High-Accuracy DOA Estimation Algorithm at Low SNR Through Exploiting a Supervised Index

Performance of direction of arrival (DOA) estimation is one of the most important issues in array signal processing. Subspace-based algorithms provide a good compromise between the estimation accuracy and computational complexity. However, these methods are exposed to performance breakdown at low SN...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on aerospace and electronic systems Vol. 58; no. 4; pp. 3658 - 3665
Main Authors Xu, Kaijie, Xing, Mengdao, Zhang, Rui, E, Hanyu, Sha, Minghui, Nie, Weike, Quan, Yinghui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9251
1557-9603
DOI10.1109/TAES.2022.3144121

Cover

Abstract Performance of direction of arrival (DOA) estimation is one of the most important issues in array signal processing. Subspace-based algorithms provide a good compromise between the estimation accuracy and computational complexity. However, these methods are exposed to performance breakdown at low SNR scenarios. A major reason for such performance breakdown is the subspace swap phenomenon (intersubspace leakage). In this article, we elaborate on a novel modified signal subspace model through exploiting a supervised index for the estimation of DOA. With the developed model we refine the signal subspace so as to enhance the performance of the DOA estimation. In the proposed scheme, we define a fuzzy similarity matrix for the eigenvalues of the array output correlation matrix to capture the distribution of the eigenvalues. Then, we build up a transformation matrix between the fuzzy similarity matrix and the eigenspace of the correlation matrix, and construct a nonlinear transformation function to adjust the fuzzy similarity matrix. Subsequently, we define a supervised evaluation index named signal subspace reconstruction error for DOA estimation and construct a cost function of the signal subspace to develop a supervised model for the signal subspace. The signal subspace can be modified through adjusting the parameter in the nonlinear transformation function and optimizing the abovementioned cost function. Finally, the performance of DOA estimation can be enhanced with the modified signal subspace. The main characteristic of the proposed model is circularly applied feedback of the estimated DOA for refining the estimated subspace. It is a closed loop and supervised method not reported before. This article opens a specific way for improving the performance of the DOA estimation in array signal processing by a supervised index. However, the proposed method is still unsatisfying in some scopes of signal-to-noise ratio. We believe that exploiting a validity index for DOA estimation in array signal processing is still a general and interesting problem.
AbstractList Performance of direction of arrival (DOA) estimation is one of the most important issues in array signal processing. Subspace-based algorithms provide a good compromise between the estimation accuracy and computational complexity. However, these methods are exposed to performance breakdown at low SNR scenarios. A major reason for such performance breakdown is the subspace swap phenomenon (intersubspace leakage). In this article, we elaborate on a novel modified signal subspace model through exploiting a supervised index for the estimation of DOA. With the developed model we refine the signal subspace so as to enhance the performance of the DOA estimation. In the proposed scheme, we define a fuzzy similarity matrix for the eigenvalues of the array output correlation matrix to capture the distribution of the eigenvalues. Then, we build up a transformation matrix between the fuzzy similarity matrix and the eigenspace of the correlation matrix, and construct a nonlinear transformation function to adjust the fuzzy similarity matrix. Subsequently, we define a supervised evaluation index named signal subspace reconstruction error for DOA estimation and construct a cost function of the signal subspace to develop a supervised model for the signal subspace. The signal subspace can be modified through adjusting the parameter in the nonlinear transformation function and optimizing the abovementioned cost function. Finally, the performance of DOA estimation can be enhanced with the modified signal subspace. The main characteristic of the proposed model is circularly applied feedback of the estimated DOA for refining the estimated subspace. It is a closed loop and supervised method not reported before. This article opens a specific way for improving the performance of the DOA estimation in array signal processing by a supervised index. However, the proposed method is still unsatisfying in some scopes of signal-to-noise ratio. We believe that exploiting a validity index for DOA estimation in array signal processing is still a general and interesting problem.
Author Xu, Kaijie
Quan, Yinghui
Nie, Weike
E, Hanyu
Xing, Mengdao
Zhang, Rui
Sha, Minghui
Author_xml – sequence: 1
  givenname: Kaijie
  orcidid: 0000-0003-4408-9070
  surname: Xu
  fullname: Xu, Kaijie
  organization: School of Electronic Engineering, Xidian University, Xi'an, China
– sequence: 2
  givenname: Mengdao
  orcidid: 0000-0002-4084-0915
  surname: Xing
  fullname: Xing, Mengdao
  email: xmd@xidian.edu.cn
  organization: National Laboratory of Radar Signal Processing, Xidian University, Xi'an, China
– sequence: 3
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: National Laboratory of Radar Signal Processing, Xidian University, Xi'an, China
– sequence: 4
  givenname: Hanyu
  orcidid: 0000-0002-5567-6126
  surname: E
  fullname: E, Hanyu
  organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
– sequence: 5
  givenname: Minghui
  surname: Sha
  fullname: Sha, Minghui
  organization: School of Information and Electronics Beijing Institute of Technology, Beijing, China
– sequence: 6
  givenname: Weike
  surname: Nie
  fullname: Nie, Weike
  organization: School of Information Science and Technology, Northwest University, Xi'an, China
– sequence: 7
  givenname: Yinghui
  orcidid: 0000-0001-6541-9441
  surname: Quan
  fullname: Quan, Yinghui
  organization: School of Electronic Engineering, Xidian University, Xi'an, China
BookMark eNp9kE1PAjEQhhuDiYD-AOOliefFTrsf9LjBVUiIJILxuCndFkpgu3a7Cv_eRYgHD55mJnmfmczTQ53SlgqhWyADAMIfFmk2H1BC6YBBGAKFC9SFKEoCHhPWQV1CYBhwGsEV6tX1ph3DYci66H1sVusglbJxQh7w4yzFWe3NTnhjS5xuV9YZv95h4fHUfuH5yyterJ1tVmuc7autNd6UKyzwvKmU-zS1KvCkLNT-Gl1qsa3Vzbn20dtTthiNg-nseTJKp4GknPmgKCCCpSxkGGqdDKWOC6GpCJmmVEeJiCQkcSELJljbEQWJWEIsl4LrWAsOrI_uT3srZz8aVft8YxtXtidzmhASAouHUZuCU0o6W9dO6bxy7Y_ukAPJj_7yo7_86C8_-2uZ5A8jjf_R4p0w23_JuxNplFK_l3jMIeGEfQPd9X-U
CODEN IEARAX
CitedBy_id crossref_primary_10_1016_j_sigpro_2025_110002
crossref_primary_10_23919_JSEE_2022_000057
crossref_primary_10_1007_s00034_024_02792_1
crossref_primary_10_1109_TAES_2023_3291678
crossref_primary_10_1109_ACCESS_2024_3377246
crossref_primary_10_1109_LGRS_2024_3462736
crossref_primary_10_1109_TAES_2022_3221066
crossref_primary_10_1109_LGRS_2023_3259426
crossref_primary_10_1016_j_dsp_2023_104227
crossref_primary_10_1109_TAES_2024_3394793
Cites_doi 10.1016/j.aeue.2020.153398
10.1016/j.sigpro.2015.12.002
10.1109/LWC.2020.2985014
10.3390/s17030515
10.1109/TASLP.2019.2939782
10.1016/j.sigpro.2009.12.008
10.1109/TAES.2021.3050667
10.1109/TAES.2013.6494379
10.3390/s151229832
10.1109/TIE.2018.2823666
10.5120/9970-4758
10.1109/TAES.2019.2910363
10.1109/LSP.2019.2909587
10.1109/97.789608
10.1049/iet-spr.2017.0462
10.1109/TSP.2008.929331
10.1109/APS.2011.5996404
10.1109/TFUZZ.2018.2889020
10.1049/iet-rsn.2018.5253
10.1016/j.sigpro.2016.01.011
10.1049/el.2020.1259
10.1109/TWC.2018.2833464
10.1109/ICASSP.2015.7178611
10.1109/TIE.2016.2516961
10.1016/j.dsp.2017.05.002
10.1016/j.sigpro.2020.107702
10.1109/TSP.2007.899343
10.1109/TSP.2015.2422675
10.3390/s18124320
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2022.3144121
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 3665
ExternalDocumentID 10_1109_TAES_2022_3144121
9691790
Genre orig-research
GrantInformation_xml – fundername: Shaanxi Provincial Fund for Distinguished Young Scholars
  grantid: 2021JC-23
– fundername: National Natural Science Foundation of China
  grantid: 62101400; 61971349
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c293t-dd151bcdc44ff78cf6daf2a43f22f57a5c176dcd3a3c170e17ab16cba9f6fa913
IEDL.DBID RIE
ISSN 0018-9251
IngestDate Mon Jun 30 10:13:23 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Wed Oct 01 01:23:40 EDT 2025
Wed Aug 27 02:23:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-dd151bcdc44ff78cf6daf2a43f22f57a5c176dcd3a3c170e17ab16cba9f6fa913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4408-9070
0000-0002-4084-0915
0000-0002-5567-6126
0000-0001-6541-9441
PQID 2700413685
PQPubID 85477
PageCount 8
ParticipantIDs crossref_primary_10_1109_TAES_2022_3144121
ieee_primary_9691790
proquest_journals_2700413685
crossref_citationtrail_10_1109_TAES_2022_3144121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
Hong (ref2) 1991; 50
ref11
ref33
ref10
ref32
ref1
ref17
ref16
ref19
ref18
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Toffano (ref29) 2016; 20
Zou (ref25) 2015; 16
Zhao (ref24)
References_xml – volume: 50
  start-page: 265
  issue: 5
  year: 1991
  ident: ref2
  article-title: Array signal processing and spatial spectral estimation using data transformation
  publication-title: J. Lumin.
– ident: ref11
  doi: 10.1016/j.aeue.2020.153398
– volume: 16
  start-page: 107
  issue: 1
  year: 2015
  ident: ref25
  article-title: High accuracy frequency and 2D-DOAs estimation of conformal array based on PARAFAC
  publication-title: J. Internet Technol.
– ident: ref15
  doi: 10.1016/j.sigpro.2015.12.002
– ident: ref22
  doi: 10.1109/LWC.2020.2985014
– ident: ref19
  doi: 10.3390/s17030515
– ident: ref23
  doi: 10.1109/TASLP.2019.2939782
– ident: ref6
  doi: 10.1016/j.sigpro.2009.12.008
– ident: ref17
  doi: 10.1109/TAES.2021.3050667
– ident: ref16
  doi: 10.1109/TAES.2013.6494379
– ident: ref26
  doi: 10.3390/s151229832
– ident: ref33
  doi: 10.1109/TIE.2018.2823666
– ident: ref4
  doi: 10.5120/9970-4758
– ident: ref18
  doi: 10.1109/TAES.2019.2910363
– ident: ref7
  doi: 10.1109/LSP.2019.2909587
– ident: ref31
  doi: 10.1109/97.789608
– ident: ref5
  doi: 10.1049/iet-spr.2017.0462
– ident: ref28
  doi: 10.1109/TSP.2008.929331
– ident: ref27
  doi: 10.1109/APS.2011.5996404
– volume: 20
  start-page: 348
  year: 2016
  ident: ref29
  article-title: Quantum observables for binary, multi-valued and fuzzy logic: Eigenlogic
  publication-title: Biophys. Mol. Biol.
– ident: ref20
  doi: 10.1109/TFUZZ.2018.2889020
– ident: ref21
  doi: 10.1049/iet-rsn.2018.5253
– ident: ref3
  doi: 10.1016/j.sigpro.2016.01.011
– ident: ref10
  doi: 10.1049/el.2020.1259
– start-page: 524
  volume-title: Proc. 2nd Int. Conf. Instrum., Meas., Comput., Commun. Control
  ident: ref24
  article-title: DOA estimation of coherent signals based on improved svd algorithm
– ident: ref30
  doi: 10.1109/TWC.2018.2833464
– ident: ref9
  doi: 10.1109/ICASSP.2015.7178611
– ident: ref8
  doi: 10.1109/TIE.2016.2516961
– ident: ref14
  doi: 10.1016/j.dsp.2017.05.002
– ident: ref32
  doi: 10.1016/j.sigpro.2020.107702
– ident: ref1
  doi: 10.1109/TSP.2007.899343
– ident: ref12
  doi: 10.1109/TSP.2015.2422675
– ident: ref13
  doi: 10.3390/s18124320
SSID ssj0014843
Score 2.4763844
Snippet Performance of direction of arrival (DOA) estimation is one of the most important issues in array signal processing. Subspace-based algorithms provide a good...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3658
SubjectTerms Accuracy
Algorithms
Array signal processing
Arrays
Breakdown
Closed loops
Correlation
Correlation analysis
Cost function
Direction of arrival
direction of arrival (DOA)
Direction-of-arrival estimation
Eigenvalues
Eigenvalues and eigenfunctions
Estimation
Indexes
Parameter modification
root-mean-square error (RMSE)
Signal processing
signal subspace
Signal to noise ratio
Similarity
Subspaces
Transformations (mathematics)
Title High-Accuracy DOA Estimation Algorithm at Low SNR Through Exploiting a Supervised Index
URI https://ieeexplore.ieee.org/document/9691790
https://www.proquest.com/docview/2700413685
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014843
  issn: 0018-9251
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4FUShIA9MiLSJkzjxWKGigqADbUW3yE9AQItKIgS_HttJK15CbB58kXVn-_PlvrsDOMJC8RhL6sWpIl4UcuUx5SKF3KZd6lC7ROGrPumNootxPF6Ck0UujFLKkc9Uyw5dLF9ORWF_lbUpobag1DIsJykpc7UWEYMorRhygTnABrSrCGbg0_aw0x0YTxBj46Aa9MfBFwxyTVV-3MQOXs7W4Wq-sJJV8tAqct4S799qNv535RuwVr0zUafcGJuwpCZbsPqp-mAdbizHw-sIUcyYeEPGS0Rdc-DLXEbUebydzu7zuyfEcnQ5fUWD_jUall19kGPu3VvGNGJoUDzbC-dFSXRuay9uw-isOzzteVWfBU8YsM89KQ3scyFFFGmdpEITyTRmkbET1nHCYhEkRAoZstCMfBUkjAdEcEY10YwG4Q7UJtOJ2gUUm_eMjARWlPmRDCXVRoSHiS85wcb-DfDnms9EVYTc9sJ4zJwz4tPMGiuzxsoqYzXgeCHyXFbg-Gty3Sp_MbHSewOac_Nm1Rl9yWzI3UA4SeO936X2YcV-u6T7NaGWzwp1YJ4gOT90e-8DZarXwA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB3RcCgcChQQaVPwoaeKDbte2xsfoyooQJJDEwS3lT8BAQkKu6rKr8f2biJoEerNB1trzdh-MztvZgC-Y2UkxZpHtGNYRFJpImFCpFD6tEub2pAoPByx_jk5vaSXK3C4zIUxxgTymWn7YYjl65kq_a-yI864Lyj1AVYpIYRW2VrLmAHp1By5xF1hB9t1DDOJ-dGk2xs7XxBj56I6_MfJKxQKbVX-eYsDwBxvwHCxtYpXctsuC9lWT39VbfzfvW_Cp9rSRN3qaGzBipl-hvUX9Qe34cKzPKKuUuVcqD_I-Ymo5658lc2IundXs_lNcX2PRIEGs99oPPqFJlVfHxS4ezeeM40EGpcP_sl5NBqd-OqLO3B-3Jv87Ed1p4VIObgvIq0d8EulFSHWZh1lmRYWC-I0hS3NBFVJxrTSqUjdKDZJJmTClBTcMit4ku5CYzqbmj1A1Fk0mihsuIiJTjW3bolMs1hLht0JaEK8kHyu6jLkvhvGXR7ckZjnXlm5V1ZeK6sJP5ZLHqoaHO9N3vbCX06s5d6E1kK9eX1LH3MfdHcgzjr0y9urDuBjfzIc5IOT0dlXWPPfqch_LWgU89J8cwZJIffDOXwG23rbDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Accuracy+DOA+Estimation+Algorithm+at+Low+SNR+Through+Exploiting+a+Supervised+Index&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Xu%2C+Kaijie&rft.au=Xing%2C+Mengdao&rft.au=Zhang%2C+Rui&rft.au=Hanyu%2C+E&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=58&rft.issue=4&rft.spage=3658&rft_id=info:doi/10.1109%2FTAES.2022.3144121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon