NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning
Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leak...
        Saved in:
      
    
          | Published in | IEEE transactions on computer-aided design of integrated circuits and systems Vol. 37; no. 12; pp. 3067 - 3080 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.12.2018
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0278-0070 1937-4151  | 
| DOI | 10.1109/TCAD.2018.2789723 | 
Cover
| Abstract | Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leakage power to facilitate the design space exploration of neuro-inspired architectures with mainstream and emerging device technologies. NeuroSim provides flexible interface and a wide variety of design options at the circuit and device level. Therefore, NeuroSim can be used by neural networks (NNs) as a supporting tool to provide circuit-level performance evaluation. With NeuroSim, an integrated framework can be built with hierarchical organization from the device level (synaptic device properties) to the circuit level (array architectures) and then to the algorithm level (NN topology), enabling instruction-accurate evaluation on the learning accuracy as well as the circuit-level performance metrics at the run-time of online learning. Using multilayer perceptron as a case-study algorithm, we investigated the impact of the "analog" emerging nonvolatile memory (eNVM)'s "nonideal" device properties and benchmarked the tradeoffs between SRAM, digital, and analog eNVM-based architectures for online learning and offline classification. | 
    
|---|---|
| AbstractList | Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leakage power to facilitate the design space exploration of neuro-inspired architectures with mainstream and emerging device technologies. NeuroSim provides flexible interface and a wide variety of design options at the circuit and device level. Therefore, NeuroSim can be used by neural networks (NNs) as a supporting tool to provide circuit-level performance evaluation. With NeuroSim, an integrated framework can be built with hierarchical organization from the device level (synaptic device properties) to the circuit level (array architectures) and then to the algorithm level (NN topology), enabling instruction-accurate evaluation on the learning accuracy as well as the circuit-level performance metrics at the run-time of online learning. Using multilayer perceptron as a case-study algorithm, we investigated the impact of the "analog" emerging nonvolatile memory (eNVM)'s "nonideal" device properties and benchmarked the tradeoffs between SRAM, digital, and analog eNVM-based architectures for online learning and offline classification. | 
    
| Author | Chen, Pai-Yu Peng, Xiaochen Yu, Shimeng  | 
    
| Author_xml | – sequence: 1 givenname: Pai-Yu orcidid: 0000-0002-9146-2192 surname: Chen fullname: Chen, Pai-Yu email: pchen72@asu.edu organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA – sequence: 2 givenname: Xiaochen surname: Peng fullname: Peng, Xiaochen organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA – sequence: 3 givenname: Shimeng orcidid: 0000-0002-0068-3652 surname: Yu fullname: Yu, Shimeng email: shimengy@asu.edu organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA  | 
    
| BookMark | eNp9kMtOwzAQRS0EEm3hAxAbS6xT_Ihjh10Ir0opXVDWUR5j6pI6xUmQ-HtcWrFgwWpGo3tmNGeMjm1rAaELSqaUkvh6mSZ3U0aomjKpYsn4ERrRmMsgpIIeoxHx44AQSU7RuOvWhNBQsHiE9DMMrn0xmxuc4NS4ajB9kMEnNHheVK7F87b2vW4dvgVbrTaFezf2Df9gwcx2W-OgxomrVqaHqh8cdNhYvLCNsYAzKJz1-TN0ooumg_NDnaDXh_tl-hRki8dZmmRBxWLeB0AiXQpCS16DACFLVumIcs15Gam6UEwQwWjBpIxEHYdMyxo0VVrxMuQqEnyCrvZ7t679GKDr83U7OOtP5oxyKWQsYuVTcp_yD3adA51Xpi9609reFabJKcl3UvOd1HwnNT9I9ST9Q26d8U6-_mUu94wBgN-8YmEk_G_fDwqD2w | 
    
| CODEN | ITCSDI | 
    
| CitedBy_id | crossref_primary_10_1002_smll_202311630 crossref_primary_10_1109_MCAS_2021_3092533 crossref_primary_10_1039_D4MH00806E crossref_primary_10_1109_JIOT_2023_3307405 crossref_primary_10_1021_acsnano_3c03505 crossref_primary_10_1021_acs_nanolett_9b00180 crossref_primary_10_1109_JETCAS_2022_3224071 crossref_primary_10_1002_smtd_202300251 crossref_primary_10_1038_s41928_020_0435_7 crossref_primary_10_1109_TVLSI_2021_3120296 crossref_primary_10_1002_adom_202201905 crossref_primary_10_1007_s11432_023_3785_8 crossref_primary_10_1038_s41467_023_36270_0 crossref_primary_10_1109_JPROC_2020_3003007 crossref_primary_10_1016_j_aeue_2021_153698 crossref_primary_10_1021_acsaelm_4c01506 crossref_primary_10_1039_D0NR07403A crossref_primary_10_1109_TCASAI_2024_3487817 crossref_primary_10_1145_3325067 crossref_primary_10_1021_acsnano_3c05493 crossref_primary_10_1147_JRD_2019_2947011 crossref_primary_10_1021_acsami_5c00738 crossref_primary_10_1002_smll_202004371 crossref_primary_10_1126_sciadv_adp3710 crossref_primary_10_1016_j_nantod_2025_102631 crossref_primary_10_1021_acsnano_0c09441 crossref_primary_10_1109_TETC_2023_3289778 crossref_primary_10_1002_adfm_202419179 crossref_primary_10_1109_TED_2019_2898402 crossref_primary_10_1109_TCAD_2020_2998728 crossref_primary_10_1109_LCA_2024_3522777 crossref_primary_10_1109_MDAT_2020_3001559 crossref_primary_10_1016_j_jcis_2023_12_084 crossref_primary_10_1021_acsaelm_4c02048 crossref_primary_10_1038_s41467_024_45670_9 crossref_primary_10_1002_advs_202201502 crossref_primary_10_1039_D2TC01712A crossref_primary_10_1021_acsnano_0c06607 crossref_primary_10_1109_TED_2019_2906249 crossref_primary_10_1021_acs_nanolett_3c03510 crossref_primary_10_1063_5_0250044 crossref_primary_10_1109_TCSII_2023_3244779 crossref_primary_10_1038_s41598_024_75021_z crossref_primary_10_1002_sdtp_16655 crossref_primary_10_1109_JEDS_2021_3108523 crossref_primary_10_1109_TED_2023_3309776 crossref_primary_10_3390_electronics11132107 crossref_primary_10_1016_j_memori_2023_100066 crossref_primary_10_1109_TCAD_2022_3221906 crossref_primary_10_1109_TED_2021_3113300 crossref_primary_10_1002_inf2_12599 crossref_primary_10_1021_acsmaterialslett_4c02511 crossref_primary_10_1109_TCAD_2024_3435690 crossref_primary_10_1063_5_0231295 crossref_primary_10_1002_aisy_202401068 crossref_primary_10_1109_JEDS_2019_2902653 crossref_primary_10_1016_j_array_2021_100116 crossref_primary_10_1109_TETCI_2022_3191397 crossref_primary_10_1002_sdtp_15690 crossref_primary_10_1109_ACCESS_2019_2961166 crossref_primary_10_1002_aisy_202100231 crossref_primary_10_1002_aisy_202100237 crossref_primary_10_1016_j_mejo_2024_106189 crossref_primary_10_1109_MCAS_2023_3325496 crossref_primary_10_1145_3362035 crossref_primary_10_1109_TC_2022_3230285 crossref_primary_10_1002_adem_202200314 crossref_primary_10_1007_s40843_022_2237_2 crossref_primary_10_1063_5_0115449 crossref_primary_10_1109_TCAD_2020_3000185 crossref_primary_10_1109_TCSI_2021_3110487 crossref_primary_10_1016_j_isci_2020_101846 crossref_primary_10_1016_j_mssp_2024_109111 crossref_primary_10_1109_TC_2020_2980533 crossref_primary_10_1109_TCAD_2024_3445812 crossref_primary_10_1145_3460233 crossref_primary_10_1145_3711830 crossref_primary_10_1109_TCAD_2023_3297968 crossref_primary_10_1109_TCAD_2022_3152385 crossref_primary_10_1088_1361_6528_ad4cf4 crossref_primary_10_1021_acsnano_3c10082 crossref_primary_10_1109_TED_2024_3456775 crossref_primary_10_1002_advs_202001544 crossref_primary_10_1109_TED_2021_3064783 crossref_primary_10_1002_adfm_202309054 crossref_primary_10_1002_aelm_202100185 crossref_primary_10_1021_acsami_3c07671 crossref_primary_10_1002_aelm_202101395 crossref_primary_10_1109_TC_2022_3224800 crossref_primary_10_1007_s40820_024_01579_y crossref_primary_10_1109_MDAT_2023_3309743 crossref_primary_10_1109_TVLSI_2021_3063543 crossref_primary_10_1063_1_5143815 crossref_primary_10_1109_JETCAS_2019_2910749 crossref_primary_10_1109_OJNANO_2024_3514900 crossref_primary_10_1063_5_0035741 crossref_primary_10_1088_1361_6528_abf071 crossref_primary_10_1002_admt_202200884 crossref_primary_10_1109_TCSI_2023_3334950 crossref_primary_10_1049_ell2_70029 crossref_primary_10_1109_OJIES_2024_3363093 crossref_primary_10_1016_j_neunet_2023_01_008 crossref_primary_10_1109_JPROC_2020_3004543 crossref_primary_10_1002_smll_202409510 crossref_primary_10_1039_D4MH00064A crossref_primary_10_1109_TC_2020_3000218 crossref_primary_10_1002_aisy_202000210 crossref_primary_10_1002_aelm_202201155 crossref_primary_10_1109_ACCESS_2021_3121011 crossref_primary_10_1002_smll_202301186 crossref_primary_10_1007_s40820_021_00784_3 crossref_primary_10_1002_aelm_202300476 crossref_primary_10_1109_JSSC_2020_2970709 crossref_primary_10_1002_adfm_202214615 crossref_primary_10_1109_JXCDC_2019_2956112 crossref_primary_10_1039_D1TC00048A crossref_primary_10_1109_TBCAS_2023_3242683 crossref_primary_10_1002_advs_202308460 crossref_primary_10_1109_TED_2020_3015178 crossref_primary_10_1109_TED_2020_3008887 crossref_primary_10_1002_smll_202103175 crossref_primary_10_1109_TCAD_2021_3061481 crossref_primary_10_1109_JXCDC_2022_3220032 crossref_primary_10_1002_pssr_201900029 crossref_primary_10_1109_TCSI_2022_3199453 crossref_primary_10_1021_acsaelm_4c01802 crossref_primary_10_1016_j_neucom_2022_02_043 crossref_primary_10_1016_j_matt_2023_03_016 crossref_primary_10_1109_TCSI_2021_3124553 crossref_primary_10_1038_s41565_021_00874_8 crossref_primary_10_1002_advs_202308588 crossref_primary_10_1109_TED_2022_3142239 crossref_primary_10_1109_ACCESS_2024_3482110 crossref_primary_10_1103_PhysRevApplied_18_014014 crossref_primary_10_1039_D0TC01500H crossref_primary_10_3389_fnins_2021_806325 crossref_primary_10_1088_1674_4926_42_1_013104 crossref_primary_10_1186_s40580_023_00380_8 crossref_primary_10_1002_adma_202412549 crossref_primary_10_1002_adma_202204982 crossref_primary_10_1109_JETCAS_2019_2933148 crossref_primary_10_3389_fnins_2019_00405 crossref_primary_10_1126_sciadv_abm8537 crossref_primary_10_1038_s44287_024_00037_6 crossref_primary_10_1002_adfm_202406088 crossref_primary_10_7498_aps_72_20230411 crossref_primary_10_1016_j_chaos_2024_114956 crossref_primary_10_1109_JXCDC_2019_2925061 crossref_primary_10_1109_TVLSI_2020_3001526 crossref_primary_10_1109_TCAD_2023_3274918 crossref_primary_10_1109_TCSII_2023_3246562 crossref_primary_10_1109_TNANO_2022_3181793 crossref_primary_10_1109_JEDS_2022_3230542 crossref_primary_10_1109_TCAD_2024_3358220 crossref_primary_10_1109_TVLSI_2019_2923722 crossref_primary_10_1109_TCAD_2020_3043731 crossref_primary_10_1007_s10489_024_06091_9 crossref_primary_10_1109_JETCAS_2023_3328864 crossref_primary_10_1016_j_jmat_2021_04_009 crossref_primary_10_1021_acsnano_0c03869 crossref_primary_10_1109_JETCAS_2022_3169899 crossref_primary_10_1109_TVLSI_2022_3203583 crossref_primary_10_1186_s40580_023_00407_0 crossref_primary_10_1109_MDAT_2021_3102013 crossref_primary_10_1515_nanoph_2019_0543 crossref_primary_10_1109_JETCAS_2023_3243619 crossref_primary_10_1002_aelm_201901100 crossref_primary_10_1109_JETCAS_2023_3235658 crossref_primary_10_1109_TCAD_2022_3227879 crossref_primary_10_1021_acsami_2c20925 crossref_primary_10_1145_3593045 crossref_primary_10_1002_adma_202004659 crossref_primary_10_1016_j_vlsi_2024_102206 crossref_primary_10_1088_1361_6463_ab7bb4 crossref_primary_10_1145_3724396 crossref_primary_10_1038_s41928_023_00939_7 crossref_primary_10_1002_adfm_202412012 crossref_primary_10_1109_JEDS_2020_2993859 crossref_primary_10_35848_1347_4065_adb160 crossref_primary_10_1007_s13391_024_00516_w crossref_primary_10_1109_TETC_2023_3257684 crossref_primary_10_1109_LED_2020_3019938 crossref_primary_10_1109_TED_2022_3186965 crossref_primary_10_1109_TCAD_2023_3343228 crossref_primary_10_3389_femat_2022_849879 crossref_primary_10_1016_j_chip_2025_100129 crossref_primary_10_1109_TED_2022_3146801 crossref_primary_10_1109_TCAD_2024_3485589 crossref_primary_10_1109_TPDS_2021_3138087 crossref_primary_10_1145_3659208 crossref_primary_10_1016_j_chip_2023_100044 crossref_primary_10_1016_j_apmt_2022_101691 crossref_primary_10_1002_aisy_202200289 crossref_primary_10_1038_s41598_022_09556_4 crossref_primary_10_1016_j_cap_2024_07_018 crossref_primary_10_1088_2752_5724_acc678 crossref_primary_10_1145_3617686 crossref_primary_10_1109_TED_2021_3108479 crossref_primary_10_1109_TCAD_2022_3160947 crossref_primary_10_1109_TCSI_2019_2958568 crossref_primary_10_23919_cje_2022_00_125 crossref_primary_10_3390_jlpea12010010 crossref_primary_10_1063_5_0211040 crossref_primary_10_1088_2634_4386_acf0e4 crossref_primary_10_1109_TVLSI_2021_3139530 crossref_primary_10_3390_nano12101728 crossref_primary_10_1016_j_apsusc_2023_157356 crossref_primary_10_1002_sstr_202000109 crossref_primary_10_1109_JXCDC_2024_3495612 crossref_primary_10_1039_D2NR02136F crossref_primary_10_1038_s41598_024_73439_z crossref_primary_10_1021_acsami_2c04404 crossref_primary_10_1002_advs_202500568 crossref_primary_10_1088_1361_6528_acb555 crossref_primary_10_1126_sciadv_adg9123 crossref_primary_10_1109_TCSII_2023_3240474 crossref_primary_10_1109_JETCAS_2023_3327748 crossref_primary_10_1109_LED_2020_2995819 crossref_primary_10_1038_s43246_024_00495_3 crossref_primary_10_1088_2634_4386_acb2f0 crossref_primary_10_1021_acsaelm_2c01488 crossref_primary_10_1088_2634_4386_acbab9 crossref_primary_10_1016_j_nanoen_2022_107991 crossref_primary_10_1002_aelm_202300698 crossref_primary_10_1109_TED_2020_3036574 crossref_primary_10_1109_TVLSI_2023_3345651 crossref_primary_10_1021_acsnano_1c09904 crossref_primary_10_1557_mrc_2020_71 crossref_primary_10_1007_s42514_019_00014_8 crossref_primary_10_1088_1361_6641_ac3f22 crossref_primary_10_1021_acs_jpclett_5c00009 crossref_primary_10_1016_j_nanoen_2019_104095 crossref_primary_10_1109_TCAD_2022_3166107 crossref_primary_10_1109_TCSI_2024_3352729 crossref_primary_10_1109_TED_2023_3253466 crossref_primary_10_1145_3502721 crossref_primary_10_1038_s41467_020_17849_3 crossref_primary_10_1002_aelm_202400632 crossref_primary_10_1002_aisy_202400594 crossref_primary_10_1021_acsaelm_3c00595 crossref_primary_10_3390_mi14050901 crossref_primary_10_1109_JETCAS_2020_3015509 crossref_primary_10_1016_j_apmt_2024_102204 crossref_primary_10_1039_D2TC00775D crossref_primary_10_1145_3609115 crossref_primary_10_1021_acsnano_4c18846 crossref_primary_10_1109_JEDS_2020_3045194 crossref_primary_10_1002_aelm_202200332 crossref_primary_10_1109_TCSI_2022_3159153 crossref_primary_10_1038_s41467_025_58004_0 crossref_primary_10_1021_acsami_3c00092 crossref_primary_10_1109_MM_2019_2943047 crossref_primary_10_1002_aelm_202201306 crossref_primary_10_1002_aisy_202300456 crossref_primary_10_1021_acs_nanolett_2c03169 crossref_primary_10_1038_s41928_019_0270_x crossref_primary_10_1109_TCSI_2021_3072200 crossref_primary_10_1109_TED_2021_3095430 crossref_primary_10_1038_s41467_018_07682_0 crossref_primary_10_1109_TCAD_2021_3089667 crossref_primary_10_1145_3476994 crossref_primary_10_1002_adma_202103376 crossref_primary_10_1039_D3MH00508A crossref_primary_10_1002_smll_202412761 crossref_primary_10_1109_TCAD_2020_3002539 crossref_primary_10_1109_TED_2024_3397233 crossref_primary_10_3389_fnano_2022_851856 crossref_primary_10_1002_aelm_202300098 crossref_primary_10_1021_acsaelm_1c01321 crossref_primary_10_3390_cryst11010070 crossref_primary_10_3390_electronics13061121 crossref_primary_10_1126_science_ade3483 crossref_primary_10_1109_ACCESS_2020_3004184 crossref_primary_10_1145_3507639 crossref_primary_10_1002_advs_202400304 crossref_primary_10_1109_TCAD_2021_3107252 crossref_primary_10_3389_fncom_2023_1274575 crossref_primary_10_1088_2634_4386_acf1c6 crossref_primary_10_1155_2022_3973665 crossref_primary_10_3390_mi15121451 crossref_primary_10_1039_D2TC03544H crossref_primary_10_1109_LED_2018_2872434 crossref_primary_10_1021_acsami_4c11731 crossref_primary_10_1109_TC_2021_3053199 crossref_primary_10_1109_TC_2021_3081985 crossref_primary_10_1038_s41699_023_00388_y crossref_primary_10_1002_aisy_202300125 crossref_primary_10_1109_TC_2020_2991575 crossref_primary_10_1109_TCAD_2021_3061521 crossref_primary_10_1016_j_neucom_2024_129210 crossref_primary_10_1109_TCAD_2023_3305574 crossref_primary_10_1002_aelm_202200554 crossref_primary_10_1109_LED_2022_3183111 crossref_primary_10_1021_acsami_2c04441 crossref_primary_10_1002_adfm_202306030 crossref_primary_10_1002_aisy_202200018 crossref_primary_10_1109_TED_2021_3069746 crossref_primary_10_1038_s41563_023_01676_0 crossref_primary_10_1109_TED_2022_3179460 crossref_primary_10_1145_3701034 crossref_primary_10_1109_TCAD_2023_3242858 crossref_primary_10_1002_aisy_202200014 crossref_primary_10_1109_JETCAS_2022_3214334 crossref_primary_10_1038_s41467_022_34178_9 crossref_primary_10_1109_MDAT_2020_3016587 crossref_primary_10_1002_aisy_202000075 crossref_primary_10_1109_TCAD_2020_3013563 crossref_primary_10_1016_j_cap_2021_08_014 crossref_primary_10_1021_acsnano_2c05436 crossref_primary_10_1002_adfm_202201048 crossref_primary_10_1109_TNANO_2020_2996814  | 
    
| Cites_doi | 10.1109/4.509850 10.1021/nl201040y 10.1109/CICC.2017.7993628 10.1088/0957-4484/24/38/382001 10.1109/ISCAS.2016.7539046 10.1007/978-3-319-54313-0 10.1088/0957-4484/26/45/455204 10.1109/IJCNN.2017.7966125 10.1109/LED.2016.2582859 10.1109/TED.2015.2439635 10.1109/IEDM.2013.6724692 10.1109/TMSCS.2016.2598742 10.1145/3007787.3001140 10.1109/IJCNN.2016.7727298 10.1145/3007787.3001139 10.1109/TED.2010.2062187 10.1109/JPROC.2014.2313565 10.1109/ISSCC.2016.7418007 10.1109/MSSC.2016.2546199 10.1109/ICCAD.2015.7372570 10.1109/TCSI.2016.2529279 10.1038/nature14441 10.1109/LED.2015.2481819 10.1002/adma.201203680 10.1109/JETCAS.2015.2426495 10.1145/2228360.2228448 10.3389/fnins.2013.00118 10.7873/DATE.2015.0620 10.1021/nl904092h 10.1109/5.726791 10.1109/TCAD.2012.2185930 10.1109/ISSCC.2017.7870350 10.1109/MAHC.1981.10025 10.1109/TCSII.2016.2554958 10.1109/IEDM.2011.6131488 10.1126/science.1254642 10.1109/L-CA.2011.4  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TCAD.2018.2789723 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library (LUT) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1937-4151 | 
    
| EndPage | 3080 | 
    
| ExternalDocumentID | 10_1109_TCAD_2018_2789723 8246561  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Science Foundation grantid: NSF-CCF-1552687; NSF-CCF-1740225 funderid: 10.13039/100000001  | 
    
| GroupedDBID | --Z -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c293t-e06fb501b3de5e57b2cf613f33b68da8250521a27765d942f7def18f83b438653 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0278-0070 | 
    
| IngestDate | Mon Jun 30 16:17:15 EDT 2025 Thu Apr 24 22:51:28 EDT 2025 Wed Oct 01 00:58:10 EDT 2025 Wed Aug 27 02:51:59 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c293t-e06fb501b3de5e57b2cf613f33b68da8250521a27765d942f7def18f83b438653 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0068-3652 0000-0002-9146-2192  | 
    
| PQID | 2137579598 | 
    
| PQPubID | 85470 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TCAD_2018_2789723 crossref_primary_10_1109_TCAD_2018_2789723 proquest_journals_2137579598 ieee_primary_8246561  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-12-01 | 
    
| PublicationDateYYYYMMDD | 2018-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on computer-aided design of integrated circuits and systems | 
    
| PublicationTitleAbbrev | TCAD | 
    
| PublicationYear | 2018 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref13 ref34 ref12 xia (ref16) 2016 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref10 (ref37) 0 ref2 ref1 ref39 ref38 ref19 ref18 yu (ref33) 2015 (ref41) 0 ref24 ref23 ref20 ref42 ref22 ref44 ref21 ref28 ref27 kuzum (ref26) 2011; 12 (ref17) 0 ref29 ref8 ref7 ref9 ref4 ref6 ananthanarayanan (ref3) 2009 ref5 prezioso (ref25) 2015; 521 ref40 tang (ref43) 2017  | 
    
| References_xml | – ident: ref34 doi: 10.1109/4.509850 – year: 0 ident: ref41 publication-title: FreePDK45 – volume: 12 start-page: 2179 year: 2011 ident: ref26 article-title: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing publication-title: Nano Lett doi: 10.1021/nl201040y – ident: ref19 doi: 10.1109/CICC.2017.7993628 – ident: ref18 doi: 10.1088/0957-4484/24/38/382001 – ident: ref39 doi: 10.1109/ISCAS.2016.7539046 – start-page: 451 year: 2015 ident: ref33 article-title: Scaling-up resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect publication-title: Proc IEEE Int Electron Devices Meeting (IEDM) – ident: ref9 doi: 10.1007/978-3-319-54313-0 – ident: ref21 doi: 10.1088/0957-4484/26/45/455204 – ident: ref4 doi: 10.1109/IJCNN.2017.7966125 – ident: ref23 doi: 10.1109/LED.2016.2582859 – ident: ref11 doi: 10.1109/TED.2015.2439635 – ident: ref22 doi: 10.1109/IEDM.2013.6724692 – start-page: 1 year: 2009 ident: ref3 article-title: The cat is out of the bag: Cortical simulations with 109 neurons, 1013 synapses publication-title: Proc Conf High Perform Comput Netw Stor Anal – ident: ref31 doi: 10.1109/TMSCS.2016.2598742 – ident: ref13 doi: 10.1145/3007787.3001140 – ident: ref12 doi: 10.1109/IJCNN.2016.7727298 – ident: ref15 doi: 10.1145/3007787.3001139 – ident: ref30 doi: 10.1109/TED.2010.2062187 – ident: ref5 doi: 10.1109/JPROC.2014.2313565 – year: 0 ident: ref37 publication-title: Predictive Technology Model (PTM) – ident: ref7 doi: 10.1109/ISSCC.2016.7418007 – ident: ref32 doi: 10.1109/MSSC.2016.2546199 – ident: ref10 doi: 10.1109/ICCAD.2015.7372570 – ident: ref14 doi: 10.1109/TCSI.2016.2529279 – volume: 521 start-page: 61 year: 2015 ident: ref25 article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors publication-title: Nature doi: 10.1038/nature14441 – ident: ref44 doi: 10.1109/LED.2015.2481819 – start-page: 469 year: 2016 ident: ref16 article-title: MNSIM: Simulation platform for memristor-based neuromorphic computing system publication-title: Proc Conf Design Autom Test Europe Conf Exhibit (DATE) – ident: ref24 doi: 10.1002/adma.201203680 – ident: ref36 doi: 10.1109/JETCAS.2015.2426495 – ident: ref28 doi: 10.1145/2228360.2228448 – ident: ref1 doi: 10.3389/fnins.2013.00118 – ident: ref29 doi: 10.7873/DATE.2015.0620 – ident: ref20 doi: 10.1021/nl904092h – start-page: 782 year: 2017 ident: ref43 article-title: Binary convolutional neural network on RRAM publication-title: Proc ACM/IEEE Asia South Pac Design Autom Conf (ASP-DAC) – ident: ref42 doi: 10.1109/5.726791 – ident: ref35 doi: 10.1109/TCAD.2012.2185930 – ident: ref8 doi: 10.1109/ISSCC.2017.7870350 – ident: ref2 doi: 10.1109/MAHC.1981.10025 – ident: ref38 doi: 10.1109/TCSII.2016.2554958 – year: 0 ident: ref17 publication-title: MLP Simlator (+NeuroSim) Version 1 0 – ident: ref27 doi: 10.1109/IEDM.2011.6131488 – ident: ref6 doi: 10.1126/science.1254642 – ident: ref40 doi: 10.1109/L-CA.2011.4  | 
    
| SSID | ssj0014529 | 
    
| Score | 2.6814902 | 
    
| Snippet | Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3067 | 
    
| SubjectTerms | Algorithm design and analysis Algorithms Artificial neural networks Circuit design Computer architecture Distance learning Emerging nonvolatile memory (eNVM) Integrated circuit modeling Machine learning Microprocessors Multilayer perceptrons neural network (NN) Neural networks neuromorphic computing Neuromorphics offline classification online learning Performance evaluation Performance measurement Static random access memory synaptic devices Weight  | 
    
| Title | NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning | 
    
| URI | https://ieeexplore.ieee.org/document/8246561 https://www.proquest.com/docview/2137579598  | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1937-4151 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014529 issn: 0278-0070 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSByaESxzbscNWEAgQZQEktihOzlBRAoJ04dfjc9KKlxBbBl_k6Dvnzvf4jpBdfyUxSWQV4yATJoWVLNWuYNakCrx76yKB_c79q-TsVl7cqbspsj_phQGAUHwGXXwMufzyuRhhqOzAxMju5e8609okTa_WJGOACcQQT0HGWK_HbQaTR-nBjf8oLOIyXWz71LH4YoPCUJUff-JgXk4XSH-8saaq5LE7qm23eP_G2fjfnS-S-dbPpL1GMZbIFFTLZO4T--AKcYGY43rwdEh79HjwWowGNbvEIiLaz_3OKc5JG1Lv1dIjr8sPT3mIq9Mgxs4rzNFDSXufUhFvdFDRhr2Utsyt96vk9vTk5viMtWMXWOFtf80gSpxVEbeiBAVK27hw3ug7IWxiytyg0xTzPNY6UWUqY6dLcNw444HGCaJijcxUzxWsE-oSCdrJUnEwEqSz2lgB4N0GwbnNeYdEYyCyouUkx9EYwyzcTaI0Q-wyxC5rseuQvYnIS0PI8dfiFcRisrCFoUO2xmhn7ZF9y2IutMLJ62bjd6lNMovvbmpZtshM_TqCbe-R1HYnqOIHXHfbWQ | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0heqA9tAVadVtafOgJ1Usc27HDbUGgBXa5dJG4RXEybleFUEH20l9fj5NdUVpV3HLwKI7eODOejzcAn8OVxGaJ01ygyriSTvHc-Io7m2sM7q1PJPU7Ty-y8aU6u9JXa_Bl1QuDiLH4DIf0GHP59W21oFDZvk2J3SvcdZ5ppZTuurVWOQNKIcaICnHGBk3uc5giyfdn4bOojMsOqfHTpPIPKxTHqvz1L44G5uQVTJdb6-pKfgwXrRtWvx6xNj5176_hZe9pslGnGpuwhs0WvHjAP7gNPlJzfJ3fHLARO5rfVYt5yydURsSmZdg5o0lp1yz4tewwaPP3mzJG1lkU46cNZemxZqMHyYh7Nm9Yx1_Keu7Wb2_g8uR4djTm_eAFXgXr33JMMu90IpysUaM2Lq18MPteSpfZurTkNqWiTI3JdJ2r1JsavbDeBqhphqh8C-vNbYPvgPlMofGq1gKtQuWdsU4iBsdBCuFKMYBkCURR9azkNBzjuoi3kyQvCLuCsCt67AawtxL52VFy_G_xNmGxWtjDMICdJdpFf2jvi1RIo2n2un3_b6ld2BjPppNicnpx_gGe03u6ypYdWG_vFvgx-Cet-xTV8jcBrd6m | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NeuroSim%3A+A+Circuit-Level+Macro+Model+for+Benchmarking+Neuro-Inspired+Architectures+in+Online+Learning&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Chen%2C+Pai-Yu&rft.au=Peng%2C+Xiaochen&rft.au=Yu%2C+Shimeng&rft.date=2018-12-01&rft.pub=IEEE&rft.issn=0278-0070&rft.volume=37&rft.issue=12&rft.spage=3067&rft.epage=3080&rft_id=info:doi/10.1109%2FTCAD.2018.2789723&rft.externalDocID=8246561 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon |