A Hybrid Offline Optimization Method for Reconfiguration of Multi-UAV Formations
Formation reconfiguration of multiple unmanned aerial vehicles (UAVs) is a challenging problem. Mathematically, this problem is an optimal control problem subject to continuous state inequality constraints and terminal state equality constraints. The first challenge is that there are an infinite num...
Saved in:
Published in | IEEE transactions on aerospace and electronic systems Vol. 57; no. 1; pp. 506 - 520 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9251 1557-9603 |
DOI | 10.1109/TAES.2020.3024427 |
Cover
Abstract | Formation reconfiguration of multiple unmanned aerial vehicles (UAVs) is a challenging problem. Mathematically, this problem is an optimal control problem subject to continuous state inequality constraints and terminal state equality constraints. The first challenge is that there are an infinite number of constraints to be satisfied for the continuous state inequality constraints, which makes the problem extremely difficult to be solved. The second challenge is that the control and state are usually both been discretized. This will result in noncontinuous control input. In addition, the discretized system may not always accurately approximate the original system. In this article, a hybrid offline optimization scheme is proposed to tackle these problems. Unlike the existing methods, the state variables are not required to be discretized and continuous control inputs can be obtained. In addition, the continuous state inequality constraints are tackled without increasing the total number of constraints. Simulation results show that the proposed hybrid optimization method outperforms the state-of-the-art method—the hybrid particle swarm optimization and genetic algorithm. |
---|---|
AbstractList | Formation reconfiguration of multiple unmanned aerial vehicles (UAVs) is a challenging problem. Mathematically, this problem is an optimal control problem subject to continuous state inequality constraints and terminal state equality constraints. The first challenge is that there are an infinite number of constraints to be satisfied for the continuous state inequality constraints, which makes the problem extremely difficult to be solved. The second challenge is that the control and state are usually both been discretized. This will result in noncontinuous control input. In addition, the discretized system may not always accurately approximate the original system. In this article, a hybrid offline optimization scheme is proposed to tackle these problems. Unlike the existing methods, the state variables are not required to be discretized and continuous control inputs can be obtained. In addition, the continuous state inequality constraints are tackled without increasing the total number of constraints. Simulation results show that the proposed hybrid optimization method outperforms the state-of-the-art method—the hybrid particle swarm optimization and genetic algorithm. |
Author | Wang, Song Zhang, Jiangwei Li, Bin Dai, Li Teo, Kok Lay |
Author_xml | – sequence: 1 givenname: Bin surname: Li fullname: Li, Bin organization: Sichuan University, Chengdu, China – sequence: 2 givenname: Jiangwei surname: Zhang fullname: Zhang, Jiangwei organization: Sichuan University, Chengdu, China – sequence: 3 givenname: Li orcidid: 0000-0002-7268-7548 surname: Dai fullname: Dai, Li organization: Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Kok Lay surname: Teo fullname: Teo, Kok Lay organization: Sunway University, Malaysia and Tianjin University of Finance and Economics, Tianjin, China – sequence: 5 givenname: Song surname: Wang fullname: Wang, Song organization: Curtin University, Perth, Australia |
BookMark | eNp9kD1PwzAQhi1UJErhByCWSMwp_oztMapaitSqCFrWKHFscJXGxXGG8utJm4qBgeVO9_Heq3uuwaB2tQbgDsExQlA-rtPp2xhDDMcEYkoxvwBDxBiPZQLJAAwhRCKWmKErcN00266kgpIheEmj-aHwtoxWxlS21tFqH-zOfufBujpa6vDpysg4H71q5WpjP1rfj5yJlm0VbLxJ36OZ87tTu7kBlyavGn17ziOwmU3Xk3m8WD09T9JFrLAkIdaJJInOuZaFkAZTQ3nBykQK2gUOFUEFErrMsaFICJUnJRIJpUqVCeaSITICD_3dvXdfrW5CtnWtrzvLDFMhOE04E90W6reUd03jtcn23u5yf8gQzI7gsiO47AguO4PrNPyPRtlwei743Fb_Ku97pdVa_zpJJCUjjPwAe8h8Nw |
CODEN | IEARAX |
CitedBy_id | crossref_primary_10_1016_j_apm_2022_08_011 crossref_primary_10_1016_j_conengprac_2024_106066 crossref_primary_10_1109_TVT_2023_3235498 crossref_primary_10_1007_s11424_022_1515_8 crossref_primary_10_1016_j_automatica_2025_112213 crossref_primary_10_1016_j_automatica_2022_110711 crossref_primary_10_1007_s00521_024_10945_1 crossref_primary_10_1109_TVT_2023_3302814 crossref_primary_10_1016_j_ast_2023_108704 crossref_primary_10_1016_j_sigpro_2021_108305 crossref_primary_10_1016_j_isatra_2022_01_015 crossref_primary_10_1109_TWC_2024_3480705 crossref_primary_10_1109_TCYB_2024_3467386 crossref_primary_10_1002_rnc_7060 crossref_primary_10_1016_j_automatica_2025_112179 crossref_primary_10_3390_drones7100595 crossref_primary_10_3934_jimo_2021201 crossref_primary_10_1016_j_ast_2023_108230 crossref_primary_10_1049_tje2_12277 crossref_primary_10_1016_j_apm_2023_05_035 crossref_primary_10_1049_cth2_12341 crossref_primary_10_3390_app13137385 crossref_primary_10_1109_TIM_2023_3265632 crossref_primary_10_1142_S2737480723500152 crossref_primary_10_1109_COMST_2024_3395358 crossref_primary_10_1109_TAES_2023_3234455 crossref_primary_10_1007_s11432_022_3735_5 crossref_primary_10_1186_s13660_022_02823_y crossref_primary_10_1109_TAES_2023_3328797 |
Cites_doi | 10.1007/s12555-018-0421-2 10.1109/TCST.2014.2314460 10.1126/science.220.4598.671 10.1016/j.neucom.2018.11.023 10.1109/CGNCC.2014.7007594 10.1137/16M1070530 10.1109/ACCESS.2013.2260794 10.1109/ACCESS.2019.2898974 10.1109/TAC.2008.920239 10.1109/TAES.2017.2714898 10.2514/6.1998-4343 10.1016/j.automatica.2016.06.024 10.2514/6.2003-5725 10.1007/s12293-018-0251-z 10.2514/1.G002349 10.2514/6.1992-4473 10.1016/j.automatica.2009.05.029 10.1016/j.jfranklin.2018.11.029 10.1016/j.ins.2018.06.061 10.1109/TCST.2016.2547952 10.1016/S1672-6529(08)60179-1 10.1109/CDC.1999.831295 10.1109/ICUAS.2018.8453462 10.1109/MCI.2013.2264577 10.1007/BF03546211 10.1023/B:JOGO.0000015313.93974.b0 10.1109/SYSCON.2016.7490605 10.1080/0305215X.2012.748048 10.1016/j.jfranklin.2017.11.026 10.1016/j.automatica.2012.01.019 10.1016/j.automatica.2018.12.036 10.1016/j.conengprac.2015.10.001 10.1109/37.887447 10.1137/0906002 10.1016/0005-1098(90)90131-Z 10.2514/6.2018-5282 10.1177/0142331210366643 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
DOI | 10.1109/TAES.2020.3024427 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9603 |
EndPage | 520 |
ExternalDocumentID | 10_1109_TAES_2020_3024427 9199535 |
Genre | orig-research |
GrantInformation_xml | – fundername: Australian Research Council Research Council under Discovery grantid: DP1801040950 – fundername: National Natural Science Foundation of China grantid: 61701124 funderid: 10.13039/501100001809 – fundername: Sichuan Province Government grantid: 2019YJ0105 – fundername: Science and Technology on Space Intelligent Control Laboratory grantid: KGJZDSYS-2018-03 |
GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c293t-e6936ea7e9b89f24f47b5d6984d6970c31b18eda2f4188ca6d18644ccd6279513 |
IEDL.DBID | RIE |
ISSN | 0018-9251 |
IngestDate | Mon Jun 30 10:11:44 EDT 2025 Wed Oct 01 01:23:37 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Wed Aug 27 05:45:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-e6936ea7e9b89f24f47b5d6984d6970c31b18eda2f4188ca6d18644ccd6279513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7268-7548 |
PQID | 2488746758 |
PQPubID | 85477 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TAES_2020_3024427 proquest_journals_2488746758 crossref_citationtrail_10_1109_TAES_2020_3024427 ieee_primary_9199535 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on aerospace and electronic systems |
PublicationTitleAbbrev | T-AES |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 teo (ref35) 1991 ref30 ref11 ref32 ref10 ref2 ref1 ref39 ref17 bertsekas (ref41) 1995 ref16 chu (ref27) 2017; 50 ref19 ref18 kirkpatrick (ref38) 1983; 220 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 zhang (ref4) 2012; 34 ref7 loxton (ref33) 2009; 45 ref9 ref3 ref6 ref5 ref40 xiong (ref24) 0 |
References_xml | – ident: ref29 doi: 10.1007/s12555-018-0421-2 – ident: ref7 doi: 10.1109/TCST.2014.2314460 – volume: 220 start-page: 671 year: 1983 ident: ref38 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – ident: ref14 doi: 10.1016/j.neucom.2018.11.023 – ident: ref25 doi: 10.1109/CGNCC.2014.7007594 – ident: ref32 doi: 10.1137/16M1070530 – ident: ref2 doi: 10.1109/ACCESS.2013.2260794 – ident: ref13 doi: 10.1109/ACCESS.2019.2898974 – ident: ref23 doi: 10.1109/TAC.2008.920239 – ident: ref9 doi: 10.1109/TAES.2017.2714898 – ident: ref11 doi: 10.2514/6.1998-4343 – ident: ref8 doi: 10.1016/j.automatica.2016.06.024 – ident: ref5 doi: 10.2514/6.2003-5725 – ident: ref17 doi: 10.1007/s12293-018-0251-z – start-page: 501 year: 0 ident: ref24 article-title: Optimization of multiple flight vehicle formation reconfiguration using hybrid genetic algorithm publication-title: Proc 1st Chin Guid Navig Control Conf – ident: ref30 doi: 10.2514/1.G002349 – ident: ref19 doi: 10.2514/6.1992-4473 – volume: 45 start-page: 2250 year: 2009 ident: ref33 article-title: Optimal control problems with a continuous inequality constraint on the state and the control publication-title: Automatica doi: 10.1016/j.automatica.2009.05.029 – ident: ref16 doi: 10.1016/j.jfranklin.2018.11.029 – ident: ref12 doi: 10.1016/j.ins.2018.06.061 – ident: ref28 doi: 10.1109/TCST.2016.2547952 – ident: ref22 doi: 10.1016/S1672-6529(08)60179-1 – ident: ref18 doi: 10.1109/CDC.1999.831295 – ident: ref10 doi: 10.1109/ICUAS.2018.8453462 – ident: ref3 doi: 10.1109/MCI.2013.2264577 – ident: ref21 doi: 10.1007/BF03546211 – ident: ref31 doi: 10.1023/B:JOGO.0000015313.93974.b0 – ident: ref26 doi: 10.1109/SYSCON.2016.7490605 – ident: ref40 doi: 10.1080/0305215X.2012.748048 – ident: ref15 doi: 10.1016/j.jfranklin.2017.11.026 – ident: ref37 doi: 10.1016/j.automatica.2012.01.019 – ident: ref34 doi: 10.1016/j.automatica.2018.12.036 – volume: 50 start-page: 9398 year: 2017 ident: ref27 article-title: Optimal reconfiguration of formation flying using a direct sequential method publication-title: Int Fed Aut Contr – year: 1991 ident: ref35 publication-title: A Unified Computational Approach for Optimal Control Problems – ident: ref6 doi: 10.1016/j.conengprac.2015.10.001 – ident: ref20 doi: 10.1109/37.887447 – year: 1995 ident: ref41 publication-title: Nonlinear Programming – ident: ref39 doi: 10.1137/0906002 – ident: ref36 doi: 10.1016/0005-1098(90)90131-Z – ident: ref1 doi: 10.2514/6.2018-5282 – volume: 34 start-page: 165 year: 2012 ident: ref4 article-title: Differential evolution-based receding horizon control design for multi-UAVs formation reconfiguration publication-title: Trans Inst Meas Control doi: 10.1177/0142331210366643 |
SSID | ssj0014843 |
Score | 2.5328443 |
Snippet | Formation reconfiguration of multiple unmanned aerial vehicles (UAVs) is a challenging problem. Mathematically, this problem is an optimal control problem... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 506 |
SubjectTerms | Continuous state inequality constraints control parameterization Discretization Electronic mail formation reconfiguration Genetic algorithms hybrid optimization Inequality Mathematical model Optimal control Optimization Optimization methods Particle swarm optimization Reconfiguration simulated annealing unmanned aerial vehicle (UAV) Unmanned aerial vehicles |
Title | A Hybrid Offline Optimization Method for Reconfiguration of Multi-UAV Formations |
URI | https://ieeexplore.ieee.org/document/9199535 https://www.proquest.com/docview/2488746758 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014843 issn: 0018-9251 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB2qJz34LVar5OBJ3LrZzW6SY5GWItQKWvG2bLIZEbUVbQ_6602yaREV8bJkIYGQSTJvMvNmAI4xp6VOU4wwy3XEkImoVIiRQpVQJUv74947Bpd5f8Qu7rK7BpwuuDDGGB98Ztqu6X351UTP3FPZmXR84jRbgiXOZc3VWngMmAgRctQeYKu0gweTxvLsptO9tpZgYg1Uq5GYKyDzRQf5oio_bmKvXnrrMJhPrI4qeWzPpqqtP77lbPzvzDdgLeBM0qk3xiY0zHgLVr9kH9yGqw7pvzvCFhkiOrRJhvb-eA7ETDLwtaWJBbXE2ahjfLif1duFTJB44m406tyS3pz--LYDo1735rwfhQILkbZafhqZXKa5KbmRSkhMrKS4yqpcCmY_PNYpVVSYqkyQUSF0mVdUWPykdZUn3EKzdBeWx5Ox2QNSaeQxR4s-TMyYSqUR1CAXJs1ig4I1IZ4veaFD9nFXBOOp8FZILAsnpcJJqQhSasLJYshLnXrjr87bbtUXHcOCN6E1l2sRDudbkdhLy1VZycT-76MOYCVxoSs-OLsFy9PXmTm02GOqjvym-wQQctV2 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB58HNSDb7E-c_Akbt3sZneTYxFLfVQFW_G2bLIZEbUV2x7015tk0yIq4mXJQgIhk2S-ycw3A3CAKS1UHGOASaoChowHhUQMJMqISlGYH_ve0b5KW112fp_cT8HRhAujtXbBZ7pum86XX_bVyD6VHQvLJ46TaZhNGMuiiq018Rkw7mPkqDnCRm17HyYNxXGncXprbMHImKhGJzFbQuaLFnJlVX7cxU7BNJegPZ5aFVfyVB8NZV19fMva-N-5L8OiR5qkUW2NFZjSvVVY-JJ_cA1uGqT1bilb5BrR4k1ybW6QF0_NJG1XXZoYWEusldrDx4dRtWFIH4mj7gbdxh1pjgmQg3XoNk87J63Al1gIlNHzw0CnIk51kWkhucDIyCqTSZkKzswnC1VMJeW6LCJklHNVpCXlBkEpVaZRZsBZvAEzvX5PbwIpFWZhhgZ_6JAxGQvNqcaM6zgJNXJWg3C85Lny-cdtGYzn3NkhocitlHIrpdxLqQaHkyGvVfKNvzqv2VWfdPQLXoOdsVxzfzwHeWSuLVtnJeFbv4_ah7lWp32ZX55dXWzDfGQDWVyo9g7MDN9GetcgkaHccxvwE2Vr2ME |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Offline+Optimization+Method+for+Reconfiguration+of+Multi-UAV+Formations&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Li%2C+Bin&rft.au=Zhang%2C+Jiangwei&rft.au=Dai%2C+Li&rft.au=Teo%2C+Kok+Lay&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=0018-9251&rft.volume=57&rft.issue=1&rft.spage=506&rft.epage=520&rft_id=info:doi/10.1109%2FTAES.2020.3024427&rft.externalDocID=9199535 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |