Leveraging Smartphone Sensors to Detect Distracted Driving Activities

In this paper, we explore the feasibility of leveraging the accelerometer and gyroscope sensors in modern smartphones to detect instances of distracted driving activities (e.g., calling, texting, and reading while driving). To do so, we conducted an experiment with 16 subjects on a realistic driving...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 20; no. 9; pp. 3303 - 3312
Main Authors Ben Ahmed, Kaoutar, Goel, Bharti, Bharti, Pratool, Chellappan, Sriram, Bouhorma, Mohammed
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2018.2873972

Cover

Abstract In this paper, we explore the feasibility of leveraging the accelerometer and gyroscope sensors in modern smartphones to detect instances of distracted driving activities (e.g., calling, texting, and reading while driving). To do so, we conducted an experiment with 16 subjects on a realistic driving simulator. As discussed later, the simulator is equipped with a realistic steering wheel, acceleration/braking pedals, and a wide screen to visualize background vehicular traffic. It is also programmed to simulate multiple environmental conditions like daytime, nighttime, fog, and rain/snow. The subjects were instructed to drive the simulator while performing a randomized sequence of activities that included texting, calling, and reading from a phone while they were driving, during which the accelerometer and gyroscope in the phone were logging sensory data. By extracting features from this sensory data, we then implemented a machine learning technique based on random forests to detect distracted driving. Our technique achieves very good precision, recall, and <inline-formula> <tex-math notation="LaTeX">F </tex-math></inline-formula>-measure across all environmental conditions we tested. We believe that our contributions in this paper can have a significant impact on enhancing road safety.
AbstractList In this paper, we explore the feasibility of leveraging the accelerometer and gyroscope sensors in modern smartphones to detect instances of distracted driving activities (e.g., calling, texting, and reading while driving). To do so, we conducted an experiment with 16 subjects on a realistic driving simulator. As discussed later, the simulator is equipped with a realistic steering wheel, acceleration/braking pedals, and a wide screen to visualize background vehicular traffic. It is also programmed to simulate multiple environmental conditions like daytime, nighttime, fog, and rain/snow. The subjects were instructed to drive the simulator while performing a randomized sequence of activities that included texting, calling, and reading from a phone while they were driving, during which the accelerometer and gyroscope in the phone were logging sensory data. By extracting features from this sensory data, we then implemented a machine learning technique based on random forests to detect distracted driving. Our technique achieves very good precision, recall, and [Formula Omitted]-measure across all environmental conditions we tested. We believe that our contributions in this paper can have a significant impact on enhancing road safety.
In this paper, we explore the feasibility of leveraging the accelerometer and gyroscope sensors in modern smartphones to detect instances of distracted driving activities (e.g., calling, texting, and reading while driving). To do so, we conducted an experiment with 16 subjects on a realistic driving simulator. As discussed later, the simulator is equipped with a realistic steering wheel, acceleration/braking pedals, and a wide screen to visualize background vehicular traffic. It is also programmed to simulate multiple environmental conditions like daytime, nighttime, fog, and rain/snow. The subjects were instructed to drive the simulator while performing a randomized sequence of activities that included texting, calling, and reading from a phone while they were driving, during which the accelerometer and gyroscope in the phone were logging sensory data. By extracting features from this sensory data, we then implemented a machine learning technique based on random forests to detect distracted driving. Our technique achieves very good precision, recall, and <inline-formula> <tex-math notation="LaTeX">F </tex-math></inline-formula>-measure across all environmental conditions we tested. We believe that our contributions in this paper can have a significant impact on enhancing road safety.
Author Bouhorma, Mohammed
Bharti, Pratool
Ben Ahmed, Kaoutar
Chellappan, Sriram
Goel, Bharti
Author_xml – sequence: 1
  givenname: Kaoutar
  orcidid: 0000-0002-5269-8733
  surname: Ben Ahmed
  fullname: Ben Ahmed, Kaoutar
  email: kbenahmed@mail.usf.edu
  organization: Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
– sequence: 2
  givenname: Bharti
  orcidid: 0000-0001-5609-3312
  surname: Goel
  fullname: Goel, Bharti
  email: bharti@mail.usf.edu
  organization: Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
– sequence: 3
  givenname: Pratool
  orcidid: 0000-0003-0508-965X
  surname: Bharti
  fullname: Bharti, Pratool
  email: pratool@mail.usf.edu
  organization: Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
– sequence: 4
  givenname: Sriram
  orcidid: 0000-0002-5330-8549
  surname: Chellappan
  fullname: Chellappan, Sriram
  email: sriramc@usf.edu
  organization: Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
– sequence: 5
  givenname: Mohammed
  surname: Bouhorma
  fullname: Bouhorma, Mohammed
  email: bouhorma@gmail.com
  organization: Faculty of Sciences and Technologies, University Abdelmalek Essaadi, Tangier, Morocco
BookMark eNp9kEtLAzEUhYNUsK3-AHEz4HpqHpPXsrRVCwUXreswk7lTU-pMTdKC_94MLS5cuLqHyzn3cr4RGrRdCwjdEzwhBOunzXKznlBM1IQqybSkV2hIOFc5xkQMek2LXGOOb9AohF3aFpyQIVqs4AS-3Lp2m60_Sx8PH-lwtoY2dD5kscvmEMHGbO5C9KWNUGdz7069f2pjEtFBuEXXTbkPcHeZY_T-vNjMXvPV28tyNl3llmoWcyBYVkXZ1FUhdC0xppVlDCtLhRBa6EJa0JwB14xKWmkJFVaKFQ2uKTDB2Bg9nu8efPd1hBDNrjv6Nr00lCrGmCxS-zGSZ5f1XQgeGmNdLKPr2tTA7Q3BpmdmemamZ2YuzFKS_EkevEtUvv_NPJwzDgB-_YoTrIRkP-WceIY
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_JSAC_2024_3413963
crossref_primary_10_2139_ssrn_4811988
crossref_primary_10_1109_ACCESS_2022_3186674
crossref_primary_10_17671_gazibtd_1079364
crossref_primary_10_3390_futuretransp5010002
crossref_primary_10_1109_TITS_2020_2987877
crossref_primary_10_1109_TITS_2024_3381175
crossref_primary_10_1109_TIV_2022_3195635
crossref_primary_10_1371_journal_pone_0278822
crossref_primary_10_1109_TITS_2019_2940481
crossref_primary_10_1109_TASE_2021_3088897
crossref_primary_10_1016_j_compeleceng_2023_108951
crossref_primary_10_1016_j_iot_2025_101561
crossref_primary_10_1109_TVT_2024_3374589
crossref_primary_10_1109_JIOT_2021_3103852
crossref_primary_10_1007_s13177_022_00301_9
Cites_doi 10.1145/2030613.2030625
10.2307/1937992
10.1016/j.proeng.2012.01.907
10.1145/1999995.2000008
10.1145/2462456.2464447
10.3390/s140406474
10.1109/TITS.2012.2187640
10.1145/2370216.2370360
10.1145/2769493.2769593
10.1109/IEMCON.2017.8117199
10.1109/SP.2016.31
10.1145/2442882.2442941
10.1145/2668332.2668348
10.1109/ICDAR.1995.598994
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2018.2873972
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 3312
ExternalDocumentID 10_1109_TITS_2018_2873972
8510867
Genre orig-research
GrantInformation_xml – fundername: U.S. National Science Foundations
  grantid: CBET 1743985; IIS 1559588
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-e107b4afdb469d7002bc3308c266696947ce953e593272b97eb08834f0d2e3633
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 03:45:30 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Wed Oct 01 05:03:07 EDT 2025
Wed Aug 27 02:46:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e107b4afdb469d7002bc3308c266696947ce953e593272b97eb08834f0d2e3633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0508-965X
0000-0002-5330-8549
0000-0002-5269-8733
0000-0001-5609-3312
PQID 2283337487
PQPubID 75735
PageCount 10
ParticipantIDs ieee_primary_8510867
crossref_citationtrail_10_1109_TITS_2018_2873972
crossref_primary_10_1109_TITS_2018_2873972
proquest_journals_2283337487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ho (ref24) 1995; 1
ref11
(ref5) 2017
ref10
ref17
ref16
ref18
(ref21) 2016
(ref2) 2016
(ref4) 2017
yu (ref23) 2003; 3
hall (ref19) 2000
bengio (ref27) 2004; 5
ref25
ref22
(ref1) 2016
(ref20) 2016
(ref6) 2017
ref8
ref7
ref9
(ref3) 2016
kohavi (ref26) 1995; 2
bo (ref14) 2013
References_xml – ident: ref16
  doi: 10.1145/2030613.2030625
– start-page: 359
  year: 2000
  ident: ref19
  article-title: Correlation-based feature selection of discrete and numeric class machine learning
  publication-title: Proc 17th Int Conf Mach Learn (ICML)
– year: 2016
  ident: ref21
  publication-title: Teardown What's Inside Samsung's Galaxy S4?
– start-page: 199
  year: 2013
  ident: ref14
  article-title: You're driving and texting: Detecting drivers using personal smart phones by leveraging inertial sensors
  publication-title: Proc 19th Annu Int Conf Mobile Comput Netw
– year: 2016
  ident: ref2
  publication-title: Cell phones and driving Research update
– year: 2016
  ident: ref20
  publication-title: Motekforce
– ident: ref25
  doi: 10.2307/1937992
– ident: ref15
  doi: 10.1016/j.proeng.2012.01.907
– year: 2016
  ident: ref3
  publication-title: Distracted Driving Public Opinion Poll
– year: 2017
  ident: ref4
  publication-title: Itcanwait
– volume: 5
  start-page: 1089
  year: 2004
  ident: ref27
  article-title: No unbiased estimator of the variance of K-fold cross-validation
  publication-title: J Mach Learn Res
– ident: ref7
  doi: 10.1145/1999995.2000008
– ident: ref17
  doi: 10.1145/2462456.2464447
– ident: ref22
  doi: 10.3390/s140406474
– ident: ref12
  doi: 10.1109/TITS.2012.2187640
– ident: ref8
  doi: 10.1145/2370216.2370360
– ident: ref18
  doi: 10.1145/2769493.2769593
– ident: ref11
  doi: 10.1109/IEMCON.2017.8117199
– volume: 2
  start-page: 1137
  year: 1995
  ident: ref26
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proc 14th Int Joint Conf Artif Intell
– volume: 3
  start-page: 856
  year: 2003
  ident: ref23
  article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution
  publication-title: Proc ICML
– year: 2017
  ident: ref5
  publication-title: Snapshots
– ident: ref10
  doi: 10.1109/SP.2016.31
– ident: ref13
  doi: 10.1145/2442882.2442941
– ident: ref9
  doi: 10.1145/2668332.2668348
– year: 2017
  ident: ref6
  publication-title: Metromile
– volume: 1
  start-page: 278
  year: 1995
  ident: ref24
  article-title: Random decision forests
  publication-title: Proc 3rd Int Conf Document Anal Recognition
  doi: 10.1109/ICDAR.1995.598994
– year: 2016
  ident: ref1
  publication-title: Distracted Driving Facts And Statistics
SSID ssj0014511
Score 2.3629148
Snippet In this paper, we explore the feasibility of leveraging the accelerometer and gyroscope sensors in modern smartphones to detect instances of distracted driving...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3303
SubjectTerms Acceleration
Accelerometers
Automobiles
Braking
Data logging
Distracted driving
Driver behavior
Environmental testing
Feature extraction
Gyroscopes
intelligent transportation systems
Machine learning
Pedals
Sensors
Short message service
Simulation
Smart sensing
Smartphones
Steering
Wheels
Wide screen
Title Leveraging Smartphone Sensors to Detect Distracted Driving Activities
URI https://ieeexplore.ieee.org/document/8510867
https://www.proquest.com/docview/2283337487
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gJz34QiOKpgdPxoW17W63RyIQNOIFSLht2m43MSoYWC7-eqdlIb5ivO2h3W06s535OjPfAFwmsaCZkCrIM64CrhkPpEWwIpJIMSZEGOWudnjwGPfH_H4STSpwvamFsdb65DPbdI8-lp_NzNJdlbXQO0APXGzBlhByVau1iRg4ni3PjUrxa2G0jmDehLI1uhsNXRJX0kR4gPaXfrFBvqnKj5PYm5feHgzWC1tllTw3l4VumvdvnI3_Xfk-7JZ-JmmvFOMAKnZ6CDuf2Adr0H2wqMe-SxEZvqIKuTR1S4YIbGfzBSlmpGNdiIF0PLmuQd-UdOZP7gaCtI3vOoEw-wjGve7oth-UXRUCg6a9CCwCPs1VnmlExpnAE1EbxsLEoKmOZSy5MFZGzEbo2QmqpbAaTyLG8zCjlsWMHUN1iss5AULjLI-sEkpzzWmoFKM5yjdhmVGUR7oO4XqfU1NSjrvOFy-phx6hTJ1oUieatBRNHa42U95WfBt_Da65rd4MLHe5Do21MNPyj1ykjuaHOa4dcfr7rDPYxneX-WMNqBbzpT1Hh6PQF17TPgAwk9B1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADb0ShgAcmRErwI05GRKlaaFlaJLbIdhwJAS1q04Vfz9lNK15CbBls2fJdfPf57r4DOI0jSTOZqCDPuAq4ZjxILIIVGQvFmJShyF3tcO8-aj_w20fxWIHzRS2MtdYnn9mG-_Sx_Gxkpu6p7AK9A_TA5RIsC0QVclattYgZOKYtz45Kcb1QzGOYl2FyMegM-i6NK24gQEALTL9YId9W5cdd7A1MawN6863N8kqeG9NCN8z7N9bG_-59E9ZLT5NczVRjCyp2uA1rn_gHd-Cma1GTfZ8i0n9FJXKJ6pb0EdqOxhNSjEjTuiADaXp6XYPeKWmOn9wbBLkyvu8EAu1deGjdDK7bQdlXITBo3IvAIuTTXOWZRmycSbwTtWEsjA0a6yiJEi6NTQSzAn07SXUirca7iPE8zKhlEWN7UB3idvaB0CjLhVVSaa45DZViNEcJxywzinKhaxDOzzk1Jem4633xknrwESapE03qRJOWoqnB2WLK24xx46_BO-6oFwPLU65BfS7MtPwnJ6kj-mGObUce_D7rBFbag1437Xbu7w5hFdcps8nqUC3GU3uE7kehj73WfQBQZtPG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Smartphone+Sensors+to+Detect+Distracted+Driving+Activities&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Kaoutar+Ben+Ahmed&rft.au=Goel%2C+Bharti&rft.au=Pratool+Bharti&rft.au=Chellappan%2C+Sriram&rft.date=2019-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=20&rft.issue=9&rft.spage=3303&rft_id=info:doi/10.1109%2FTITS.2018.2873972&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon