A General Dichotomy of Evolutionary Algorithms on Monotone Functions

It is known that the (1 + 1)-EA with mutation rate <inline-formula> <tex-math notation="LaTeX">c/n </tex-math></inline-formula> optimizes every monotone function efficiently if <inline-formula> <tex-math notation="LaTeX">c < 1 </tex-math&...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 24; no. 6; pp. 995 - 1009
Main Author Lengler, Johannes
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
DOI10.1109/TEVC.2019.2917014

Cover

More Information
Summary:It is known that the (1 + 1)-EA with mutation rate <inline-formula> <tex-math notation="LaTeX">c/n </tex-math></inline-formula> optimizes every monotone function efficiently if <inline-formula> <tex-math notation="LaTeX">c < 1 </tex-math></inline-formula>, and needs exponential time on some monotone functions (HotTopic functions) if <inline-formula> <tex-math notation="LaTeX">c\geq 2.2 </tex-math></inline-formula>. We study the same question for a large variety of algorithms, particularly for the <inline-formula> <tex-math notation="LaTeX">(1 + \lambda) </tex-math></inline-formula>-EA, <inline-formula> <tex-math notation="LaTeX">(\mu + 1) </tex-math></inline-formula>-EA, <inline-formula> <tex-math notation="LaTeX">(\mu + 1) </tex-math></inline-formula>-GA, their "fast" counterparts, and for the <inline-formula> <tex-math notation="LaTeX">(1 + (\lambda,\lambda)) </tex-math></inline-formula>-GA. We find that all considered mutation-based algorithms show a similar dichotomy for HotTopic functions, or even for all monotone functions. For the <inline-formula> <tex-math notation="LaTeX">(1 + (\lambda,\lambda)) </tex-math></inline-formula>-GA, this dichotomy is in the parameter <inline-formula> <tex-math notation="LaTeX">c\gamma </tex-math></inline-formula>, which is the expected number of bit flips in an individual after mutation and crossover, neglecting selection. For the fast algorithms, the dichotomy is in <inline-formula> <tex-math notation="LaTeX">m_{2}/m_{1} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">m_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">m_{2} </tex-math></inline-formula> are the first and second falling moment of the number of bit flips. Surprisingly, the range of efficient parameters is not affected by either population size <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> nor by the offspring population size <inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>. The picture changes completely if crossover is allowed. The genetic algorithms <inline-formula> <tex-math notation="LaTeX">(\mu + 1) </tex-math></inline-formula>-GA and <inline-formula> <tex-math notation="LaTeX">(\mu + 1) </tex-math></inline-formula>-fGA are efficient for arbitrary mutations strengths if <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula> is large enough.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2019.2917014