A Comprehensive Survey on Program Synthesis With Evolutionary Algorithms

The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program synthesis techniques not only software developers could be supported in their everyday work but even users without any programming knowledge c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 27; no. 1; pp. 82 - 97
Main Authors Sobania, Dominik, Schweim, Dirk, Rothlauf, Franz
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
DOI10.1109/TEVC.2022.3162324

Cover

Abstract The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program synthesis techniques not only software developers could be supported in their everyday work but even users without any programming knowledge could be empowered to automate repetitive tasks and implement their own new functionality. In recent years, many novel program synthesis approaches based on evolutionary algorithms have been proposed and evaluated on common benchmark problems. Therefore, we identify and discuss in this survey the relevant evolutionary program synthesis approaches in the literature and provide an in-depth analysis of their performance. The most influential approaches we identify are stack-based, grammar-guided, as well as linear genetic programming (GP). For the stack-based approaches, we identify 37 in-scope papers, and for the grammar-guided and linear GP approaches, we identify 12 and 5 papers, respectively. Furthermore, we find that these approaches perform well on benchmark problems if there is a simple mapping from the given input to the correct output. On problems where this mapping is complex, e.g., if the problem consists of several subproblems or requires iteration/recursion for a correct solution, results tend to be worse. Consequently, for future work, we encourage researchers not only to use a program's output for assessing the quality of a solution but also the way toward a solution (e.g., correctly solved subproblems).
AbstractList The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program synthesis techniques not only software developers could be supported in their everyday work but even users without any programming knowledge could be empowered to automate repetitive tasks and implement their own new functionality. In recent years, many novel program synthesis approaches based on evolutionary algorithms have been proposed and evaluated on common benchmark problems. Therefore, we identify and discuss in this survey the relevant evolutionary program synthesis approaches in the literature and provide an in-depth analysis of their performance. The most influential approaches we identify are stack-based, grammar-guided, as well as linear genetic programming (GP). For the stack-based approaches, we identify 37 in-scope papers, and for the grammar-guided and linear GP approaches, we identify 12 and 5 papers, respectively. Furthermore, we find that these approaches perform well on benchmark problems if there is a simple mapping from the given input to the correct output. On problems where this mapping is complex, e.g., if the problem consists of several subproblems or requires iteration/recursion for a correct solution, results tend to be worse. Consequently, for future work, we encourage researchers not only to use a program's output for assessing the quality of a solution but also the way toward a solution (e.g., correctly solved subproblems).
Author Rothlauf, Franz
Schweim, Dirk
Sobania, Dominik
Author_xml – sequence: 1
  givenname: Dominik
  orcidid: 0000-0001-8873-7143
  surname: Sobania
  fullname: Sobania, Dominik
  email: dsobania@uni-mainz.de
  organization: Information Systems Department, Johannes Gutenberg University, Mainz, Germany
– sequence: 2
  givenname: Dirk
  surname: Schweim
  fullname: Schweim, Dirk
  email: dirk.schweim@dhbw-heidenheim.de
  organization: Information Systems Department, Baden-Wuerttemberg Cooperative State University, Heidenheim, Germany
– sequence: 3
  givenname: Franz
  orcidid: 0000-0003-3376-427X
  surname: Rothlauf
  fullname: Rothlauf, Franz
  email: rothlauf@uni-mainz.de
  organization: Information Systems Department, Johannes Gutenberg University, Mainz, Germany
BookMark eNp9kE1Lw0AQhhdRsK3-APES8Jy6s5vsx7GEaoWCQuvHbUmymzYlydbdpNB_b0KLBw-eZhjed-adZ4wuG9sYhO4ATwGwfFzPP5IpwYRMKTBCSXSBRiAjCDEm7LLvsZAh5-LrGo2932EMUQxyhBazILH13pmtaXx5MMGqcwdzDGwTvDm7cWkdrI5NuzW-9MFn2W6D-cFWXVvaJnXHYFZtrOuntb9BV0VaeXN7rhP0_jRfJ4tw-fr8ksyWYU4kbUOTM8ZzSijrM-I0YxBpUWiRg8w0kRnoghYQM8EZFZpqmhERi9gUJtUyB00n6OG0d-_sd2d8q3a2c01_UhHOISYSOPQqflLlznrvTKHysk2H1K1Ly0oBVgM2NWBTAzZ1xtY74Y9z78q6__Vfz_3JUxpjfvWSRzQCTn8Anb56tg
CODEN ITEVF5
CitedBy_id crossref_primary_10_3390_app131810427
crossref_primary_10_1016_j_eswa_2024_124646
crossref_primary_10_1109_TEVC_2023_3318638
crossref_primary_10_1162_evco_a_00346
crossref_primary_10_1007_s12469_024_00354_x
crossref_primary_10_1109_TCE_2024_3438683
crossref_primary_10_3390_math11132979
crossref_primary_10_1109_ACCESS_2024_3393511
crossref_primary_10_1109_LWC_2023_3279699
crossref_primary_10_1145_3715105
crossref_primary_10_1371_journal_pone_0299456
crossref_primary_10_1016_j_scico_2024_103111
crossref_primary_10_3390_app14062542
Cites_doi 10.1145/3319619.3323392
10.1007/978-3-030-04735-1_1
10.1016/j.ipl.2019.105866
10.1145/2736282
10.1145/2464576.2466814
10.1007/978-3-030-72812-0_9
10.1007/978-3-319-99253-2_16
10.7551/mitpress/3242.003.0030
10.1145/3205455.3205592
10.1145/2463372.2463496
10.1109/ICEC.1994.350025
10.1007/s10710-010-9109-y
10.1145/3205651.3208296
10.1109/CEC.2018.8477953
10.1007/978-3-030-44094-7_12
10.1145/3449639.3459285
10.1145/2739480.2754769
10.1145/3377929.3389988
10.1007/978-3-319-30668-1_13
10.1145/3377929.3389919
10.1145/3321707.3321865
10.1007/978-3-319-90512-9_6
10.1145/2908812.2908851
10.1145/3321707.3321787
10.18653/v1/2020.findings-emnlp.139
10.1145/3067695.3082469
10.1007/978-3-319-34223-8_9
10.1162/isal_a_00334
10.1145/3377930.3390239
10.1007/978-3-319-90512-9_7
10.1007/978-3-030-16670-0_5
10.1145/1836089.1836091
10.1145/3377929.3389987
10.1007/BFb0055930
10.18653/v1/2020.emnlp-main.728
10.1162/isal_a_00326
10.1145/3321707.3321828
10.1145/3067695.3082058
10.1007/978-3-642-39799-8_67
10.1145/3321707.3321875
10.1145/3319619.3321892
10.1145/2737924.2738007
10.1007/978-3-319-78133-4_5
10.1023/A:1012926821302
10.1109/CVPR.1994.323778
10.1145/3071178.3071330
10.61366/2576-2176.1084
10.1007/978-3-030-39958-0_13
10.1145/3067695.3082533
10.1145/3205651.3208218
10.1007/978-3-642-10672-9_3
10.1145/2330784.2330846
10.1145/2739482.2768458
10.1145/2739480.2754763
10.1145/3067695.3082468
10.1145/3067695.3076097
10.1109/TEVC.2014.2362729
10.1007/978-3-319-78717-6_3
10.1109/4235.942529
10.1145/3205455.3205603
10.1023/A:1014538503543
10.1145/3449726.3459548
10.1145/1706299.1706337
10.1145/1068009.1068292
10.1145/3319619.3326900
10.1007/s10710-019-09364-2
10.1007/978-3-030-58115-2_3
10.1007/978-3-319-34223-8_11
10.1007/978-3-319-97088-2_6
10.1145/1276958.1277290
10.1007/978-3-319-55696-3_17
10.1007/978-3-030-39958-0_1
10.1007/s10710-020-09377-2
10.1007/s10009-012-0249-7
10.1145/1321631.1321693
10.1007/978-3-319-27565-9
10.1609/aaai.v33i01.33012362
10.1145/2884781.2884786
10.1145/1622176.1622213
10.1145/3377929.3389983
10.1145/3449639.3459305
10.1007/978-3-030-44094-7_14
10.1145/3321707.3321738
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2022.3162324
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 97
ExternalDocumentID 10_1109_TEVC_2022_3162324
9743417
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ec667c32363240ab614d8fd8c19bd29b1df3f15687638d3d3b28585efead9c1d3
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Sun Jun 29 15:17:24 EDT 2025
Wed Oct 01 02:39:37 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Wed Aug 27 02:18:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ec667c32363240ab614d8fd8c19bd29b1df3f15687638d3d3b28585efead9c1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8873-7143
0000-0003-3376-427X
PQID 2771529171
PQPubID 85418
PageCount 16
ParticipantIDs proquest_journals_2771529171
crossref_citationtrail_10_1109_TEVC_2022_3162324
ieee_primary_9743417
crossref_primary_10_1109_TEVC_2022_3162324
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Sobania (ref26) 2021
ref57
ref59
Chen (ref20)
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
Cramer (ref3)
ref45
ref48
ref47
Menon (ref28)
ref41
ref43
ref49
ref7
ref9
ref4
ref100
Spector (ref42) 2004
ref101
Beck (ref105) 2003
ref40
Helmuth (ref56) 2015
Koza (ref44) 1992
ref35
ref34
ref37
ref31
ref30
ref33
Pillay (ref102); 150
Solar-Lezama (ref32) 2018
ref39
Whigham (ref64); 16
Kingma (ref85) 2013
ref38
Mallery (ref107)
ref24
ref23
ref29
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref18
Kurlander (ref36) 1993
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
Spector (ref13) 2002; 3
ref88
ref87
Vaswani (ref21)
Brown (ref22); 33
Yu (ref5) 2001; 2
Chen (ref25) 2021
ref82
ref81
ref84
ref80
ref79
ref78
ref106
ref75
ref104
ref74
ref77
ref76
ref103
ref2
ref1
Lieberman (ref27) 2001
ref71
ref70
Dolson (ref83) 2019
ref72
ref68
ref67
ref69
ref63
ref66
ref65
Bednarek (ref19) 2018
Spector (ref6) 2004
Koza (ref8)
ref60
ref62
ref61
Forstenlechner (ref73) 2019
References_xml – volume-title: arXiv:1312.6114
  year: 2013
  ident: ref85
  article-title: Auto-encoding variational Bayes
– ident: ref43
  doi: 10.1145/3319619.3323392
– ident: ref79
  doi: 10.1007/978-3-030-04735-1_1
– volume-title: Proc. Annu. Meeting Int. Stud. Assoc.
  ident: ref107
  article-title: Thinking about foreign policy: Finding an appropriate role for artificially intelligent computers
– volume-title: arXiv:2107.03374
  year: 2021
  ident: ref25
  article-title: Evaluating large language models trained on code
– start-page: 469
  volume-title: Proc. Evol. Program.
  ident: ref8
  article-title: Evolution of iteration in genetic programming
– ident: ref10
  doi: 10.1016/j.ipl.2019.105866
– ident: ref31
  doi: 10.1145/2736282
– ident: ref63
  doi: 10.1145/2464576.2466814
– ident: ref71
  doi: 10.1007/978-3-030-72812-0_9
– ident: ref12
  doi: 10.1007/978-3-319-99253-2_16
– ident: ref41
  doi: 10.7551/mitpress/3242.003.0030
– ident: ref90
  doi: 10.1145/3205455.3205592
– ident: ref100
  doi: 10.1145/2463372.2463496
– ident: ref39
  doi: 10.1109/ICEC.1994.350025
– ident: ref72
  doi: 10.1007/s10710-010-9109-y
– ident: ref46
  doi: 10.1145/3205651.3208296
– ident: ref70
  doi: 10.1109/CEC.2018.8477953
– ident: ref61
  doi: 10.1007/978-3-030-44094-7_12
– volume: 33
  start-page: 1877
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref22
  article-title: Language models are few-shot learners
– ident: ref17
  doi: 10.1145/3449639.3459285
– ident: ref38
  doi: 10.1145/2739480.2754769
– ident: ref87
  doi: 10.1145/3377929.3389988
– ident: ref65
  doi: 10.1007/978-3-319-30668-1_13
– ident: ref50
  doi: 10.1145/3377929.3389919
– ident: ref2
  doi: 10.1145/3321707.3321865
– ident: ref96
  doi: 10.1007/978-3-319-90512-9_6
– ident: ref55
  doi: 10.1145/2908812.2908851
– ident: ref59
  doi: 10.1145/3321707.3321787
– start-page: 1566
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref20
  article-title: Mapping natural-language problems to formal-language solutions using structured neural representations
– ident: ref23
  doi: 10.18653/v1/2020.findings-emnlp.139
– year: 2019
  ident: ref73
  article-title: Program synthesis with grammars and semantics in genetic programming
– ident: ref104
  doi: 10.1145/3067695.3082469
– volume-title: On the Constructive Power of Ecology in Open-Ended Evolving Systems
  year: 2019
  ident: ref83
– ident: ref54
  doi: 10.1007/978-3-319-34223-8_9
– ident: ref49
  doi: 10.1162/isal_a_00334
– ident: ref62
  doi: 10.1145/3377930.3390239
– ident: ref88
  doi: 10.1007/978-3-319-90512-9_7
– ident: ref98
  doi: 10.1007/978-3-030-16670-0_5
– ident: ref1
  doi: 10.1145/1836089.1836091
– ident: ref60
  doi: 10.1145/3377929.3389987
– ident: ref66
  doi: 10.1007/BFb0055930
– ident: ref24
  doi: 10.18653/v1/2020.emnlp-main.728
– ident: ref51
  doi: 10.1162/isal_a_00326
– ident: ref76
  doi: 10.1145/3321707.3321828
– volume-title: Watch What I Do: Programming by Demonstration
  year: 1993
  ident: ref36
– ident: ref97
  doi: 10.1145/3067695.3082058
– volume-title: Test-Driven Development: By Example
  year: 2003
  ident: ref105
– ident: ref29
  doi: 10.1007/978-3-642-39799-8_67
– ident: ref58
  doi: 10.1145/3321707.3321875
– ident: ref81
  doi: 10.1145/3319619.3321892
– volume-title: arXiv:2111.07875
  year: 2021
  ident: ref26
  article-title: Choose your programming copilot: A comparison of the program synthesis performance of Github Copilot and genetic programming
– ident: ref30
  doi: 10.1145/2737924.2738007
– ident: ref89
  doi: 10.1007/978-3-319-78133-4_5
– volume: 2
  start-page: 345
  issue: 4
  year: 2001
  ident: ref5
  article-title: Hierarchical processing for evolving recursive and modular programs using higher-order functions and lambda abstraction
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1023/A:1012926821302
– ident: ref7
  doi: 10.1109/CVPR.1994.323778
– ident: ref75
  doi: 10.1145/3071178.3071330
– ident: ref99
  doi: 10.61366/2576-2176.1084
– ident: ref47
  doi: 10.1007/978-3-030-39958-0_13
– ident: ref86
  doi: 10.1145/3067695.3082533
– volume-title: Push 3.0 Programming Language Description
  year: 2004
  ident: ref42
– start-page: 187
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref28
  article-title: A machine learning framework for programming by example
– ident: ref93
  doi: 10.1145/3205651.3208218
– ident: ref33
  doi: 10.1007/978-3-642-10672-9_3
– ident: ref53
  doi: 10.1145/2330784.2330846
– year: 2015
  ident: ref56
  article-title: General program synthesis from examples using genetic programming with parent selection based on random lexicographic orderings of test cases
– ident: ref9
  doi: 10.1145/2739482.2768458
– ident: ref94
  doi: 10.1145/2739480.2754763
– ident: ref95
  doi: 10.1145/3067695.3082468
– ident: ref92
  doi: 10.1145/3067695.3076097
– ident: ref14
  doi: 10.1109/TEVC.2014.2362729
– ident: ref68
  doi: 10.1007/978-3-319-78717-6_3
– ident: ref67
  doi: 10.1109/4235.942529
– ident: ref48
  doi: 10.1145/3205455.3205603
– volume: 16
  start-page: 33
  volume-title: Proc. Workshop Genet. Program. Theory Real-World Appl.
  ident: ref64
  article-title: Grammatically-based genetic programming
– volume: 3
  start-page: 7
  issue: 1
  year: 2002
  ident: ref13
  article-title: Genetic programming and autoconstructive evolution with the Push programming language
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1023/A:1014538503543
– ident: ref78
  doi: 10.1145/3449726.3459548
– ident: ref35
  doi: 10.1145/1706299.1706337
– ident: ref40
  doi: 10.1145/1068009.1068292
– ident: ref80
  doi: 10.1145/3319619.3326900
– ident: ref106
  doi: 10.1007/s10710-019-09364-2
– ident: ref84
  doi: 10.1007/978-3-030-58115-2_3
– ident: ref57
  doi: 10.1007/978-3-319-34223-8_11
– volume-title: Your Wish Is My Command: Programming by Example
  year: 2001
  ident: ref27
– volume-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
  year: 1992
  ident: ref44
– volume: 150
  start-page: 66
  volume-title: Proc. ACM Int. Conf. Series
  ident: ref102
  article-title: A genetic programming system for the induction of iterative solution algorithms to novice procedural programming problems
– ident: ref45
  doi: 10.1007/978-3-319-97088-2_6
– ident: ref101
  doi: 10.1145/1276958.1277290
– ident: ref11
  doi: 10.1007/978-3-319-55696-3_17
– ident: ref82
  doi: 10.1007/978-3-030-39958-0_1
– start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref21
  article-title: Attention is all you need
– volume-title: Lecture: Introduction to Program Synthesis
  year: 2018
  ident: ref32
– ident: ref15
  doi: 10.1007/s10710-020-09377-2
– ident: ref34
  doi: 10.1007/s10009-012-0249-7
– ident: ref4
  doi: 10.1145/1321631.1321693
– ident: ref16
  doi: 10.1145/2739480.2754769
– ident: ref52
  doi: 10.1007/978-3-319-27565-9
– ident: ref103
  doi: 10.1609/aaai.v33i01.33012362
– ident: ref18
  doi: 10.1145/2884781.2884786
– volume-title: arXiv:1810.09717
  year: 2018
  ident: ref19
  article-title: Ain’t nobody got time for coding: Structure-aware program synthesis from natural language
– ident: ref37
  doi: 10.1145/1622176.1622213
– ident: ref91
  doi: 10.1145/3377929.3389983
– start-page: 183
  volume-title: Proc. Int. Conf. Genet. Algorithms Appl.
  ident: ref3
  article-title: A representation for the adaptive generation of simple sequential programs
– ident: ref74
  doi: 10.1145/3449639.3459305
– ident: ref69
  doi: 10.1007/978-3-030-44094-7_14
– ident: ref77
  doi: 10.1145/3321707.3321738
– volume-title: Automatic Quantum Computer Programming: A Genetic Programming Approach
  year: 2004
  ident: ref6
SSID ssj0014519
Score 2.5583897
Snippet The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 82
SubjectTerms Benchmark testing
Benchmarks
Codes
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
genetic programming (GP)
Iterative methods
Mapping
Natural languages
program synthesis
Programming
Python
Quality assessment
Software
Software development
Synthesis
Task analysis
Title A Comprehensive Survey on Program Synthesis With Evolutionary Algorithms
URI https://ieeexplore.ieee.org/document/9743417
https://www.proquest.com/docview/2771529171
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60Jz34qIrVKjl4ErdmH93HsUhLERShVXtbNsmsinUr261Qf72T3bT4QrwtSwZCZpL5JjP5BuBEm0mYutySSqDluYmwEvSQFBL6qs1VO0F933F17fdvvctRe7QCZ8u3MIhYFp9hS3-WuXw1kTN9VXZO2JcO3WAVVoPQr95qLTMGmialKqaPCDGGI5PBtHl0PuzeXVAk6DgUoPoaQXzxQWVTlR8nceleeptwtZhYVVXy3JoVoiXfv3E2_nfmW7BhcCbrVIaxDSuY1WFz0cOBmS1dh_VPhIQ70O8wPSTHx6qunQ1m-RvO2SRjN1UhFxvMM8KM06cpu38qHln3zdhuks9ZZ_wwyenvy3QXbnvd4UXfMr0WLEkOv7BQ-n4gXcfV9O08EeS1VZiqUNqRUE4kbJW6KcV6msAuVK5yhaMzipiSJUbSVu4e1LJJhvvAuPQi7qQeIrk-QiNC8bZIE_RTtAOSawBfrH4sDRG57ocxjsuAhEexVlisFRYbhTXgdCnyWrFw_DV4RytgOdCsfQOaCxXHZp9OYycICMBQyGof_C51CGu6wXxVp92EWpHP8IhgSCGOS_v7AM5k2Vg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOAAH3mgL7OIDJ0SK806OFSrqAkVIFOgtiu0JRQspSlOk8usZJ261LCvELYo8kuUZe77xjL8BONRmEmUut6QSaHluKqwUPSSFRIHyufJT1Pcd3augc-ud9_3-HBzP3sIgYlV8hk39WeXy1VCO9VXZCWFfOnTDeVj0Pc_z69das5yBJkqpy-ljwoxR3-QwbR6f9Np3pxQLOg6FqIHGEB-8UNVW5dNZXDmYszXoTqdW15X8aY5L0ZRv_7A2fnfu67BqkCZr1aaxAXOYb8LatIsDM5t6E1b-oiTcgk6L6SEFDurKdnYzLl5xwoY5u65LudjNJCfUOHocsfvHcsDar8Z602LCWk8Pw4L-Po-24fas3TvtWKbbgiXJ5ZcWyiAIpeu4msCdp4L8tooyFUk7FsqJha0yN6NoT1PYRcpVrnB0ThEzssVY2srdgYV8mOMPYFx6MXcyD5GcH-ERobgvshSDDO2Q5BrAp6ufSENFrjtiPCVVSMLjRCss0QpLjMIacDQTeal5OL4avKUVMBto1r4B-1MVJ2anjhInDAnCUNBq7_5f6gCWOr3uZXL5--piD5Z1u_m6ansfFspijD8JlJTiV2WL71k73KU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Survey+on+Program+Synthesis+With+Evolutionary+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Sobania%2C+Dominik&rft.au=Schweim%2C+Dirk&rft.au=Rothlauf%2C+Franz&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=27&rft.issue=1&rft.spage=82&rft.epage=97&rft_id=info:doi/10.1109%2FTEVC.2022.3162324&rft.externalDocID=9743417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon