Leveraging Smartphone Sensors to Detect Distracted Driving Activities
In this paper, we explore the feasibility of leveraging the accelerometer and gyroscope sensors in modern smartphones to detect instances of distracted driving activities (e.g., calling, texting, and reading while driving). To do so, we conducted an experiment with 16 subjects on a realistic driving...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 20; no. 9; pp. 3303 - 3312 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1524-9050 1558-0016 |
DOI | 10.1109/TITS.2018.2873972 |
Cover
Abstract | In this paper, we explore the feasibility of leveraging the accelerometer and gyroscope sensors in modern smartphones to detect instances of distracted driving activities (e.g., calling, texting, and reading while driving). To do so, we conducted an experiment with 16 subjects on a realistic driving simulator. As discussed later, the simulator is equipped with a realistic steering wheel, acceleration/braking pedals, and a wide screen to visualize background vehicular traffic. It is also programmed to simulate multiple environmental conditions like daytime, nighttime, fog, and rain/snow. The subjects were instructed to drive the simulator while performing a randomized sequence of activities that included texting, calling, and reading from a phone while they were driving, during which the accelerometer and gyroscope in the phone were logging sensory data. By extracting features from this sensory data, we then implemented a machine learning technique based on random forests to detect distracted driving. Our technique achieves very good precision, recall, and <inline-formula> <tex-math notation="LaTeX">F </tex-math></inline-formula>-measure across all environmental conditions we tested. We believe that our contributions in this paper can have a significant impact on enhancing road safety. |
---|---|
AbstractList | In this paper, we explore the feasibility of leveraging the accelerometer and gyroscope sensors in modern smartphones to detect instances of distracted driving activities (e.g., calling, texting, and reading while driving). To do so, we conducted an experiment with 16 subjects on a realistic driving simulator. As discussed later, the simulator is equipped with a realistic steering wheel, acceleration/braking pedals, and a wide screen to visualize background vehicular traffic. It is also programmed to simulate multiple environmental conditions like daytime, nighttime, fog, and rain/snow. The subjects were instructed to drive the simulator while performing a randomized sequence of activities that included texting, calling, and reading from a phone while they were driving, during which the accelerometer and gyroscope in the phone were logging sensory data. By extracting features from this sensory data, we then implemented a machine learning technique based on random forests to detect distracted driving. Our technique achieves very good precision, recall, and [Formula Omitted]-measure across all environmental conditions we tested. We believe that our contributions in this paper can have a significant impact on enhancing road safety. In this paper, we explore the feasibility of leveraging the accelerometer and gyroscope sensors in modern smartphones to detect instances of distracted driving activities (e.g., calling, texting, and reading while driving). To do so, we conducted an experiment with 16 subjects on a realistic driving simulator. As discussed later, the simulator is equipped with a realistic steering wheel, acceleration/braking pedals, and a wide screen to visualize background vehicular traffic. It is also programmed to simulate multiple environmental conditions like daytime, nighttime, fog, and rain/snow. The subjects were instructed to drive the simulator while performing a randomized sequence of activities that included texting, calling, and reading from a phone while they were driving, during which the accelerometer and gyroscope in the phone were logging sensory data. By extracting features from this sensory data, we then implemented a machine learning technique based on random forests to detect distracted driving. Our technique achieves very good precision, recall, and <inline-formula> <tex-math notation="LaTeX">F </tex-math></inline-formula>-measure across all environmental conditions we tested. We believe that our contributions in this paper can have a significant impact on enhancing road safety. |
Author | Bouhorma, Mohammed Bharti, Pratool Ben Ahmed, Kaoutar Chellappan, Sriram Goel, Bharti |
Author_xml | – sequence: 1 givenname: Kaoutar orcidid: 0000-0002-5269-8733 surname: Ben Ahmed fullname: Ben Ahmed, Kaoutar email: kbenahmed@mail.usf.edu organization: Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA – sequence: 2 givenname: Bharti orcidid: 0000-0001-5609-3312 surname: Goel fullname: Goel, Bharti email: bharti@mail.usf.edu organization: Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA – sequence: 3 givenname: Pratool orcidid: 0000-0003-0508-965X surname: Bharti fullname: Bharti, Pratool email: pratool@mail.usf.edu organization: Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA – sequence: 4 givenname: Sriram orcidid: 0000-0002-5330-8549 surname: Chellappan fullname: Chellappan, Sriram email: sriramc@usf.edu organization: Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA – sequence: 5 givenname: Mohammed surname: Bouhorma fullname: Bouhorma, Mohammed email: bouhorma@gmail.com organization: Faculty of Sciences and Technologies, University Abdelmalek Essaadi, Tangier, Morocco |
BookMark | eNp9kEtLAzEUhYNUsK3-AHEz4HpqHpPXsrRVCwUXreswk7lTU-pMTdKC_94MLS5cuLqHyzn3cr4RGrRdCwjdEzwhBOunzXKznlBM1IQqybSkV2hIOFc5xkQMek2LXGOOb9AohF3aFpyQIVqs4AS-3Lp2m60_Sx8PH-lwtoY2dD5kscvmEMHGbO5C9KWNUGdz7069f2pjEtFBuEXXTbkPcHeZY_T-vNjMXvPV28tyNl3llmoWcyBYVkXZ1FUhdC0xppVlDCtLhRBa6EJa0JwB14xKWmkJFVaKFQ2uKTDB2Bg9nu8efPd1hBDNrjv6Nr00lCrGmCxS-zGSZ5f1XQgeGmNdLKPr2tTA7Q3BpmdmemamZ2YuzFKS_EkevEtUvv_NPJwzDgB-_YoTrIRkP-WceIY |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1109_JSAC_2024_3413963 crossref_primary_10_2139_ssrn_4811988 crossref_primary_10_1109_ACCESS_2022_3186674 crossref_primary_10_17671_gazibtd_1079364 crossref_primary_10_3390_futuretransp5010002 crossref_primary_10_1109_TITS_2020_2987877 crossref_primary_10_1109_TITS_2024_3381175 crossref_primary_10_1109_TIV_2022_3195635 crossref_primary_10_1371_journal_pone_0278822 crossref_primary_10_1109_TITS_2019_2940481 crossref_primary_10_1109_TASE_2021_3088897 crossref_primary_10_1016_j_compeleceng_2023_108951 crossref_primary_10_1016_j_iot_2025_101561 crossref_primary_10_1109_TVT_2024_3374589 crossref_primary_10_1109_JIOT_2021_3103852 crossref_primary_10_1007_s13177_022_00301_9 |
Cites_doi | 10.1145/2030613.2030625 10.2307/1937992 10.1016/j.proeng.2012.01.907 10.1145/1999995.2000008 10.1145/2462456.2464447 10.3390/s140406474 10.1109/TITS.2012.2187640 10.1145/2370216.2370360 10.1145/2769493.2769593 10.1109/IEMCON.2017.8117199 10.1109/SP.2016.31 10.1145/2442882.2442941 10.1145/2668332.2668348 10.1109/ICDAR.1995.598994 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2018.2873972 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 3312 |
ExternalDocumentID | 10_1109_TITS_2018_2873972 8510867 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.S. National Science Foundations grantid: CBET 1743985; IIS 1559588 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-e107b4afdb469d7002bc3308c266696947ce953e593272b97eb08834f0d2e3633 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 03:45:30 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 Wed Oct 01 05:03:07 EDT 2025 Wed Aug 27 02:46:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-e107b4afdb469d7002bc3308c266696947ce953e593272b97eb08834f0d2e3633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0508-965X 0000-0002-5330-8549 0000-0002-5269-8733 0000-0001-5609-3312 |
PQID | 2283337487 |
PQPubID | 75735 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8510867 crossref_citationtrail_10_1109_TITS_2018_2873972 crossref_primary_10_1109_TITS_2018_2873972 proquest_journals_2283337487 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ho (ref24) 1995; 1 ref11 (ref5) 2017 ref10 ref17 ref16 ref18 (ref21) 2016 (ref2) 2016 (ref4) 2017 yu (ref23) 2003; 3 hall (ref19) 2000 bengio (ref27) 2004; 5 ref25 ref22 (ref1) 2016 (ref20) 2016 (ref6) 2017 ref8 ref7 ref9 (ref3) 2016 kohavi (ref26) 1995; 2 bo (ref14) 2013 |
References_xml | – ident: ref16 doi: 10.1145/2030613.2030625 – start-page: 359 year: 2000 ident: ref19 article-title: Correlation-based feature selection of discrete and numeric class machine learning publication-title: Proc 17th Int Conf Mach Learn (ICML) – year: 2016 ident: ref21 publication-title: Teardown What's Inside Samsung's Galaxy S4? – start-page: 199 year: 2013 ident: ref14 article-title: You're driving and texting: Detecting drivers using personal smart phones by leveraging inertial sensors publication-title: Proc 19th Annu Int Conf Mobile Comput Netw – year: 2016 ident: ref2 publication-title: Cell phones and driving Research update – year: 2016 ident: ref20 publication-title: Motekforce – ident: ref25 doi: 10.2307/1937992 – ident: ref15 doi: 10.1016/j.proeng.2012.01.907 – year: 2016 ident: ref3 publication-title: Distracted Driving Public Opinion Poll – year: 2017 ident: ref4 publication-title: Itcanwait – volume: 5 start-page: 1089 year: 2004 ident: ref27 article-title: No unbiased estimator of the variance of K-fold cross-validation publication-title: J Mach Learn Res – ident: ref7 doi: 10.1145/1999995.2000008 – ident: ref17 doi: 10.1145/2462456.2464447 – ident: ref22 doi: 10.3390/s140406474 – ident: ref12 doi: 10.1109/TITS.2012.2187640 – ident: ref8 doi: 10.1145/2370216.2370360 – ident: ref18 doi: 10.1145/2769493.2769593 – ident: ref11 doi: 10.1109/IEMCON.2017.8117199 – volume: 2 start-page: 1137 year: 1995 ident: ref26 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Proc 14th Int Joint Conf Artif Intell – volume: 3 start-page: 856 year: 2003 ident: ref23 article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution publication-title: Proc ICML – year: 2017 ident: ref5 publication-title: Snapshots – ident: ref10 doi: 10.1109/SP.2016.31 – ident: ref13 doi: 10.1145/2442882.2442941 – ident: ref9 doi: 10.1145/2668332.2668348 – year: 2017 ident: ref6 publication-title: Metromile – volume: 1 start-page: 278 year: 1995 ident: ref24 article-title: Random decision forests publication-title: Proc 3rd Int Conf Document Anal Recognition doi: 10.1109/ICDAR.1995.598994 – year: 2016 ident: ref1 publication-title: Distracted Driving Facts And Statistics |
SSID | ssj0014511 |
Score | 2.3629148 |
Snippet | In this paper, we explore the feasibility of leveraging the accelerometer and gyroscope sensors in modern smartphones to detect instances of distracted driving... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3303 |
SubjectTerms | Acceleration Accelerometers Automobiles Braking Data logging Distracted driving Driver behavior Environmental testing Feature extraction Gyroscopes intelligent transportation systems Machine learning Pedals Sensors Short message service Simulation Smart sensing Smartphones Steering Wheels Wide screen |
Title | Leveraging Smartphone Sensors to Detect Distracted Driving Activities |
URI | https://ieeexplore.ieee.org/document/8510867 https://www.proquest.com/docview/2283337487 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gJz34QiOKpgdPxoW17W63RyIQNOIFSLht2m43MSoYWC7-eqdlIb5ivO2h3W06s535OjPfAFwmsaCZkCrIM64CrhkPpEWwIpJIMSZEGOWudnjwGPfH_H4STSpwvamFsdb65DPbdI8-lp_NzNJdlbXQO0APXGzBlhByVau1iRg4ni3PjUrxa2G0jmDehLI1uhsNXRJX0kR4gPaXfrFBvqnKj5PYm5feHgzWC1tllTw3l4VumvdvnI3_Xfk-7JZ-JmmvFOMAKnZ6CDuf2Adr0H2wqMe-SxEZvqIKuTR1S4YIbGfzBSlmpGNdiIF0PLmuQd-UdOZP7gaCtI3vOoEw-wjGve7oth-UXRUCg6a9CCwCPs1VnmlExpnAE1EbxsLEoKmOZSy5MFZGzEbo2QmqpbAaTyLG8zCjlsWMHUN1iss5AULjLI-sEkpzzWmoFKM5yjdhmVGUR7oO4XqfU1NSjrvOFy-phx6hTJ1oUieatBRNHa42U95WfBt_Da65rd4MLHe5Do21MNPyj1ykjuaHOa4dcfr7rDPYxneX-WMNqBbzpT1Hh6PQF17TPgAwk9B1 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADb0ShgAcmRErwI05GRKlaaFlaJLbIdhwJAS1q04Vfz9lNK15CbBls2fJdfPf57r4DOI0jSTOZqCDPuAq4ZjxILIIVGQvFmJShyF3tcO8-aj_w20fxWIHzRS2MtdYnn9mG-_Sx_Gxkpu6p7AK9A_TA5RIsC0QVclattYgZOKYtz45Kcb1QzGOYl2FyMegM-i6NK24gQEALTL9YId9W5cdd7A1MawN6863N8kqeG9NCN8z7N9bG_-59E9ZLT5NczVRjCyp2uA1rn_gHd-Cma1GTfZ8i0n9FJXKJ6pb0EdqOxhNSjEjTuiADaXp6XYPeKWmOn9wbBLkyvu8EAu1deGjdDK7bQdlXITBo3IvAIuTTXOWZRmycSbwTtWEsjA0a6yiJEi6NTQSzAn07SXUirca7iPE8zKhlEWN7UB3idvaB0CjLhVVSaa45DZViNEcJxywzinKhaxDOzzk1Jem4633xknrwESapE03qRJOWoqnB2WLK24xx46_BO-6oFwPLU65BfS7MtPwnJ6kj-mGObUce_D7rBFbag1437Xbu7w5hFdcps8nqUC3GU3uE7kehj73WfQBQZtPG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Smartphone+Sensors+to+Detect+Distracted+Driving+Activities&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Kaoutar+Ben+Ahmed&rft.au=Goel%2C+Bharti&rft.au=Pratool+Bharti&rft.au=Chellappan%2C+Sriram&rft.date=2019-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=20&rft.issue=9&rft.spage=3303&rft_id=info:doi/10.1109%2FTITS.2018.2873972&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |