A Hybrid Offline Optimization Method for Reconfiguration of Multi-UAV Formations

Formation reconfiguration of multiple unmanned aerial vehicles (UAVs) is a challenging problem. Mathematically, this problem is an optimal control problem subject to continuous state inequality constraints and terminal state equality constraints. The first challenge is that there are an infinite num...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on aerospace and electronic systems Vol. 57; no. 1; pp. 506 - 520
Main Authors Li, Bin, Zhang, Jiangwei, Dai, Li, Teo, Kok Lay, Wang, Song
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9251
1557-9603
DOI10.1109/TAES.2020.3024427

Cover

Abstract Formation reconfiguration of multiple unmanned aerial vehicles (UAVs) is a challenging problem. Mathematically, this problem is an optimal control problem subject to continuous state inequality constraints and terminal state equality constraints. The first challenge is that there are an infinite number of constraints to be satisfied for the continuous state inequality constraints, which makes the problem extremely difficult to be solved. The second challenge is that the control and state are usually both been discretized. This will result in noncontinuous control input. In addition, the discretized system may not always accurately approximate the original system. In this article, a hybrid offline optimization scheme is proposed to tackle these problems. Unlike the existing methods, the state variables are not required to be discretized and continuous control inputs can be obtained. In addition, the continuous state inequality constraints are tackled without increasing the total number of constraints. Simulation results show that the proposed hybrid optimization method outperforms the state-of-the-art method—the hybrid particle swarm optimization and genetic algorithm.
AbstractList Formation reconfiguration of multiple unmanned aerial vehicles (UAVs) is a challenging problem. Mathematically, this problem is an optimal control problem subject to continuous state inequality constraints and terminal state equality constraints. The first challenge is that there are an infinite number of constraints to be satisfied for the continuous state inequality constraints, which makes the problem extremely difficult to be solved. The second challenge is that the control and state are usually both been discretized. This will result in noncontinuous control input. In addition, the discretized system may not always accurately approximate the original system. In this article, a hybrid offline optimization scheme is proposed to tackle these problems. Unlike the existing methods, the state variables are not required to be discretized and continuous control inputs can be obtained. In addition, the continuous state inequality constraints are tackled without increasing the total number of constraints. Simulation results show that the proposed hybrid optimization method outperforms the state-of-the-art method—the hybrid particle swarm optimization and genetic algorithm.
Author Wang, Song
Zhang, Jiangwei
Li, Bin
Dai, Li
Teo, Kok Lay
Author_xml – sequence: 1
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: Sichuan University, Chengdu, China
– sequence: 2
  givenname: Jiangwei
  surname: Zhang
  fullname: Zhang, Jiangwei
  organization: Sichuan University, Chengdu, China
– sequence: 3
  givenname: Li
  orcidid: 0000-0002-7268-7548
  surname: Dai
  fullname: Dai, Li
  organization: Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Kok Lay
  surname: Teo
  fullname: Teo, Kok Lay
  organization: Sunway University, Malaysia and Tianjin University of Finance and Economics, Tianjin, China
– sequence: 5
  givenname: Song
  surname: Wang
  fullname: Wang, Song
  organization: Curtin University, Perth, Australia
BookMark eNp9kD1PwzAQhi1UJErhByCWSMwp_oztMapaitSqCFrWKHFscJXGxXGG8utJm4qBgeVO9_Heq3uuwaB2tQbgDsExQlA-rtPp2xhDDMcEYkoxvwBDxBiPZQLJAAwhRCKWmKErcN00266kgpIheEmj-aHwtoxWxlS21tFqH-zOfufBujpa6vDpysg4H71q5WpjP1rfj5yJlm0VbLxJ36OZ87tTu7kBlyavGn17ziOwmU3Xk3m8WD09T9JFrLAkIdaJJInOuZaFkAZTQ3nBykQK2gUOFUEFErrMsaFICJUnJRIJpUqVCeaSITICD_3dvXdfrW5CtnWtrzvLDFMhOE04E90W6reUd03jtcn23u5yf8gQzI7gsiO47AguO4PrNPyPRtlwei743Fb_Ku97pdVa_zpJJCUjjPwAe8h8Nw
CODEN IEARAX
CitedBy_id crossref_primary_10_1016_j_apm_2022_08_011
crossref_primary_10_1016_j_conengprac_2024_106066
crossref_primary_10_1109_TVT_2023_3235498
crossref_primary_10_1007_s11424_022_1515_8
crossref_primary_10_1016_j_automatica_2025_112213
crossref_primary_10_1016_j_automatica_2022_110711
crossref_primary_10_1007_s00521_024_10945_1
crossref_primary_10_1109_TVT_2023_3302814
crossref_primary_10_1016_j_ast_2023_108704
crossref_primary_10_1016_j_sigpro_2021_108305
crossref_primary_10_1016_j_isatra_2022_01_015
crossref_primary_10_1109_TWC_2024_3480705
crossref_primary_10_1109_TCYB_2024_3467386
crossref_primary_10_1002_rnc_7060
crossref_primary_10_1016_j_automatica_2025_112179
crossref_primary_10_3390_drones7100595
crossref_primary_10_3934_jimo_2021201
crossref_primary_10_1016_j_ast_2023_108230
crossref_primary_10_1049_tje2_12277
crossref_primary_10_1016_j_apm_2023_05_035
crossref_primary_10_1049_cth2_12341
crossref_primary_10_3390_app13137385
crossref_primary_10_1109_TIM_2023_3265632
crossref_primary_10_1142_S2737480723500152
crossref_primary_10_1109_COMST_2024_3395358
crossref_primary_10_1109_TAES_2023_3234455
crossref_primary_10_1007_s11432_022_3735_5
crossref_primary_10_1186_s13660_022_02823_y
crossref_primary_10_1109_TAES_2023_3328797
Cites_doi 10.1007/s12555-018-0421-2
10.1109/TCST.2014.2314460
10.1126/science.220.4598.671
10.1016/j.neucom.2018.11.023
10.1109/CGNCC.2014.7007594
10.1137/16M1070530
10.1109/ACCESS.2013.2260794
10.1109/ACCESS.2019.2898974
10.1109/TAC.2008.920239
10.1109/TAES.2017.2714898
10.2514/6.1998-4343
10.1016/j.automatica.2016.06.024
10.2514/6.2003-5725
10.1007/s12293-018-0251-z
10.2514/1.G002349
10.2514/6.1992-4473
10.1016/j.automatica.2009.05.029
10.1016/j.jfranklin.2018.11.029
10.1016/j.ins.2018.06.061
10.1109/TCST.2016.2547952
10.1016/S1672-6529(08)60179-1
10.1109/CDC.1999.831295
10.1109/ICUAS.2018.8453462
10.1109/MCI.2013.2264577
10.1007/BF03546211
10.1023/B:JOGO.0000015313.93974.b0
10.1109/SYSCON.2016.7490605
10.1080/0305215X.2012.748048
10.1016/j.jfranklin.2017.11.026
10.1016/j.automatica.2012.01.019
10.1016/j.automatica.2018.12.036
10.1016/j.conengprac.2015.10.001
10.1109/37.887447
10.1137/0906002
10.1016/0005-1098(90)90131-Z
10.2514/6.2018-5282
10.1177/0142331210366643
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2020.3024427
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 520
ExternalDocumentID 10_1109_TAES_2020_3024427
9199535
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council Research Council under Discovery
  grantid: DP1801040950
– fundername: National Natural Science Foundation of China
  grantid: 61701124
  funderid: 10.13039/501100001809
– fundername: Sichuan Province Government
  grantid: 2019YJ0105
– fundername: Science and Technology on Space Intelligent Control Laboratory
  grantid: KGJZDSYS-2018-03
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c293t-e6936ea7e9b89f24f47b5d6984d6970c31b18eda2f4188ca6d18644ccd6279513
IEDL.DBID RIE
ISSN 0018-9251
IngestDate Mon Jun 30 10:11:44 EDT 2025
Wed Oct 01 01:23:37 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Wed Aug 27 05:45:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e6936ea7e9b89f24f47b5d6984d6970c31b18eda2f4188ca6d18644ccd6279513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7268-7548
PQID 2488746758
PQPubID 85477
PageCount 15
ParticipantIDs crossref_primary_10_1109_TAES_2020_3024427
proquest_journals_2488746758
crossref_citationtrail_10_1109_TAES_2020_3024427
ieee_primary_9199535
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
teo (ref35) 1991
ref30
ref11
ref32
ref10
ref2
ref1
ref39
ref17
bertsekas (ref41) 1995
ref16
chu (ref27) 2017; 50
ref19
ref18
kirkpatrick (ref38) 1983; 220
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
zhang (ref4) 2012; 34
ref7
loxton (ref33) 2009; 45
ref9
ref3
ref6
ref5
ref40
xiong (ref24) 0
References_xml – ident: ref29
  doi: 10.1007/s12555-018-0421-2
– ident: ref7
  doi: 10.1109/TCST.2014.2314460
– volume: 220
  start-page: 671
  year: 1983
  ident: ref38
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: ref14
  doi: 10.1016/j.neucom.2018.11.023
– ident: ref25
  doi: 10.1109/CGNCC.2014.7007594
– ident: ref32
  doi: 10.1137/16M1070530
– ident: ref2
  doi: 10.1109/ACCESS.2013.2260794
– ident: ref13
  doi: 10.1109/ACCESS.2019.2898974
– ident: ref23
  doi: 10.1109/TAC.2008.920239
– ident: ref9
  doi: 10.1109/TAES.2017.2714898
– ident: ref11
  doi: 10.2514/6.1998-4343
– ident: ref8
  doi: 10.1016/j.automatica.2016.06.024
– ident: ref5
  doi: 10.2514/6.2003-5725
– ident: ref17
  doi: 10.1007/s12293-018-0251-z
– start-page: 501
  year: 0
  ident: ref24
  article-title: Optimization of multiple flight vehicle formation reconfiguration using hybrid genetic algorithm
  publication-title: Proc 1st Chin Guid Navig Control Conf
– ident: ref30
  doi: 10.2514/1.G002349
– ident: ref19
  doi: 10.2514/6.1992-4473
– volume: 45
  start-page: 2250
  year: 2009
  ident: ref33
  article-title: Optimal control problems with a continuous inequality constraint on the state and the control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.05.029
– ident: ref16
  doi: 10.1016/j.jfranklin.2018.11.029
– ident: ref12
  doi: 10.1016/j.ins.2018.06.061
– ident: ref28
  doi: 10.1109/TCST.2016.2547952
– ident: ref22
  doi: 10.1016/S1672-6529(08)60179-1
– ident: ref18
  doi: 10.1109/CDC.1999.831295
– ident: ref10
  doi: 10.1109/ICUAS.2018.8453462
– ident: ref3
  doi: 10.1109/MCI.2013.2264577
– ident: ref21
  doi: 10.1007/BF03546211
– ident: ref31
  doi: 10.1023/B:JOGO.0000015313.93974.b0
– ident: ref26
  doi: 10.1109/SYSCON.2016.7490605
– ident: ref40
  doi: 10.1080/0305215X.2012.748048
– ident: ref15
  doi: 10.1016/j.jfranklin.2017.11.026
– ident: ref37
  doi: 10.1016/j.automatica.2012.01.019
– ident: ref34
  doi: 10.1016/j.automatica.2018.12.036
– volume: 50
  start-page: 9398
  year: 2017
  ident: ref27
  article-title: Optimal reconfiguration of formation flying using a direct sequential method
  publication-title: Int Fed Aut Contr
– year: 1991
  ident: ref35
  publication-title: A Unified Computational Approach for Optimal Control Problems
– ident: ref6
  doi: 10.1016/j.conengprac.2015.10.001
– ident: ref20
  doi: 10.1109/37.887447
– year: 1995
  ident: ref41
  publication-title: Nonlinear Programming
– ident: ref39
  doi: 10.1137/0906002
– ident: ref36
  doi: 10.1016/0005-1098(90)90131-Z
– ident: ref1
  doi: 10.2514/6.2018-5282
– volume: 34
  start-page: 165
  year: 2012
  ident: ref4
  article-title: Differential evolution-based receding horizon control design for multi-UAVs formation reconfiguration
  publication-title: Trans Inst Meas Control
  doi: 10.1177/0142331210366643
SSID ssj0014843
Score 2.5328443
Snippet Formation reconfiguration of multiple unmanned aerial vehicles (UAVs) is a challenging problem. Mathematically, this problem is an optimal control problem...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 506
SubjectTerms Continuous state inequality constraints
control parameterization
Discretization
Electronic mail
formation reconfiguration
Genetic algorithms
hybrid optimization
Inequality
Mathematical model
Optimal control
Optimization
Optimization methods
Particle swarm optimization
Reconfiguration
simulated annealing
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Title A Hybrid Offline Optimization Method for Reconfiguration of Multi-UAV Formations
URI https://ieeexplore.ieee.org/document/9199535
https://www.proquest.com/docview/2488746758
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014843
  issn: 0018-9251
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB2qJz34LVar5OBJ3LrZzW6SY5GWItQKWvG2bLIZEbUVbQ_6602yaREV8bJkIYGQSTJvMvNmAI4xp6VOU4wwy3XEkImoVIiRQpVQJUv74947Bpd5f8Qu7rK7BpwuuDDGGB98Ztqu6X351UTP3FPZmXR84jRbgiXOZc3VWngMmAgRctQeYKu0gweTxvLsptO9tpZgYg1Uq5GYKyDzRQf5oio_bmKvXnrrMJhPrI4qeWzPpqqtP77lbPzvzDdgLeBM0qk3xiY0zHgLVr9kH9yGqw7pvzvCFhkiOrRJhvb-eA7ETDLwtaWJBbXE2ahjfLif1duFTJB44m406tyS3pz--LYDo1735rwfhQILkbZafhqZXKa5KbmRSkhMrKS4yqpcCmY_PNYpVVSYqkyQUSF0mVdUWPykdZUn3EKzdBeWx5Ox2QNSaeQxR4s-TMyYSqUR1CAXJs1ig4I1IZ4veaFD9nFXBOOp8FZILAsnpcJJqQhSasLJYshLnXrjr87bbtUXHcOCN6E1l2sRDudbkdhLy1VZycT-76MOYCVxoSs-OLsFy9PXmTm02GOqjvym-wQQctV2
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB58HNSDb7E-c_Akbt3sZneTYxFLfVQFW_G2bLIZEbUV2x7015tk0yIq4mXJQgIhk2S-ycw3A3CAKS1UHGOASaoChowHhUQMJMqISlGYH_ve0b5KW112fp_cT8HRhAujtXbBZ7pum86XX_bVyD6VHQvLJ46TaZhNGMuiiq018Rkw7mPkqDnCRm17HyYNxXGncXprbMHImKhGJzFbQuaLFnJlVX7cxU7BNJegPZ5aFVfyVB8NZV19fMva-N-5L8OiR5qkUW2NFZjSvVVY-JJ_cA1uGqT1bilb5BrR4k1ybW6QF0_NJG1XXZoYWEusldrDx4dRtWFIH4mj7gbdxh1pjgmQg3XoNk87J63Al1gIlNHzw0CnIk51kWkhucDIyCqTSZkKzswnC1VMJeW6LCJklHNVpCXlBkEpVaZRZsBZvAEzvX5PbwIpFWZhhgZ_6JAxGQvNqcaM6zgJNXJWg3C85Lny-cdtGYzn3NkhocitlHIrpdxLqQaHkyGvVfKNvzqv2VWfdPQLXoOdsVxzfzwHeWSuLVtnJeFbv4_ah7lWp32ZX55dXWzDfGQDWVyo9g7MDN9GetcgkaHccxvwE2Vr2ME
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Offline+Optimization+Method+for+Reconfiguration+of+Multi-UAV+Formations&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Li%2C+Bin&rft.au=Zhang%2C+Jiangwei&rft.au=Dai%2C+Li&rft.au=Teo%2C+Kok+Lay&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=0018-9251&rft.volume=57&rft.issue=1&rft.spage=506&rft.epage=520&rft_id=info:doi/10.1109%2FTAES.2020.3024427&rft.externalDocID=9199535
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon