Delay-Constrained Buffer-Aided Relay Selection in the Internet of Things With Decision-Assisted Reinforcement Learning
This article investigates the reinforcement learning for the relay selection in the delay-constrained buffer-aided networks. The buffer-aided relay selection significantly improves the outage performance but often at the price of higher latency. On the other hand, modern communication systems such a...
Saved in:
| Published in | IEEE internet of things journal Vol. 8; no. 12; pp. 10198 - 10208 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
15.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2327-4662 2327-4662 |
| DOI | 10.1109/JIOT.2021.3051239 |
Cover
| Abstract | This article investigates the reinforcement learning for the relay selection in the delay-constrained buffer-aided networks. The buffer-aided relay selection significantly improves the outage performance but often at the price of higher latency. On the other hand, modern communication systems such as the Internet of Things often have strict requirement on latency. It is thus necessary to find relay selection policies to achieve good throughput performance in the buffer-aided relay network while stratifying the delay constraint. With the buffers employed at the relays and delay constraints imposed on the data transmission, obtaining the best relay selection becomes a complicated high-dimensional problem, making it hard for the reinforcement learning to converge. In this article, we propose the novel decision-assisted deep reinforcement learning to improve the convergence. This is achieved by exploring the a priori information from the buffer-aided relay system. The proposed approaches can achieve high throughput subject to delay constraints. Extensive simulation results are provided to verify the proposed algorithms. |
|---|---|
| AbstractList | This article investigates the reinforcement learning for the relay selection in the delay-constrained buffer-aided networks. The buffer-aided relay selection significantly improves the outage performance but often at the price of higher latency. On the other hand, modern communication systems such as the Internet of Things often have strict requirement on latency. It is thus necessary to find relay selection policies to achieve good throughput performance in the buffer-aided relay network while stratifying the delay constraint. With the buffers employed at the relays and delay constraints imposed on the data transmission, obtaining the best relay selection becomes a complicated high-dimensional problem, making it hard for the reinforcement learning to converge. In this article, we propose the novel decision-assisted deep reinforcement learning to improve the convergence. This is achieved by exploring the a priori information from the buffer-aided relay system. The proposed approaches can achieve high throughput subject to delay constraints. Extensive simulation results are provided to verify the proposed algorithms. |
| Author | Chen, Gaojie Huang, Chong Gong, Yu |
| Author_xml | – sequence: 1 givenname: Chong orcidid: 0000-0002-0392-9398 surname: Huang fullname: Huang, Chong email: ch481@leicester.ac.uk organization: School of Engineering, University of Leicester, Leicester, U.K – sequence: 2 givenname: Gaojie orcidid: 0000-0003-2978-0365 surname: Chen fullname: Chen, Gaojie email: gaojie.chen@leicester.ac.uk organization: School of Engineering, University of Leicester, Leicester, U.K – sequence: 3 givenname: Yu orcidid: 0000-0002-3985-8691 surname: Gong fullname: Gong, Yu email: y.gong@lboro.ac.uk organization: Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, U.K |
| BookMark | eNp9kE1LAzEQhoNUsNb-APES8Lw1H92PHGvrR6VQ0IrHJZud2JQ2W5NU6L83a4uIB08zQ553hjznqGMbCwhdUjKglIibp-l8MWCE0QEnKWVcnKAu4yxPhlnGOr_6M9T3fkUIibGUiqyLPiewlvtk3FgfnDQWany70xpcMjJ1HJ7bZ_wCa1DBNBYbi8MS8NQGcBYCbjReLI199_jNhCWegDI-csnIe-PD9wJjdeMUbMAGPAPpbMQv0KmWaw_9Y-2h1_u7xfgxmc0fpuPRLFFM8JCAAFWBKFRR5VDHoaC0yqSiBDStZC1EQQXjWrIsF3zIhWQkq4XmTBQZaMl76Pqwd-uajx34UK6anbPxZMlSnhU5EYRGKj9QyjXeO9ClMkG2_22drEtKytZz2XouW8_l0XNM0j_JrTMb6fb_Zq4OGQMAP7zgjA7TlH8BoUeL0g |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1109_MWC_013_2300261 crossref_primary_10_1109_TIFS_2021_3103062 crossref_primary_10_1016_j_phycom_2023_102086 crossref_primary_10_1109_TWC_2022_3199746 crossref_primary_10_1109_TWC_2022_3217165 crossref_primary_10_1109_LWC_2023_3323775 crossref_primary_10_1109_ACCESS_2023_3275567 crossref_primary_10_1109_JIOT_2022_3160717 crossref_primary_10_1109_JIOT_2023_3347279 crossref_primary_10_3390_s23104822 crossref_primary_10_3390_s24154881 crossref_primary_10_1007_s11227_023_05575_8 crossref_primary_10_1109_JSAC_2024_3365899 crossref_primary_10_1007_s12083_023_01589_4 crossref_primary_10_1109_LWC_2024_3411697 crossref_primary_10_1016_j_compeleceng_2025_110068 crossref_primary_10_1186_s13638_022_02127_1 crossref_primary_10_3390_s24248036 |
| Cites_doi | 10.1109/JIOT.2017.2759728 10.1109/TWC.2019.2919825 10.1109/TWC.2018.2850016 10.1109/ACCESS.2020.2965742 10.1109/TWC.2012.011012.110682 10.1049/iet-com.2016.1046 10.1109/TVT.2015.2507360 10.1038/nature14236 10.1109/TVT.2014.2311301 10.1109/ACCESS.2017.2779844 10.1109/GLOCOM.2014.7036839 10.1109/JIOT.2017.2734815 10.1109/JIOT.2019.2905169 10.1109/TVT.2014.2324761 10.1109/JIOT.2018.2847731 10.1109/JSEN.2019.2925719 10.1109/TVT.2015.2497198 10.1109/TVT.2017.2751582 10.1109/TCOMM.2016.2607746 10.1007/978-3-642-27645-3_2 10.1109/GLOCOM.2011.6133900 10.1109/TIFS.2014.2307672 10.1109/TCE.2009.5174415 10.1109/COMST.2019.2904897 10.1109/TWC.2012.032712.111970 10.1109/TVT.2015.2418535 10.1109/MCOM.2011.5762799 10.1109/TWC.2013.050313.120186 10.1109/MCOM.2014.6807959 10.1109/ACCESS.2018.2883894 10.1109/WCNC45663.2020.9120470 10.1109/JSAC.2005.862417 10.1109/TVT.2016.2573378 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2021.3051239 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 10208 |
| ExternalDocumentID | 10_1109_JIOT_2021_3051239 9321455 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/R006377/1 (“M3NET”) funderid: 10.13039/501100000266 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-e9ecbe98c8b7ed9ec811b6ac10ef1bad9981923fa26793439a206d9f32986efa3 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Mon Jun 30 12:41:02 EDT 2025 Thu Apr 24 22:50:37 EDT 2025 Wed Oct 01 04:45:34 EDT 2025 Wed Aug 27 02:29:53 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-e9ecbe98c8b7ed9ec811b6ac10ef1bad9981923fa26793439a206d9f32986efa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3985-8691 0000-0002-0392-9398 0000-0003-2978-0365 |
| PQID | 2536870901 |
| PQPubID | 2040421 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9321455 proquest_journals_2536870901 crossref_citationtrail_10_1109_JIOT_2021_3051239 crossref_primary_10_1109_JIOT_2021_3051239 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-15 |
| PublicationDateYYYYMMDD | 2021-06-15 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 goodfellow (ref39) 2016 ref31 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 mnih (ref36) 2013 ref28 ref27 kingma (ref38) 2014 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 mnih (ref33) 2016 sutton (ref30) 2011 |
| References_xml | – ident: ref19 doi: 10.1109/JIOT.2017.2759728 – ident: ref26 doi: 10.1109/TWC.2019.2919825 – year: 2011 ident: ref30 publication-title: Reinforcement Learning An Introduction – year: 2016 ident: ref39 publication-title: Deep Learning – year: 2013 ident: ref36 publication-title: Playing atari with deep reinforcement learning – ident: ref23 doi: 10.1109/TWC.2018.2850016 – ident: ref35 doi: 10.1109/ACCESS.2020.2965742 – ident: ref12 doi: 10.1109/TWC.2012.011012.110682 – ident: ref31 doi: 10.1049/iet-com.2016.1046 – ident: ref24 doi: 10.1109/TVT.2015.2507360 – ident: ref32 doi: 10.1038/nature14236 – ident: ref17 doi: 10.1109/TVT.2014.2311301 – ident: ref4 doi: 10.1109/ACCESS.2017.2779844 – ident: ref27 doi: 10.1109/GLOCOM.2014.7036839 – ident: ref2 doi: 10.1109/JIOT.2017.2734815 – ident: ref16 doi: 10.1109/JIOT.2019.2905169 – ident: ref14 doi: 10.1109/TVT.2014.2324761 – ident: ref1 doi: 10.1109/JIOT.2018.2847731 – ident: ref28 doi: 10.1109/JSEN.2019.2925719 – ident: ref21 doi: 10.1109/TVT.2015.2497198 – ident: ref15 doi: 10.1109/TVT.2017.2751582 – ident: ref3 doi: 10.1109/JIOT.2018.2847731 – ident: ref20 doi: 10.1109/TCOMM.2016.2607746 – ident: ref37 doi: 10.1007/978-3-642-27645-3_2 – ident: ref10 doi: 10.1109/GLOCOM.2011.6133900 – ident: ref18 doi: 10.1109/TIFS.2014.2307672 – ident: ref8 doi: 10.1109/TCE.2009.5174415 – ident: ref29 doi: 10.1109/COMST.2019.2904897 – ident: ref13 doi: 10.1109/TWC.2012.032712.111970 – year: 2014 ident: ref38 publication-title: Adam A method for stochastic optimization – ident: ref6 doi: 10.1109/TVT.2015.2418535 – ident: ref5 doi: 10.1109/MCOM.2011.5762799 – ident: ref9 doi: 10.1109/TWC.2013.050313.120186 – ident: ref11 doi: 10.1109/MCOM.2014.6807959 – ident: ref25 doi: 10.1109/ACCESS.2018.2883894 – start-page: 1928 year: 2016 ident: ref33 article-title: Asynchronous methods for deep reinforcement learning publication-title: Proc Int Conf Mach Learn – ident: ref34 doi: 10.1109/WCNC45663.2020.9120470 – ident: ref7 doi: 10.1109/JSAC.2005.862417 – ident: ref22 doi: 10.1109/TVT.2016.2573378 |
| SSID | ssj0001105196 |
| Score | 2.3499959 |
| Snippet | This article investigates the reinforcement learning for the relay selection in the delay-constrained buffer-aided networks. The buffer-aided relay selection... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10198 |
| SubjectTerms | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Q -learning Algorithms Buffer-aided relay selection Buffers Communications systems Constraints Convergence Data models Data transmission deep reinforcement learning Delay delay constrained Delays Internet of Things Learning Network latency Reinforcement learning Relay networks Relay networks (telecommunication) Relay systems Sarsa learning Service introduction Throughput |
| Title | Delay-Constrained Buffer-Aided Relay Selection in the Internet of Things With Decision-Assisted Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/9321455 https://www.proquest.com/docview/2536870901 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH7YnrxYV6wbOXgS086amRzrRhXUgxZ7G7JqsUxFp4L-epNMWnFBvE0gCWG-l-TLy8v7APZzRrimWYpFxglOtNaYJ4LgWDKiA0nTzGksXV6R_iC5GKbDBTicv4VRSrngM9Wxn-4uX07E1LrKujR2ebUb0MhyUr_V-vSnhJaMEH9xGQa0e3F-fWsOgFHYMTZtFmj6ZetxWio_FmC3q5y14HI2njqY5LEzrXhHvH9L1fjfAS_DkqeXqFfbwwosqHIVWjPpBuRn8hq8nqgxe8NWrtOJRCiJjqZWKgX3RtIUbIzcG7pxIjkGOTQqkWGKqPYfqgpNNKoVP9HdqHpAJ16pBxu0rd3YDlxKVuG8j8hncb1fh8HZ6e1xH3sJBiwMD6iwokpwRXOR80xJU8jDkBMmwkDpkDNpDmuWImoWETPRDblhUUAk1XFEc6I0izegWU5KtQnIMEHGYk4kSZNEJJLFscw1oZHMBOEyaUMwQ6cQPj-5_QPjwp1TAlpYQAsLaOEBbcPBvMlTnZzjr8prFqB5RY9NG3ZmJlD46ftSRGlMzEJmuNLW7622YdH2bWPGwnQHmtXzVO0adlLxPWeWH4AF5Cw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1ROLQXaKEVodD60BPCYT-962OAokAJHAgqt5U_ISJKEGyQ0l_P2OsEQRHitpbsXWvf2H4ej-cB_CoFk5YXOVWFZDSz1lKZKUZTLZiNNM8Lr7HUO2Xdi-z4Mr9cgJ35XRhjjA8-M2336M_y9VhNnKtsl6c-r_YHWMqzLMub21pPHpXY0REWji7jiO8eH531cQuYxG20apyi-bPFx6up_DcF-3XlcAV6sx414SQ37Ukt2-rfi2SN7-3yZ1gOBJN0Gov4AgtmtAorM_EGEsbyGjwcmKGYUifY6WUijCZ7EyeWQjsDjQUXJTcl514mB7EjgxFBrkgaD6KpydiSRvOT_B3U1-QgaPVQxNtZjnuBT8qqvP-RhDyuV1_h4vB3f79LgwgDVcgEamq4UdLwUpWyMBoLZRxLJlQcGRtLoXG75kiiFQnDoY70RiQR09ymCS-ZsSL9Bouj8cisA0EuKEQqmWYIn8q0SFNdWsYTXSgmddaCaIZOpUKGcvcHhpXfqUS8coBWDtAqANqC7XmT2yY9x1uV1xxA84oBmxZszkygCgP4vkrylOFUhmxp4_VWP-Fjt987qU6OTv98h0_uOy6CLM43YbG-m5gt5Cq1_OFN9BGVmed5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delay-Constrained+Buffer-Aided+Relay+Selection+in+the+Internet+of+Things+With+Decision-Assisted+Reinforcement+Learning&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Huang%2C+Chong&rft.au=Chen%2C+Gaojie&rft.au=Gong%2C+Yu&rft.date=2021-06-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=8&rft.issue=12&rft.spage=10198&rft.epage=10208&rft_id=info:doi/10.1109%2FJIOT.2021.3051239&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2021_3051239 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |