A Comprehensive Survey on Program Synthesis With Evolutionary Algorithms
The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program synthesis techniques not only software developers could be supported in their everyday work but even users without any programming knowledge c...
Saved in:
| Published in | IEEE transactions on evolutionary computation Vol. 27; no. 1; pp. 82 - 97 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1089-778X 1941-0026 |
| DOI | 10.1109/TEVC.2022.3162324 |
Cover
| Abstract | The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program synthesis techniques not only software developers could be supported in their everyday work but even users without any programming knowledge could be empowered to automate repetitive tasks and implement their own new functionality. In recent years, many novel program synthesis approaches based on evolutionary algorithms have been proposed and evaluated on common benchmark problems. Therefore, we identify and discuss in this survey the relevant evolutionary program synthesis approaches in the literature and provide an in-depth analysis of their performance. The most influential approaches we identify are stack-based, grammar-guided, as well as linear genetic programming (GP). For the stack-based approaches, we identify 37 in-scope papers, and for the grammar-guided and linear GP approaches, we identify 12 and 5 papers, respectively. Furthermore, we find that these approaches perform well on benchmark problems if there is a simple mapping from the given input to the correct output. On problems where this mapping is complex, e.g., if the problem consists of several subproblems or requires iteration/recursion for a correct solution, results tend to be worse. Consequently, for future work, we encourage researchers not only to use a program's output for assessing the quality of a solution but also the way toward a solution (e.g., correctly solved subproblems). |
|---|---|
| AbstractList | The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program synthesis techniques not only software developers could be supported in their everyday work but even users without any programming knowledge could be empowered to automate repetitive tasks and implement their own new functionality. In recent years, many novel program synthesis approaches based on evolutionary algorithms have been proposed and evaluated on common benchmark problems. Therefore, we identify and discuss in this survey the relevant evolutionary program synthesis approaches in the literature and provide an in-depth analysis of their performance. The most influential approaches we identify are stack-based, grammar-guided, as well as linear genetic programming (GP). For the stack-based approaches, we identify 37 in-scope papers, and for the grammar-guided and linear GP approaches, we identify 12 and 5 papers, respectively. Furthermore, we find that these approaches perform well on benchmark problems if there is a simple mapping from the given input to the correct output. On problems where this mapping is complex, e.g., if the problem consists of several subproblems or requires iteration/recursion for a correct solution, results tend to be worse. Consequently, for future work, we encourage researchers not only to use a program's output for assessing the quality of a solution but also the way toward a solution (e.g., correctly solved subproblems). |
| Author | Rothlauf, Franz Schweim, Dirk Sobania, Dominik |
| Author_xml | – sequence: 1 givenname: Dominik orcidid: 0000-0001-8873-7143 surname: Sobania fullname: Sobania, Dominik email: dsobania@uni-mainz.de organization: Information Systems Department, Johannes Gutenberg University, Mainz, Germany – sequence: 2 givenname: Dirk surname: Schweim fullname: Schweim, Dirk email: dirk.schweim@dhbw-heidenheim.de organization: Information Systems Department, Baden-Wuerttemberg Cooperative State University, Heidenheim, Germany – sequence: 3 givenname: Franz orcidid: 0000-0003-3376-427X surname: Rothlauf fullname: Rothlauf, Franz email: rothlauf@uni-mainz.de organization: Information Systems Department, Johannes Gutenberg University, Mainz, Germany |
| BookMark | eNp9kE1Lw0AQhhdRsK3-APES8Jy6s5vsx7GEaoWCQuvHbUmymzYlydbdpNB_b0KLBw-eZhjed-adZ4wuG9sYhO4ATwGwfFzPP5IpwYRMKTBCSXSBRiAjCDEm7LLvsZAh5-LrGo2932EMUQxyhBazILH13pmtaXx5MMGqcwdzDGwTvDm7cWkdrI5NuzW-9MFn2W6D-cFWXVvaJnXHYFZtrOuntb9BV0VaeXN7rhP0_jRfJ4tw-fr8ksyWYU4kbUOTM8ZzSijrM-I0YxBpUWiRg8w0kRnoghYQM8EZFZpqmhERi9gUJtUyB00n6OG0d-_sd2d8q3a2c01_UhHOISYSOPQqflLlznrvTKHysk2H1K1Ly0oBVgM2NWBTAzZ1xtY74Y9z78q6__Vfz_3JUxpjfvWSRzQCTn8Anb56tg |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_3390_app131810427 crossref_primary_10_1016_j_eswa_2024_124646 crossref_primary_10_1109_TEVC_2023_3318638 crossref_primary_10_1162_evco_a_00346 crossref_primary_10_1007_s12469_024_00354_x crossref_primary_10_1109_TCE_2024_3438683 crossref_primary_10_3390_math11132979 crossref_primary_10_1109_ACCESS_2024_3393511 crossref_primary_10_1109_LWC_2023_3279699 crossref_primary_10_1145_3715105 crossref_primary_10_1371_journal_pone_0299456 crossref_primary_10_1016_j_scico_2024_103111 crossref_primary_10_3390_app14062542 |
| Cites_doi | 10.1145/3319619.3323392 10.1007/978-3-030-04735-1_1 10.1016/j.ipl.2019.105866 10.1145/2736282 10.1145/2464576.2466814 10.1007/978-3-030-72812-0_9 10.1007/978-3-319-99253-2_16 10.7551/mitpress/3242.003.0030 10.1145/3205455.3205592 10.1145/2463372.2463496 10.1109/ICEC.1994.350025 10.1007/s10710-010-9109-y 10.1145/3205651.3208296 10.1109/CEC.2018.8477953 10.1007/978-3-030-44094-7_12 10.1145/3449639.3459285 10.1145/2739480.2754769 10.1145/3377929.3389988 10.1007/978-3-319-30668-1_13 10.1145/3377929.3389919 10.1145/3321707.3321865 10.1007/978-3-319-90512-9_6 10.1145/2908812.2908851 10.1145/3321707.3321787 10.18653/v1/2020.findings-emnlp.139 10.1145/3067695.3082469 10.1007/978-3-319-34223-8_9 10.1162/isal_a_00334 10.1145/3377930.3390239 10.1007/978-3-319-90512-9_7 10.1007/978-3-030-16670-0_5 10.1145/1836089.1836091 10.1145/3377929.3389987 10.1007/BFb0055930 10.18653/v1/2020.emnlp-main.728 10.1162/isal_a_00326 10.1145/3321707.3321828 10.1145/3067695.3082058 10.1007/978-3-642-39799-8_67 10.1145/3321707.3321875 10.1145/3319619.3321892 10.1145/2737924.2738007 10.1007/978-3-319-78133-4_5 10.1023/A:1012926821302 10.1109/CVPR.1994.323778 10.1145/3071178.3071330 10.61366/2576-2176.1084 10.1007/978-3-030-39958-0_13 10.1145/3067695.3082533 10.1145/3205651.3208218 10.1007/978-3-642-10672-9_3 10.1145/2330784.2330846 10.1145/2739482.2768458 10.1145/2739480.2754763 10.1145/3067695.3082468 10.1145/3067695.3076097 10.1109/TEVC.2014.2362729 10.1007/978-3-319-78717-6_3 10.1109/4235.942529 10.1145/3205455.3205603 10.1023/A:1014538503543 10.1145/3449726.3459548 10.1145/1706299.1706337 10.1145/1068009.1068292 10.1145/3319619.3326900 10.1007/s10710-019-09364-2 10.1007/978-3-030-58115-2_3 10.1007/978-3-319-34223-8_11 10.1007/978-3-319-97088-2_6 10.1145/1276958.1277290 10.1007/978-3-319-55696-3_17 10.1007/978-3-030-39958-0_1 10.1007/s10710-020-09377-2 10.1007/s10009-012-0249-7 10.1145/1321631.1321693 10.1007/978-3-319-27565-9 10.1609/aaai.v33i01.33012362 10.1145/2884781.2884786 10.1145/1622176.1622213 10.1145/3377929.3389983 10.1145/3449639.3459305 10.1007/978-3-030-44094-7_14 10.1145/3321707.3321738 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2022.3162324 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 97 |
| ExternalDocumentID | 10_1109_TEVC_2022_3162324 9743417 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-ec667c32363240ab614d8fd8c19bd29b1df3f15687638d3d3b28585efead9c1d3 |
| IEDL.DBID | RIE |
| ISSN | 1089-778X |
| IngestDate | Sun Jun 29 15:17:24 EDT 2025 Wed Oct 01 02:39:37 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Wed Aug 27 02:18:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-ec667c32363240ab614d8fd8c19bd29b1df3f15687638d3d3b28585efead9c1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8873-7143 0000-0003-3376-427X |
| PQID | 2771529171 |
| PQPubID | 85418 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2771529171 crossref_citationtrail_10_1109_TEVC_2022_3162324 ieee_primary_9743417 crossref_primary_10_1109_TEVC_2022_3162324 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Sobania (ref26) 2021 ref57 ref59 Chen (ref20) ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 Cramer (ref3) ref45 ref48 ref47 Menon (ref28) ref41 ref43 ref49 ref7 ref9 ref4 ref100 Spector (ref42) 2004 ref101 Beck (ref105) 2003 ref40 Helmuth (ref56) 2015 Koza (ref44) 1992 ref35 ref34 ref37 ref31 ref30 ref33 Pillay (ref102); 150 Solar-Lezama (ref32) 2018 ref39 Whigham (ref64); 16 Kingma (ref85) 2013 ref38 Mallery (ref107) ref24 ref23 ref29 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref18 Kurlander (ref36) 1993 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 Spector (ref13) 2002; 3 ref88 ref87 Vaswani (ref21) Brown (ref22); 33 Yu (ref5) 2001; 2 Chen (ref25) 2021 ref82 ref81 ref84 ref80 ref79 ref78 ref106 ref75 ref104 ref74 ref77 ref76 ref103 ref2 ref1 Lieberman (ref27) 2001 ref71 ref70 Dolson (ref83) 2019 ref72 ref68 ref67 ref69 ref63 ref66 ref65 Bednarek (ref19) 2018 Spector (ref6) 2004 Koza (ref8) ref60 ref62 ref61 Forstenlechner (ref73) 2019 |
| References_xml | – volume-title: arXiv:1312.6114 year: 2013 ident: ref85 article-title: Auto-encoding variational Bayes – ident: ref43 doi: 10.1145/3319619.3323392 – ident: ref79 doi: 10.1007/978-3-030-04735-1_1 – volume-title: Proc. Annu. Meeting Int. Stud. Assoc. ident: ref107 article-title: Thinking about foreign policy: Finding an appropriate role for artificially intelligent computers – volume-title: arXiv:2107.03374 year: 2021 ident: ref25 article-title: Evaluating large language models trained on code – start-page: 469 volume-title: Proc. Evol. Program. ident: ref8 article-title: Evolution of iteration in genetic programming – ident: ref10 doi: 10.1016/j.ipl.2019.105866 – ident: ref31 doi: 10.1145/2736282 – ident: ref63 doi: 10.1145/2464576.2466814 – ident: ref71 doi: 10.1007/978-3-030-72812-0_9 – ident: ref12 doi: 10.1007/978-3-319-99253-2_16 – ident: ref41 doi: 10.7551/mitpress/3242.003.0030 – ident: ref90 doi: 10.1145/3205455.3205592 – ident: ref100 doi: 10.1145/2463372.2463496 – ident: ref39 doi: 10.1109/ICEC.1994.350025 – ident: ref72 doi: 10.1007/s10710-010-9109-y – ident: ref46 doi: 10.1145/3205651.3208296 – ident: ref70 doi: 10.1109/CEC.2018.8477953 – ident: ref61 doi: 10.1007/978-3-030-44094-7_12 – volume: 33 start-page: 1877 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref22 article-title: Language models are few-shot learners – ident: ref17 doi: 10.1145/3449639.3459285 – ident: ref38 doi: 10.1145/2739480.2754769 – ident: ref87 doi: 10.1145/3377929.3389988 – ident: ref65 doi: 10.1007/978-3-319-30668-1_13 – ident: ref50 doi: 10.1145/3377929.3389919 – ident: ref2 doi: 10.1145/3321707.3321865 – ident: ref96 doi: 10.1007/978-3-319-90512-9_6 – ident: ref55 doi: 10.1145/2908812.2908851 – ident: ref59 doi: 10.1145/3321707.3321787 – start-page: 1566 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref20 article-title: Mapping natural-language problems to formal-language solutions using structured neural representations – ident: ref23 doi: 10.18653/v1/2020.findings-emnlp.139 – year: 2019 ident: ref73 article-title: Program synthesis with grammars and semantics in genetic programming – ident: ref104 doi: 10.1145/3067695.3082469 – volume-title: On the Constructive Power of Ecology in Open-Ended Evolving Systems year: 2019 ident: ref83 – ident: ref54 doi: 10.1007/978-3-319-34223-8_9 – ident: ref49 doi: 10.1162/isal_a_00334 – ident: ref62 doi: 10.1145/3377930.3390239 – ident: ref88 doi: 10.1007/978-3-319-90512-9_7 – ident: ref98 doi: 10.1007/978-3-030-16670-0_5 – ident: ref1 doi: 10.1145/1836089.1836091 – ident: ref60 doi: 10.1145/3377929.3389987 – ident: ref66 doi: 10.1007/BFb0055930 – ident: ref24 doi: 10.18653/v1/2020.emnlp-main.728 – ident: ref51 doi: 10.1162/isal_a_00326 – ident: ref76 doi: 10.1145/3321707.3321828 – volume-title: Watch What I Do: Programming by Demonstration year: 1993 ident: ref36 – ident: ref97 doi: 10.1145/3067695.3082058 – volume-title: Test-Driven Development: By Example year: 2003 ident: ref105 – ident: ref29 doi: 10.1007/978-3-642-39799-8_67 – ident: ref58 doi: 10.1145/3321707.3321875 – ident: ref81 doi: 10.1145/3319619.3321892 – volume-title: arXiv:2111.07875 year: 2021 ident: ref26 article-title: Choose your programming copilot: A comparison of the program synthesis performance of Github Copilot and genetic programming – ident: ref30 doi: 10.1145/2737924.2738007 – ident: ref89 doi: 10.1007/978-3-319-78133-4_5 – volume: 2 start-page: 345 issue: 4 year: 2001 ident: ref5 article-title: Hierarchical processing for evolving recursive and modular programs using higher-order functions and lambda abstraction publication-title: Genet. Program. Evol. Mach. doi: 10.1023/A:1012926821302 – ident: ref7 doi: 10.1109/CVPR.1994.323778 – ident: ref75 doi: 10.1145/3071178.3071330 – ident: ref99 doi: 10.61366/2576-2176.1084 – ident: ref47 doi: 10.1007/978-3-030-39958-0_13 – ident: ref86 doi: 10.1145/3067695.3082533 – volume-title: Push 3.0 Programming Language Description year: 2004 ident: ref42 – start-page: 187 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref28 article-title: A machine learning framework for programming by example – ident: ref93 doi: 10.1145/3205651.3208218 – ident: ref33 doi: 10.1007/978-3-642-10672-9_3 – ident: ref53 doi: 10.1145/2330784.2330846 – year: 2015 ident: ref56 article-title: General program synthesis from examples using genetic programming with parent selection based on random lexicographic orderings of test cases – ident: ref9 doi: 10.1145/2739482.2768458 – ident: ref94 doi: 10.1145/2739480.2754763 – ident: ref95 doi: 10.1145/3067695.3082468 – ident: ref92 doi: 10.1145/3067695.3076097 – ident: ref14 doi: 10.1109/TEVC.2014.2362729 – ident: ref68 doi: 10.1007/978-3-319-78717-6_3 – ident: ref67 doi: 10.1109/4235.942529 – ident: ref48 doi: 10.1145/3205455.3205603 – volume: 16 start-page: 33 volume-title: Proc. Workshop Genet. Program. Theory Real-World Appl. ident: ref64 article-title: Grammatically-based genetic programming – volume: 3 start-page: 7 issue: 1 year: 2002 ident: ref13 article-title: Genetic programming and autoconstructive evolution with the Push programming language publication-title: Genet. Program. Evol. Mach. doi: 10.1023/A:1014538503543 – ident: ref78 doi: 10.1145/3449726.3459548 – ident: ref35 doi: 10.1145/1706299.1706337 – ident: ref40 doi: 10.1145/1068009.1068292 – ident: ref80 doi: 10.1145/3319619.3326900 – ident: ref106 doi: 10.1007/s10710-019-09364-2 – ident: ref84 doi: 10.1007/978-3-030-58115-2_3 – ident: ref57 doi: 10.1007/978-3-319-34223-8_11 – volume-title: Your Wish Is My Command: Programming by Example year: 2001 ident: ref27 – volume-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection year: 1992 ident: ref44 – volume: 150 start-page: 66 volume-title: Proc. ACM Int. Conf. Series ident: ref102 article-title: A genetic programming system for the induction of iterative solution algorithms to novice procedural programming problems – ident: ref45 doi: 10.1007/978-3-319-97088-2_6 – ident: ref101 doi: 10.1145/1276958.1277290 – ident: ref11 doi: 10.1007/978-3-319-55696-3_17 – ident: ref82 doi: 10.1007/978-3-030-39958-0_1 – start-page: 5998 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref21 article-title: Attention is all you need – volume-title: Lecture: Introduction to Program Synthesis year: 2018 ident: ref32 – ident: ref15 doi: 10.1007/s10710-020-09377-2 – ident: ref34 doi: 10.1007/s10009-012-0249-7 – ident: ref4 doi: 10.1145/1321631.1321693 – ident: ref16 doi: 10.1145/2739480.2754769 – ident: ref52 doi: 10.1007/978-3-319-27565-9 – ident: ref103 doi: 10.1609/aaai.v33i01.33012362 – ident: ref18 doi: 10.1145/2884781.2884786 – volume-title: arXiv:1810.09717 year: 2018 ident: ref19 article-title: Ain’t nobody got time for coding: Structure-aware program synthesis from natural language – ident: ref37 doi: 10.1145/1622176.1622213 – ident: ref91 doi: 10.1145/3377929.3389983 – start-page: 183 volume-title: Proc. Int. Conf. Genet. Algorithms Appl. ident: ref3 article-title: A representation for the adaptive generation of simple sequential programs – ident: ref74 doi: 10.1145/3449639.3459305 – ident: ref69 doi: 10.1007/978-3-030-44094-7_14 – ident: ref77 doi: 10.1145/3321707.3321738 – volume-title: Automatic Quantum Computer Programming: A Genetic Programming Approach year: 2004 ident: ref6 |
| SSID | ssj0014519 |
| Score | 2.5583897 |
| Snippet | The automatic generation of computer programs is one of the main applications with practical relevance in the field of evolutionary computation. With program... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 82 |
| SubjectTerms | Benchmark testing Benchmarks Codes Evolutionary algorithms Evolutionary computation Genetic algorithms genetic programming (GP) Iterative methods Mapping Natural languages program synthesis Programming Python Quality assessment Software Software development Synthesis Task analysis |
| Title | A Comprehensive Survey on Program Synthesis With Evolutionary Algorithms |
| URI | https://ieeexplore.ieee.org/document/9743417 https://www.proquest.com/docview/2771529171 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60Jz34qIrVKjl4ErdmH93HsUhLERShVXtbNsmsinUr261Qf72T3bT4QrwtSwZCZpL5JjP5BuBEm0mYutySSqDluYmwEvSQFBL6qs1VO0F933F17fdvvctRe7QCZ8u3MIhYFp9hS3-WuXw1kTN9VXZO2JcO3WAVVoPQr95qLTMGmialKqaPCDGGI5PBtHl0PuzeXVAk6DgUoPoaQXzxQWVTlR8nceleeptwtZhYVVXy3JoVoiXfv3E2_nfmW7BhcCbrVIaxDSuY1WFz0cOBmS1dh_VPhIQ70O8wPSTHx6qunQ1m-RvO2SRjN1UhFxvMM8KM06cpu38qHln3zdhuks9ZZ_wwyenvy3QXbnvd4UXfMr0WLEkOv7BQ-n4gXcfV9O08EeS1VZiqUNqRUE4kbJW6KcV6msAuVK5yhaMzipiSJUbSVu4e1LJJhvvAuPQi7qQeIrk-QiNC8bZIE_RTtAOSawBfrH4sDRG57ocxjsuAhEexVlisFRYbhTXgdCnyWrFw_DV4RytgOdCsfQOaCxXHZp9OYycICMBQyGof_C51CGu6wXxVp92EWpHP8IhgSCGOS_v7AM5k2Vg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOAAH3mgL7OIDJ0SK806OFSrqAkVIFOgtiu0JRQspSlOk8usZJ261LCvELYo8kuUZe77xjL8BONRmEmUut6QSaHluKqwUPSSFRIHyufJT1Pcd3augc-ud9_3-HBzP3sIgYlV8hk39WeXy1VCO9VXZCWFfOnTDeVj0Pc_z69das5yBJkqpy-ljwoxR3-QwbR6f9Np3pxQLOg6FqIHGEB-8UNVW5dNZXDmYszXoTqdW15X8aY5L0ZRv_7A2fnfu67BqkCZr1aaxAXOYb8LatIsDM5t6E1b-oiTcgk6L6SEFDurKdnYzLl5xwoY5u65LudjNJCfUOHocsfvHcsDar8Z602LCWk8Pw4L-Po-24fas3TvtWKbbgiXJ5ZcWyiAIpeu4msCdp4L8tooyFUk7FsqJha0yN6NoT1PYRcpVrnB0ThEzssVY2srdgYV8mOMPYFx6MXcyD5GcH-ERobgvshSDDO2Q5BrAp6ufSENFrjtiPCVVSMLjRCss0QpLjMIacDQTeal5OL4avKUVMBto1r4B-1MVJ2anjhInDAnCUNBq7_5f6gCWOr3uZXL5--piD5Z1u_m6ansfFspijD8JlJTiV2WL71k73KU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Survey+on+Program+Synthesis+With+Evolutionary+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Sobania%2C+Dominik&rft.au=Schweim%2C+Dirk&rft.au=Rothlauf%2C+Franz&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=27&rft.issue=1&rft.spage=82&rft.epage=97&rft_id=info:doi/10.1109%2FTEVC.2022.3162324&rft.externalDocID=9743417 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |