NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning

Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leak...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computer-aided design of integrated circuits and systems Vol. 37; no. 12; pp. 3067 - 3080
Main Authors Chen, Pai-Yu, Peng, Xiaochen, Yu, Shimeng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0070
1937-4151
DOI10.1109/TCAD.2018.2789723

Cover

Abstract Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leakage power to facilitate the design space exploration of neuro-inspired architectures with mainstream and emerging device technologies. NeuroSim provides flexible interface and a wide variety of design options at the circuit and device level. Therefore, NeuroSim can be used by neural networks (NNs) as a supporting tool to provide circuit-level performance evaluation. With NeuroSim, an integrated framework can be built with hierarchical organization from the device level (synaptic device properties) to the circuit level (array architectures) and then to the algorithm level (NN topology), enabling instruction-accurate evaluation on the learning accuracy as well as the circuit-level performance metrics at the run-time of online learning. Using multilayer perceptron as a case-study algorithm, we investigated the impact of the "analog" emerging nonvolatile memory (eNVM)'s "nonideal" device properties and benchmarked the tradeoffs between SRAM, digital, and analog eNVM-based architectures for online learning and offline classification.
AbstractList Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leakage power to facilitate the design space exploration of neuro-inspired architectures with mainstream and emerging device technologies. NeuroSim provides flexible interface and a wide variety of design options at the circuit and device level. Therefore, NeuroSim can be used by neural networks (NNs) as a supporting tool to provide circuit-level performance evaluation. With NeuroSim, an integrated framework can be built with hierarchical organization from the device level (synaptic device properties) to the circuit level (array architectures) and then to the algorithm level (NN topology), enabling instruction-accurate evaluation on the learning accuracy as well as the circuit-level performance metrics at the run-time of online learning. Using multilayer perceptron as a case-study algorithm, we investigated the impact of the "analog" emerging nonvolatile memory (eNVM)'s "nonideal" device properties and benchmarked the tradeoffs between SRAM, digital, and analog eNVM-based architectures for online learning and offline classification.
Author Chen, Pai-Yu
Peng, Xiaochen
Yu, Shimeng
Author_xml – sequence: 1
  givenname: Pai-Yu
  orcidid: 0000-0002-9146-2192
  surname: Chen
  fullname: Chen, Pai-Yu
  email: pchen72@asu.edu
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 2
  givenname: Xiaochen
  surname: Peng
  fullname: Peng, Xiaochen
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 3
  givenname: Shimeng
  orcidid: 0000-0002-0068-3652
  surname: Yu
  fullname: Yu, Shimeng
  email: shimengy@asu.edu
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
BookMark eNp9kMtOwzAQRS0EEm3hAxAbS6xT_Ihjh10Ir0opXVDWUR5j6pI6xUmQ-HtcWrFgwWpGo3tmNGeMjm1rAaELSqaUkvh6mSZ3U0aomjKpYsn4ERrRmMsgpIIeoxHx44AQSU7RuOvWhNBQsHiE9DMMrn0xmxuc4NS4ajB9kMEnNHheVK7F87b2vW4dvgVbrTaFezf2Df9gwcx2W-OgxomrVqaHqh8cdNhYvLCNsYAzKJz1-TN0ooumg_NDnaDXh_tl-hRki8dZmmRBxWLeB0AiXQpCS16DACFLVumIcs15Gam6UEwQwWjBpIxEHYdMyxo0VVrxMuQqEnyCrvZ7t679GKDr83U7OOtP5oxyKWQsYuVTcp_yD3adA51Xpi9609reFabJKcl3UvOd1HwnNT9I9ST9Q26d8U6-_mUu94wBgN-8YmEk_G_fDwqD2w
CODEN ITCSDI
CitedBy_id crossref_primary_10_1002_smll_202311630
crossref_primary_10_1109_MCAS_2021_3092533
crossref_primary_10_1039_D4MH00806E
crossref_primary_10_1109_JIOT_2023_3307405
crossref_primary_10_1021_acsnano_3c03505
crossref_primary_10_1021_acs_nanolett_9b00180
crossref_primary_10_1109_JETCAS_2022_3224071
crossref_primary_10_1002_smtd_202300251
crossref_primary_10_1038_s41928_020_0435_7
crossref_primary_10_1109_TVLSI_2021_3120296
crossref_primary_10_1002_adom_202201905
crossref_primary_10_1007_s11432_023_3785_8
crossref_primary_10_1038_s41467_023_36270_0
crossref_primary_10_1109_JPROC_2020_3003007
crossref_primary_10_1016_j_aeue_2021_153698
crossref_primary_10_1021_acsaelm_4c01506
crossref_primary_10_1039_D0NR07403A
crossref_primary_10_1109_TCASAI_2024_3487817
crossref_primary_10_1145_3325067
crossref_primary_10_1021_acsnano_3c05493
crossref_primary_10_1147_JRD_2019_2947011
crossref_primary_10_1021_acsami_5c00738
crossref_primary_10_1002_smll_202004371
crossref_primary_10_1126_sciadv_adp3710
crossref_primary_10_1016_j_nantod_2025_102631
crossref_primary_10_1021_acsnano_0c09441
crossref_primary_10_1109_TETC_2023_3289778
crossref_primary_10_1002_adfm_202419179
crossref_primary_10_1109_TED_2019_2898402
crossref_primary_10_1109_TCAD_2020_2998728
crossref_primary_10_1109_LCA_2024_3522777
crossref_primary_10_1109_MDAT_2020_3001559
crossref_primary_10_1016_j_jcis_2023_12_084
crossref_primary_10_1021_acsaelm_4c02048
crossref_primary_10_1038_s41467_024_45670_9
crossref_primary_10_1002_advs_202201502
crossref_primary_10_1039_D2TC01712A
crossref_primary_10_1021_acsnano_0c06607
crossref_primary_10_1109_TED_2019_2906249
crossref_primary_10_1021_acs_nanolett_3c03510
crossref_primary_10_1063_5_0250044
crossref_primary_10_1109_TCSII_2023_3244779
crossref_primary_10_1038_s41598_024_75021_z
crossref_primary_10_1002_sdtp_16655
crossref_primary_10_1109_JEDS_2021_3108523
crossref_primary_10_1109_TED_2023_3309776
crossref_primary_10_3390_electronics11132107
crossref_primary_10_1016_j_memori_2023_100066
crossref_primary_10_1109_TCAD_2022_3221906
crossref_primary_10_1109_TED_2021_3113300
crossref_primary_10_1002_inf2_12599
crossref_primary_10_1021_acsmaterialslett_4c02511
crossref_primary_10_1109_TCAD_2024_3435690
crossref_primary_10_1063_5_0231295
crossref_primary_10_1002_aisy_202401068
crossref_primary_10_1109_JEDS_2019_2902653
crossref_primary_10_1016_j_array_2021_100116
crossref_primary_10_1109_TETCI_2022_3191397
crossref_primary_10_1002_sdtp_15690
crossref_primary_10_1109_ACCESS_2019_2961166
crossref_primary_10_1002_aisy_202100231
crossref_primary_10_1002_aisy_202100237
crossref_primary_10_1016_j_mejo_2024_106189
crossref_primary_10_1109_MCAS_2023_3325496
crossref_primary_10_1145_3362035
crossref_primary_10_1109_TC_2022_3230285
crossref_primary_10_1002_adem_202200314
crossref_primary_10_1007_s40843_022_2237_2
crossref_primary_10_1063_5_0115449
crossref_primary_10_1109_TCAD_2020_3000185
crossref_primary_10_1109_TCSI_2021_3110487
crossref_primary_10_1016_j_isci_2020_101846
crossref_primary_10_1016_j_mssp_2024_109111
crossref_primary_10_1109_TC_2020_2980533
crossref_primary_10_1109_TCAD_2024_3445812
crossref_primary_10_1145_3460233
crossref_primary_10_1145_3711830
crossref_primary_10_1109_TCAD_2023_3297968
crossref_primary_10_1109_TCAD_2022_3152385
crossref_primary_10_1088_1361_6528_ad4cf4
crossref_primary_10_1021_acsnano_3c10082
crossref_primary_10_1109_TED_2024_3456775
crossref_primary_10_1002_advs_202001544
crossref_primary_10_1109_TED_2021_3064783
crossref_primary_10_1002_adfm_202309054
crossref_primary_10_1002_aelm_202100185
crossref_primary_10_1021_acsami_3c07671
crossref_primary_10_1002_aelm_202101395
crossref_primary_10_1109_TC_2022_3224800
crossref_primary_10_1007_s40820_024_01579_y
crossref_primary_10_1109_MDAT_2023_3309743
crossref_primary_10_1109_TVLSI_2021_3063543
crossref_primary_10_1063_1_5143815
crossref_primary_10_1109_JETCAS_2019_2910749
crossref_primary_10_1109_OJNANO_2024_3514900
crossref_primary_10_1063_5_0035741
crossref_primary_10_1088_1361_6528_abf071
crossref_primary_10_1002_admt_202200884
crossref_primary_10_1109_TCSI_2023_3334950
crossref_primary_10_1049_ell2_70029
crossref_primary_10_1109_OJIES_2024_3363093
crossref_primary_10_1016_j_neunet_2023_01_008
crossref_primary_10_1109_JPROC_2020_3004543
crossref_primary_10_1002_smll_202409510
crossref_primary_10_1039_D4MH00064A
crossref_primary_10_1109_TC_2020_3000218
crossref_primary_10_1002_aisy_202000210
crossref_primary_10_1002_aelm_202201155
crossref_primary_10_1109_ACCESS_2021_3121011
crossref_primary_10_1002_smll_202301186
crossref_primary_10_1007_s40820_021_00784_3
crossref_primary_10_1002_aelm_202300476
crossref_primary_10_1109_JSSC_2020_2970709
crossref_primary_10_1002_adfm_202214615
crossref_primary_10_1109_JXCDC_2019_2956112
crossref_primary_10_1039_D1TC00048A
crossref_primary_10_1109_TBCAS_2023_3242683
crossref_primary_10_1002_advs_202308460
crossref_primary_10_1109_TED_2020_3015178
crossref_primary_10_1109_TED_2020_3008887
crossref_primary_10_1002_smll_202103175
crossref_primary_10_1109_TCAD_2021_3061481
crossref_primary_10_1109_JXCDC_2022_3220032
crossref_primary_10_1002_pssr_201900029
crossref_primary_10_1109_TCSI_2022_3199453
crossref_primary_10_1021_acsaelm_4c01802
crossref_primary_10_1016_j_neucom_2022_02_043
crossref_primary_10_1016_j_matt_2023_03_016
crossref_primary_10_1109_TCSI_2021_3124553
crossref_primary_10_1038_s41565_021_00874_8
crossref_primary_10_1002_advs_202308588
crossref_primary_10_1109_TED_2022_3142239
crossref_primary_10_1109_ACCESS_2024_3482110
crossref_primary_10_1103_PhysRevApplied_18_014014
crossref_primary_10_1039_D0TC01500H
crossref_primary_10_3389_fnins_2021_806325
crossref_primary_10_1088_1674_4926_42_1_013104
crossref_primary_10_1186_s40580_023_00380_8
crossref_primary_10_1002_adma_202412549
crossref_primary_10_1002_adma_202204982
crossref_primary_10_1109_JETCAS_2019_2933148
crossref_primary_10_3389_fnins_2019_00405
crossref_primary_10_1126_sciadv_abm8537
crossref_primary_10_1038_s44287_024_00037_6
crossref_primary_10_1002_adfm_202406088
crossref_primary_10_7498_aps_72_20230411
crossref_primary_10_1016_j_chaos_2024_114956
crossref_primary_10_1109_JXCDC_2019_2925061
crossref_primary_10_1109_TVLSI_2020_3001526
crossref_primary_10_1109_TCAD_2023_3274918
crossref_primary_10_1109_TCSII_2023_3246562
crossref_primary_10_1109_TNANO_2022_3181793
crossref_primary_10_1109_JEDS_2022_3230542
crossref_primary_10_1109_TCAD_2024_3358220
crossref_primary_10_1109_TVLSI_2019_2923722
crossref_primary_10_1109_TCAD_2020_3043731
crossref_primary_10_1007_s10489_024_06091_9
crossref_primary_10_1109_JETCAS_2023_3328864
crossref_primary_10_1016_j_jmat_2021_04_009
crossref_primary_10_1021_acsnano_0c03869
crossref_primary_10_1109_JETCAS_2022_3169899
crossref_primary_10_1109_TVLSI_2022_3203583
crossref_primary_10_1186_s40580_023_00407_0
crossref_primary_10_1109_MDAT_2021_3102013
crossref_primary_10_1515_nanoph_2019_0543
crossref_primary_10_1109_JETCAS_2023_3243619
crossref_primary_10_1002_aelm_201901100
crossref_primary_10_1109_JETCAS_2023_3235658
crossref_primary_10_1109_TCAD_2022_3227879
crossref_primary_10_1021_acsami_2c20925
crossref_primary_10_1145_3593045
crossref_primary_10_1002_adma_202004659
crossref_primary_10_1016_j_vlsi_2024_102206
crossref_primary_10_1088_1361_6463_ab7bb4
crossref_primary_10_1145_3724396
crossref_primary_10_1038_s41928_023_00939_7
crossref_primary_10_1002_adfm_202412012
crossref_primary_10_1109_JEDS_2020_2993859
crossref_primary_10_35848_1347_4065_adb160
crossref_primary_10_1007_s13391_024_00516_w
crossref_primary_10_1109_TETC_2023_3257684
crossref_primary_10_1109_LED_2020_3019938
crossref_primary_10_1109_TED_2022_3186965
crossref_primary_10_1109_TCAD_2023_3343228
crossref_primary_10_3389_femat_2022_849879
crossref_primary_10_1016_j_chip_2025_100129
crossref_primary_10_1109_TED_2022_3146801
crossref_primary_10_1109_TCAD_2024_3485589
crossref_primary_10_1109_TPDS_2021_3138087
crossref_primary_10_1145_3659208
crossref_primary_10_1016_j_chip_2023_100044
crossref_primary_10_1016_j_apmt_2022_101691
crossref_primary_10_1002_aisy_202200289
crossref_primary_10_1038_s41598_022_09556_4
crossref_primary_10_1016_j_cap_2024_07_018
crossref_primary_10_1088_2752_5724_acc678
crossref_primary_10_1145_3617686
crossref_primary_10_1109_TED_2021_3108479
crossref_primary_10_1109_TCAD_2022_3160947
crossref_primary_10_1109_TCSI_2019_2958568
crossref_primary_10_23919_cje_2022_00_125
crossref_primary_10_3390_jlpea12010010
crossref_primary_10_1063_5_0211040
crossref_primary_10_1088_2634_4386_acf0e4
crossref_primary_10_1109_TVLSI_2021_3139530
crossref_primary_10_3390_nano12101728
crossref_primary_10_1016_j_apsusc_2023_157356
crossref_primary_10_1002_sstr_202000109
crossref_primary_10_1109_JXCDC_2024_3495612
crossref_primary_10_1039_D2NR02136F
crossref_primary_10_1038_s41598_024_73439_z
crossref_primary_10_1021_acsami_2c04404
crossref_primary_10_1002_advs_202500568
crossref_primary_10_1088_1361_6528_acb555
crossref_primary_10_1126_sciadv_adg9123
crossref_primary_10_1109_TCSII_2023_3240474
crossref_primary_10_1109_JETCAS_2023_3327748
crossref_primary_10_1109_LED_2020_2995819
crossref_primary_10_1038_s43246_024_00495_3
crossref_primary_10_1088_2634_4386_acb2f0
crossref_primary_10_1021_acsaelm_2c01488
crossref_primary_10_1088_2634_4386_acbab9
crossref_primary_10_1016_j_nanoen_2022_107991
crossref_primary_10_1002_aelm_202300698
crossref_primary_10_1109_TED_2020_3036574
crossref_primary_10_1109_TVLSI_2023_3345651
crossref_primary_10_1021_acsnano_1c09904
crossref_primary_10_1557_mrc_2020_71
crossref_primary_10_1007_s42514_019_00014_8
crossref_primary_10_1088_1361_6641_ac3f22
crossref_primary_10_1021_acs_jpclett_5c00009
crossref_primary_10_1016_j_nanoen_2019_104095
crossref_primary_10_1109_TCAD_2022_3166107
crossref_primary_10_1109_TCSI_2024_3352729
crossref_primary_10_1109_TED_2023_3253466
crossref_primary_10_1145_3502721
crossref_primary_10_1038_s41467_020_17849_3
crossref_primary_10_1002_aelm_202400632
crossref_primary_10_1002_aisy_202400594
crossref_primary_10_1021_acsaelm_3c00595
crossref_primary_10_3390_mi14050901
crossref_primary_10_1109_JETCAS_2020_3015509
crossref_primary_10_1016_j_apmt_2024_102204
crossref_primary_10_1039_D2TC00775D
crossref_primary_10_1145_3609115
crossref_primary_10_1021_acsnano_4c18846
crossref_primary_10_1109_JEDS_2020_3045194
crossref_primary_10_1002_aelm_202200332
crossref_primary_10_1109_TCSI_2022_3159153
crossref_primary_10_1038_s41467_025_58004_0
crossref_primary_10_1021_acsami_3c00092
crossref_primary_10_1109_MM_2019_2943047
crossref_primary_10_1002_aelm_202201306
crossref_primary_10_1002_aisy_202300456
crossref_primary_10_1021_acs_nanolett_2c03169
crossref_primary_10_1038_s41928_019_0270_x
crossref_primary_10_1109_TCSI_2021_3072200
crossref_primary_10_1109_TED_2021_3095430
crossref_primary_10_1038_s41467_018_07682_0
crossref_primary_10_1109_TCAD_2021_3089667
crossref_primary_10_1145_3476994
crossref_primary_10_1002_adma_202103376
crossref_primary_10_1039_D3MH00508A
crossref_primary_10_1002_smll_202412761
crossref_primary_10_1109_TCAD_2020_3002539
crossref_primary_10_1109_TED_2024_3397233
crossref_primary_10_3389_fnano_2022_851856
crossref_primary_10_1002_aelm_202300098
crossref_primary_10_1021_acsaelm_1c01321
crossref_primary_10_3390_cryst11010070
crossref_primary_10_3390_electronics13061121
crossref_primary_10_1126_science_ade3483
crossref_primary_10_1109_ACCESS_2020_3004184
crossref_primary_10_1145_3507639
crossref_primary_10_1002_advs_202400304
crossref_primary_10_1109_TCAD_2021_3107252
crossref_primary_10_3389_fncom_2023_1274575
crossref_primary_10_1088_2634_4386_acf1c6
crossref_primary_10_1155_2022_3973665
crossref_primary_10_3390_mi15121451
crossref_primary_10_1039_D2TC03544H
crossref_primary_10_1109_LED_2018_2872434
crossref_primary_10_1021_acsami_4c11731
crossref_primary_10_1109_TC_2021_3053199
crossref_primary_10_1109_TC_2021_3081985
crossref_primary_10_1038_s41699_023_00388_y
crossref_primary_10_1002_aisy_202300125
crossref_primary_10_1109_TC_2020_2991575
crossref_primary_10_1109_TCAD_2021_3061521
crossref_primary_10_1016_j_neucom_2024_129210
crossref_primary_10_1109_TCAD_2023_3305574
crossref_primary_10_1002_aelm_202200554
crossref_primary_10_1109_LED_2022_3183111
crossref_primary_10_1021_acsami_2c04441
crossref_primary_10_1002_adfm_202306030
crossref_primary_10_1002_aisy_202200018
crossref_primary_10_1109_TED_2021_3069746
crossref_primary_10_1038_s41563_023_01676_0
crossref_primary_10_1109_TED_2022_3179460
crossref_primary_10_1145_3701034
crossref_primary_10_1109_TCAD_2023_3242858
crossref_primary_10_1002_aisy_202200014
crossref_primary_10_1109_JETCAS_2022_3214334
crossref_primary_10_1038_s41467_022_34178_9
crossref_primary_10_1109_MDAT_2020_3016587
crossref_primary_10_1002_aisy_202000075
crossref_primary_10_1109_TCAD_2020_3013563
crossref_primary_10_1016_j_cap_2021_08_014
crossref_primary_10_1021_acsnano_2c05436
crossref_primary_10_1002_adfm_202201048
crossref_primary_10_1109_TNANO_2020_2996814
Cites_doi 10.1109/4.509850
10.1021/nl201040y
10.1109/CICC.2017.7993628
10.1088/0957-4484/24/38/382001
10.1109/ISCAS.2016.7539046
10.1007/978-3-319-54313-0
10.1088/0957-4484/26/45/455204
10.1109/IJCNN.2017.7966125
10.1109/LED.2016.2582859
10.1109/TED.2015.2439635
10.1109/IEDM.2013.6724692
10.1109/TMSCS.2016.2598742
10.1145/3007787.3001140
10.1109/IJCNN.2016.7727298
10.1145/3007787.3001139
10.1109/TED.2010.2062187
10.1109/JPROC.2014.2313565
10.1109/ISSCC.2016.7418007
10.1109/MSSC.2016.2546199
10.1109/ICCAD.2015.7372570
10.1109/TCSI.2016.2529279
10.1038/nature14441
10.1109/LED.2015.2481819
10.1002/adma.201203680
10.1109/JETCAS.2015.2426495
10.1145/2228360.2228448
10.3389/fnins.2013.00118
10.7873/DATE.2015.0620
10.1021/nl904092h
10.1109/5.726791
10.1109/TCAD.2012.2185930
10.1109/ISSCC.2017.7870350
10.1109/MAHC.1981.10025
10.1109/TCSII.2016.2554958
10.1109/IEDM.2011.6131488
10.1126/science.1254642
10.1109/L-CA.2011.4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCAD.2018.2789723
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library (LUT)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-4151
EndPage 3080
ExternalDocumentID 10_1109_TCAD_2018_2789723
8246561
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: NSF-CCF-1552687; NSF-CCF-1740225
  funderid: 10.13039/100000001
GroupedDBID --Z
-~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-e06fb501b3de5e57b2cf613f33b68da8250521a27765d942f7def18f83b438653
IEDL.DBID RIE
ISSN 0278-0070
IngestDate Mon Jun 30 16:17:15 EDT 2025
Thu Apr 24 22:51:28 EDT 2025
Wed Oct 01 00:58:10 EDT 2025
Wed Aug 27 02:51:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e06fb501b3de5e57b2cf613f33b68da8250521a27765d942f7def18f83b438653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0068-3652
0000-0002-9146-2192
PQID 2137579598
PQPubID 85470
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCAD_2018_2789723
crossref_primary_10_1109_TCAD_2018_2789723
proquest_journals_2137579598
ieee_primary_8246561
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computer-aided design of integrated circuits and systems
PublicationTitleAbbrev TCAD
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
xia (ref16) 2016
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref10
(ref37) 0
ref2
ref1
ref39
ref38
ref19
ref18
yu (ref33) 2015
(ref41) 0
ref24
ref23
ref20
ref42
ref22
ref44
ref21
ref28
ref27
kuzum (ref26) 2011; 12
(ref17) 0
ref29
ref8
ref7
ref9
ref4
ref6
ananthanarayanan (ref3) 2009
ref5
prezioso (ref25) 2015; 521
ref40
tang (ref43) 2017
References_xml – ident: ref34
  doi: 10.1109/4.509850
– year: 0
  ident: ref41
  publication-title: FreePDK45
– volume: 12
  start-page: 2179
  year: 2011
  ident: ref26
  article-title: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
  publication-title: Nano Lett
  doi: 10.1021/nl201040y
– ident: ref19
  doi: 10.1109/CICC.2017.7993628
– ident: ref18
  doi: 10.1088/0957-4484/24/38/382001
– ident: ref39
  doi: 10.1109/ISCAS.2016.7539046
– start-page: 451
  year: 2015
  ident: ref33
  article-title: Scaling-up resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect
  publication-title: Proc IEEE Int Electron Devices Meeting (IEDM)
– ident: ref9
  doi: 10.1007/978-3-319-54313-0
– ident: ref21
  doi: 10.1088/0957-4484/26/45/455204
– ident: ref4
  doi: 10.1109/IJCNN.2017.7966125
– ident: ref23
  doi: 10.1109/LED.2016.2582859
– ident: ref11
  doi: 10.1109/TED.2015.2439635
– ident: ref22
  doi: 10.1109/IEDM.2013.6724692
– start-page: 1
  year: 2009
  ident: ref3
  article-title: The cat is out of the bag: Cortical simulations with 109 neurons, 1013 synapses
  publication-title: Proc Conf High Perform Comput Netw Stor Anal
– ident: ref31
  doi: 10.1109/TMSCS.2016.2598742
– ident: ref13
  doi: 10.1145/3007787.3001140
– ident: ref12
  doi: 10.1109/IJCNN.2016.7727298
– ident: ref15
  doi: 10.1145/3007787.3001139
– ident: ref30
  doi: 10.1109/TED.2010.2062187
– ident: ref5
  doi: 10.1109/JPROC.2014.2313565
– year: 0
  ident: ref37
  publication-title: Predictive Technology Model (PTM)
– ident: ref7
  doi: 10.1109/ISSCC.2016.7418007
– ident: ref32
  doi: 10.1109/MSSC.2016.2546199
– ident: ref10
  doi: 10.1109/ICCAD.2015.7372570
– ident: ref14
  doi: 10.1109/TCSI.2016.2529279
– volume: 521
  start-page: 61
  year: 2015
  ident: ref25
  article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors
  publication-title: Nature
  doi: 10.1038/nature14441
– ident: ref44
  doi: 10.1109/LED.2015.2481819
– start-page: 469
  year: 2016
  ident: ref16
  article-title: MNSIM: Simulation platform for memristor-based neuromorphic computing system
  publication-title: Proc Conf Design Autom Test Europe Conf Exhibit (DATE)
– ident: ref24
  doi: 10.1002/adma.201203680
– ident: ref36
  doi: 10.1109/JETCAS.2015.2426495
– ident: ref28
  doi: 10.1145/2228360.2228448
– ident: ref1
  doi: 10.3389/fnins.2013.00118
– ident: ref29
  doi: 10.7873/DATE.2015.0620
– ident: ref20
  doi: 10.1021/nl904092h
– start-page: 782
  year: 2017
  ident: ref43
  article-title: Binary convolutional neural network on RRAM
  publication-title: Proc ACM/IEEE Asia South Pac Design Autom Conf (ASP-DAC)
– ident: ref42
  doi: 10.1109/5.726791
– ident: ref35
  doi: 10.1109/TCAD.2012.2185930
– ident: ref8
  doi: 10.1109/ISSCC.2017.7870350
– ident: ref2
  doi: 10.1109/MAHC.1981.10025
– ident: ref38
  doi: 10.1109/TCSII.2016.2554958
– year: 0
  ident: ref17
  publication-title: MLP Simlator (+NeuroSim) Version 1 0
– ident: ref27
  doi: 10.1109/IEDM.2011.6131488
– ident: ref6
  doi: 10.1126/science.1254642
– ident: ref40
  doi: 10.1109/L-CA.2011.4
SSID ssj0014529
Score 2.6814902
Snippet Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3067
SubjectTerms Algorithm design and analysis
Algorithms
Artificial neural networks
Circuit design
Computer architecture
Distance learning
Emerging nonvolatile memory (eNVM)
Integrated circuit modeling
Machine learning
Microprocessors
Multilayer perceptrons
neural network (NN)
Neural networks
neuromorphic computing
Neuromorphics
offline classification
online learning
Performance evaluation
Performance measurement
Static random access memory
synaptic devices
Weight
Title NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning
URI https://ieeexplore.ieee.org/document/8246561
https://www.proquest.com/docview/2137579598
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1937-4151
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014529
  issn: 0278-0070
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSByaESxzbscNWEAgQZQEktihOzlBRAoJ04dfjc9KKlxBbBl_k6Dvnzvf4jpBdfyUxSWQV4yATJoWVLNWuYNakCrx76yKB_c79q-TsVl7cqbspsj_phQGAUHwGXXwMufzyuRhhqOzAxMju5e8609okTa_WJGOACcQQT0HGWK_HbQaTR-nBjf8oLOIyXWz71LH4YoPCUJUff-JgXk4XSH-8saaq5LE7qm23eP_G2fjfnS-S-dbPpL1GMZbIFFTLZO4T--AKcYGY43rwdEh79HjwWowGNbvEIiLaz_3OKc5JG1Lv1dIjr8sPT3mIq9Mgxs4rzNFDSXufUhFvdFDRhr2Utsyt96vk9vTk5viMtWMXWOFtf80gSpxVEbeiBAVK27hw3ug7IWxiytyg0xTzPNY6UWUqY6dLcNw444HGCaJijcxUzxWsE-oSCdrJUnEwEqSz2lgB4N0GwbnNeYdEYyCyouUkx9EYwyzcTaI0Q-wyxC5rseuQvYnIS0PI8dfiFcRisrCFoUO2xmhn7ZF9y2IutMLJ62bjd6lNMovvbmpZtshM_TqCbe-R1HYnqOIHXHfbWQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0heqA9tAVadVtafOgJ1Usc27HDbUGgBXa5dJG4RXEybleFUEH20l9fj5NdUVpV3HLwKI7eODOejzcAn8OVxGaJ01ygyriSTvHc-Io7m2sM7q1PJPU7Ty-y8aU6u9JXa_Bl1QuDiLH4DIf0GHP59W21oFDZvk2J3SvcdZ5ppZTuurVWOQNKIcaICnHGBk3uc5giyfdn4bOojMsOqfHTpPIPKxTHqvz1L44G5uQVTJdb6-pKfgwXrRtWvx6xNj5176_hZe9pslGnGpuwhs0WvHjAP7gNPlJzfJ3fHLARO5rfVYt5yydURsSmZdg5o0lp1yz4tewwaPP3mzJG1lkU46cNZemxZqMHyYh7Nm9Yx1_Keu7Wb2_g8uR4djTm_eAFXgXr33JMMu90IpysUaM2Lq18MPteSpfZurTkNqWiTI3JdJ2r1JsavbDeBqhphqh8C-vNbYPvgPlMofGq1gKtQuWdsU4iBsdBCuFKMYBkCURR9azkNBzjuoi3kyQvCLuCsCt67AawtxL52VFy_G_xNmGxWtjDMICdJdpFf2jvi1RIo2n2un3_b6ld2BjPppNicnpx_gGe03u6ypYdWG_vFvgx-Cet-xTV8jcBrd6m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NeuroSim%3A+A+Circuit-Level+Macro+Model+for+Benchmarking+Neuro-Inspired+Architectures+in+Online+Learning&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Chen%2C+Pai-Yu&rft.au=Peng%2C+Xiaochen&rft.au=Yu%2C+Shimeng&rft.date=2018-12-01&rft.pub=IEEE&rft.issn=0278-0070&rft.volume=37&rft.issue=12&rft.spage=3067&rft.epage=3080&rft_id=info:doi/10.1109%2FTCAD.2018.2789723&rft.externalDocID=8246561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon