Delay-Constrained Buffer-Aided Relay Selection in the Internet of Things With Decision-Assisted Reinforcement Learning

This article investigates the reinforcement learning for the relay selection in the delay-constrained buffer-aided networks. The buffer-aided relay selection significantly improves the outage performance but often at the price of higher latency. On the other hand, modern communication systems such a...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 8; no. 12; pp. 10198 - 10208
Main Authors Huang, Chong, Chen, Gaojie, Gong, Yu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2021.3051239

Cover

Abstract This article investigates the reinforcement learning for the relay selection in the delay-constrained buffer-aided networks. The buffer-aided relay selection significantly improves the outage performance but often at the price of higher latency. On the other hand, modern communication systems such as the Internet of Things often have strict requirement on latency. It is thus necessary to find relay selection policies to achieve good throughput performance in the buffer-aided relay network while stratifying the delay constraint. With the buffers employed at the relays and delay constraints imposed on the data transmission, obtaining the best relay selection becomes a complicated high-dimensional problem, making it hard for the reinforcement learning to converge. In this article, we propose the novel decision-assisted deep reinforcement learning to improve the convergence. This is achieved by exploring the a priori information from the buffer-aided relay system. The proposed approaches can achieve high throughput subject to delay constraints. Extensive simulation results are provided to verify the proposed algorithms.
AbstractList This article investigates the reinforcement learning for the relay selection in the delay-constrained buffer-aided networks. The buffer-aided relay selection significantly improves the outage performance but often at the price of higher latency. On the other hand, modern communication systems such as the Internet of Things often have strict requirement on latency. It is thus necessary to find relay selection policies to achieve good throughput performance in the buffer-aided relay network while stratifying the delay constraint. With the buffers employed at the relays and delay constraints imposed on the data transmission, obtaining the best relay selection becomes a complicated high-dimensional problem, making it hard for the reinforcement learning to converge. In this article, we propose the novel decision-assisted deep reinforcement learning to improve the convergence. This is achieved by exploring the a priori information from the buffer-aided relay system. The proposed approaches can achieve high throughput subject to delay constraints. Extensive simulation results are provided to verify the proposed algorithms.
Author Chen, Gaojie
Huang, Chong
Gong, Yu
Author_xml – sequence: 1
  givenname: Chong
  orcidid: 0000-0002-0392-9398
  surname: Huang
  fullname: Huang, Chong
  email: ch481@leicester.ac.uk
  organization: School of Engineering, University of Leicester, Leicester, U.K
– sequence: 2
  givenname: Gaojie
  orcidid: 0000-0003-2978-0365
  surname: Chen
  fullname: Chen, Gaojie
  email: gaojie.chen@leicester.ac.uk
  organization: School of Engineering, University of Leicester, Leicester, U.K
– sequence: 3
  givenname: Yu
  orcidid: 0000-0002-3985-8691
  surname: Gong
  fullname: Gong, Yu
  email: y.gong@lboro.ac.uk
  organization: Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, U.K
BookMark eNp9kE1LAzEQhoNUsNb-APES8Lw1H92PHGvrR6VQ0IrHJZud2JQ2W5NU6L83a4uIB08zQ553hjznqGMbCwhdUjKglIibp-l8MWCE0QEnKWVcnKAu4yxPhlnGOr_6M9T3fkUIibGUiqyLPiewlvtk3FgfnDQWany70xpcMjJ1HJ7bZ_wCa1DBNBYbi8MS8NQGcBYCbjReLI199_jNhCWegDI-csnIe-PD9wJjdeMUbMAGPAPpbMQv0KmWaw_9Y-2h1_u7xfgxmc0fpuPRLFFM8JCAAFWBKFRR5VDHoaC0yqSiBDStZC1EQQXjWrIsF3zIhWQkq4XmTBQZaMl76Pqwd-uajx34UK6anbPxZMlSnhU5EYRGKj9QyjXeO9ClMkG2_22drEtKytZz2XouW8_l0XNM0j_JrTMb6fb_Zq4OGQMAP7zgjA7TlH8BoUeL0g
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_MWC_013_2300261
crossref_primary_10_1109_TIFS_2021_3103062
crossref_primary_10_1016_j_phycom_2023_102086
crossref_primary_10_1109_TWC_2022_3199746
crossref_primary_10_1109_TWC_2022_3217165
crossref_primary_10_1109_LWC_2023_3323775
crossref_primary_10_1109_ACCESS_2023_3275567
crossref_primary_10_1109_JIOT_2022_3160717
crossref_primary_10_1109_JIOT_2023_3347279
crossref_primary_10_3390_s23104822
crossref_primary_10_3390_s24154881
crossref_primary_10_1007_s11227_023_05575_8
crossref_primary_10_1109_JSAC_2024_3365899
crossref_primary_10_1007_s12083_023_01589_4
crossref_primary_10_1109_LWC_2024_3411697
crossref_primary_10_1016_j_compeleceng_2025_110068
crossref_primary_10_1186_s13638_022_02127_1
crossref_primary_10_3390_s24248036
Cites_doi 10.1109/JIOT.2017.2759728
10.1109/TWC.2019.2919825
10.1109/TWC.2018.2850016
10.1109/ACCESS.2020.2965742
10.1109/TWC.2012.011012.110682
10.1049/iet-com.2016.1046
10.1109/TVT.2015.2507360
10.1038/nature14236
10.1109/TVT.2014.2311301
10.1109/ACCESS.2017.2779844
10.1109/GLOCOM.2014.7036839
10.1109/JIOT.2017.2734815
10.1109/JIOT.2019.2905169
10.1109/TVT.2014.2324761
10.1109/JIOT.2018.2847731
10.1109/JSEN.2019.2925719
10.1109/TVT.2015.2497198
10.1109/TVT.2017.2751582
10.1109/TCOMM.2016.2607746
10.1007/978-3-642-27645-3_2
10.1109/GLOCOM.2011.6133900
10.1109/TIFS.2014.2307672
10.1109/TCE.2009.5174415
10.1109/COMST.2019.2904897
10.1109/TWC.2012.032712.111970
10.1109/TVT.2015.2418535
10.1109/MCOM.2011.5762799
10.1109/TWC.2013.050313.120186
10.1109/MCOM.2014.6807959
10.1109/ACCESS.2018.2883894
10.1109/WCNC45663.2020.9120470
10.1109/JSAC.2005.862417
10.1109/TVT.2016.2573378
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2021.3051239
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 10208
ExternalDocumentID 10_1109_JIOT_2021_3051239
9321455
Genre orig-research
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/R006377/1 (“M3NET”)
  funderid: 10.13039/501100000266
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-e9ecbe98c8b7ed9ec811b6ac10ef1bad9981923fa26793439a206d9f32986efa3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 12:41:02 EDT 2025
Thu Apr 24 22:50:37 EDT 2025
Wed Oct 01 04:45:34 EDT 2025
Wed Aug 27 02:29:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e9ecbe98c8b7ed9ec811b6ac10ef1bad9981923fa26793439a206d9f32986efa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3985-8691
0000-0002-0392-9398
0000-0003-2978-0365
PQID 2536870901
PQPubID 2040421
PageCount 11
ParticipantIDs ieee_primary_9321455
proquest_journals_2536870901
crossref_citationtrail_10_1109_JIOT_2021_3051239
crossref_primary_10_1109_JIOT_2021_3051239
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
goodfellow (ref39) 2016
ref31
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
mnih (ref36) 2013
ref28
ref27
kingma (ref38) 2014
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
mnih (ref33) 2016
sutton (ref30) 2011
References_xml – ident: ref19
  doi: 10.1109/JIOT.2017.2759728
– ident: ref26
  doi: 10.1109/TWC.2019.2919825
– year: 2011
  ident: ref30
  publication-title: Reinforcement Learning An Introduction
– year: 2016
  ident: ref39
  publication-title: Deep Learning
– year: 2013
  ident: ref36
  publication-title: Playing atari with deep reinforcement learning
– ident: ref23
  doi: 10.1109/TWC.2018.2850016
– ident: ref35
  doi: 10.1109/ACCESS.2020.2965742
– ident: ref12
  doi: 10.1109/TWC.2012.011012.110682
– ident: ref31
  doi: 10.1049/iet-com.2016.1046
– ident: ref24
  doi: 10.1109/TVT.2015.2507360
– ident: ref32
  doi: 10.1038/nature14236
– ident: ref17
  doi: 10.1109/TVT.2014.2311301
– ident: ref4
  doi: 10.1109/ACCESS.2017.2779844
– ident: ref27
  doi: 10.1109/GLOCOM.2014.7036839
– ident: ref2
  doi: 10.1109/JIOT.2017.2734815
– ident: ref16
  doi: 10.1109/JIOT.2019.2905169
– ident: ref14
  doi: 10.1109/TVT.2014.2324761
– ident: ref1
  doi: 10.1109/JIOT.2018.2847731
– ident: ref28
  doi: 10.1109/JSEN.2019.2925719
– ident: ref21
  doi: 10.1109/TVT.2015.2497198
– ident: ref15
  doi: 10.1109/TVT.2017.2751582
– ident: ref3
  doi: 10.1109/JIOT.2018.2847731
– ident: ref20
  doi: 10.1109/TCOMM.2016.2607746
– ident: ref37
  doi: 10.1007/978-3-642-27645-3_2
– ident: ref10
  doi: 10.1109/GLOCOM.2011.6133900
– ident: ref18
  doi: 10.1109/TIFS.2014.2307672
– ident: ref8
  doi: 10.1109/TCE.2009.5174415
– ident: ref29
  doi: 10.1109/COMST.2019.2904897
– ident: ref13
  doi: 10.1109/TWC.2012.032712.111970
– year: 2014
  ident: ref38
  publication-title: Adam A method for stochastic optimization
– ident: ref6
  doi: 10.1109/TVT.2015.2418535
– ident: ref5
  doi: 10.1109/MCOM.2011.5762799
– ident: ref9
  doi: 10.1109/TWC.2013.050313.120186
– ident: ref11
  doi: 10.1109/MCOM.2014.6807959
– ident: ref25
  doi: 10.1109/ACCESS.2018.2883894
– start-page: 1928
  year: 2016
  ident: ref33
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref34
  doi: 10.1109/WCNC45663.2020.9120470
– ident: ref7
  doi: 10.1109/JSAC.2005.862417
– ident: ref22
  doi: 10.1109/TVT.2016.2573378
SSID ssj0001105196
Score 2.3499959
Snippet This article investigates the reinforcement learning for the relay selection in the delay-constrained buffer-aided networks. The buffer-aided relay selection...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10198
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Q -learning
Algorithms
Buffer-aided relay selection
Buffers
Communications systems
Constraints
Convergence
Data models
Data transmission
deep reinforcement learning
Delay
delay constrained
Delays
Internet of Things
Learning
Network latency
Reinforcement learning
Relay networks
Relay networks (telecommunication)
Relay systems
Sarsa learning
Service introduction
Throughput
Title Delay-Constrained Buffer-Aided Relay Selection in the Internet of Things With Decision-Assisted Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9321455
https://www.proquest.com/docview/2536870901
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH7YnrxYV6wbOXgS086amRzrRhXUgxZ7G7JqsUxFp4L-epNMWnFBvE0gCWG-l-TLy8v7APZzRrimWYpFxglOtNaYJ4LgWDKiA0nTzGksXV6R_iC5GKbDBTicv4VRSrngM9Wxn-4uX07E1LrKujR2ebUb0MhyUr_V-vSnhJaMEH9xGQa0e3F-fWsOgFHYMTZtFmj6ZetxWio_FmC3q5y14HI2njqY5LEzrXhHvH9L1fjfAS_DkqeXqFfbwwosqHIVWjPpBuRn8hq8nqgxe8NWrtOJRCiJjqZWKgX3RtIUbIzcG7pxIjkGOTQqkWGKqPYfqgpNNKoVP9HdqHpAJ16pBxu0rd3YDlxKVuG8j8hncb1fh8HZ6e1xH3sJBiwMD6iwokpwRXOR80xJU8jDkBMmwkDpkDNpDmuWImoWETPRDblhUUAk1XFEc6I0izegWU5KtQnIMEHGYk4kSZNEJJLFscw1oZHMBOEyaUMwQ6cQPj-5_QPjwp1TAlpYQAsLaOEBbcPBvMlTnZzjr8prFqB5RY9NG3ZmJlD46ftSRGlMzEJmuNLW7622YdH2bWPGwnQHmtXzVO0adlLxPWeWH4AF5Cw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1ROLQXaKEVodD60BPCYT-962OAokAJHAgqt5U_ISJKEGyQ0l_P2OsEQRHitpbsXWvf2H4ej-cB_CoFk5YXOVWFZDSz1lKZKUZTLZiNNM8Lr7HUO2Xdi-z4Mr9cgJ35XRhjjA8-M2336M_y9VhNnKtsl6c-r_YHWMqzLMub21pPHpXY0REWji7jiO8eH531cQuYxG20apyi-bPFx6up_DcF-3XlcAV6sx414SQ37Ukt2-rfi2SN7-3yZ1gOBJN0Gov4AgtmtAorM_EGEsbyGjwcmKGYUifY6WUijCZ7EyeWQjsDjQUXJTcl514mB7EjgxFBrkgaD6KpydiSRvOT_B3U1-QgaPVQxNtZjnuBT8qqvP-RhDyuV1_h4vB3f79LgwgDVcgEamq4UdLwUpWyMBoLZRxLJlQcGRtLoXG75kiiFQnDoY70RiQR09ymCS-ZsSL9Bouj8cisA0EuKEQqmWYIn8q0SFNdWsYTXSgmddaCaIZOpUKGcvcHhpXfqUS8coBWDtAqANqC7XmT2yY9x1uV1xxA84oBmxZszkygCgP4vkrylOFUhmxp4_VWP-Fjt987qU6OTv98h0_uOy6CLM43YbG-m5gt5Cq1_OFN9BGVmed5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delay-Constrained+Buffer-Aided+Relay+Selection+in+the+Internet+of+Things+With+Decision-Assisted+Reinforcement+Learning&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Huang%2C+Chong&rft.au=Chen%2C+Gaojie&rft.au=Gong%2C+Yu&rft.date=2021-06-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=8&rft.issue=12&rft.spage=10198&rft.epage=10208&rft_id=info:doi/10.1109%2FJIOT.2021.3051239&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2021_3051239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon