiQwgUmsD4rYGV0aUyWlVtbE0UvYrhe1ewUopbYVyZQsbEFokoAFih7hQu_KygayB8EatrzsaphzK41Z3pxlApMz0jkjnXdI9-DDZsp1W8DjX4N3GLnNwA60HuyuZSPvtvi3PNQmTCWX53n991nv4MHwbHSanx6PP72Bh_yeNnJwF7aXNyu3R2xmWbxthPgXLBfu2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+65+nm+Wireless+Image+SoC+Supporting+On-Chip+DNN+Optimization+and+Real-Time+Computation-Communication+Trade-Off+via+Actor-Critical+Neuro-Controller&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Cao%2C+Ningyuan&rft.au=Chatterjee%2C+Baibhab&rft.au=Liu%2C+Jianbo&rft.au=Cheng%2C+Boyang&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9200&rft.eissn=1558-173X&rft.volume=57&rft.issue=8&rft.spage=2545&rft_id=info:doi/10.1109%2FJSSC.2022.3159473&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon