DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction

Traffic prediction is an important part of building a smart city. Reasonable traffic prediction can help the relevant departments to make important decisions and help people to plan their travel routes. However, due to its complex spatial-temporal correlation has been a challenging task, and even th...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 22; no. 13; pp. 13116 - 13124
Main Authors Hu, Jia, Lin, Xianghong, Wang, Chu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2022.3176016

Cover

Abstract Traffic prediction is an important part of building a smart city. Reasonable traffic prediction can help the relevant departments to make important decisions and help people to plan their travel routes. However, due to its complex spatial-temporal correlation has been a challenging task, and even though current research has progressed to some extent, it still generally focuses on modelling relationships between node pairs and between node history information, neglecting the analysis of node properties, leading to performance bottlenecks. To overcome these problems, we propose a dynamic spatial-temporal graph convolutional network (DSTGCN). Specifically, we design a dynamic graph generation module that collects information on geographical proximity and spatial heterogeneity between node pairs in advance and adaptively fuses the two types of information at each time step to generate a new dynamic graph. The dynamic graph module gives DSTGCN the ability to capture dynamic traffic information. In addition, we construct a graph convolution cycle module that captures local temporal dependencies on the basis of merging spatial relationships. It complements the dynamic graph module to jointly capture the spatial-temporal dependence of the traffic data. We validate the effectiveness of our model on two types of traffic prediction tasks, with DSTGCN outperforming the majority of baseline models.
AbstractList Traffic prediction is an important part of building a smart city. Reasonable traffic prediction can help the relevant departments to make important decisions and help people to plan their travel routes. However, due to its complex spatial-temporal correlation has been a challenging task, and even though current research has progressed to some extent, it still generally focuses on modelling relationships between node pairs and between node history information, neglecting the analysis of node properties, leading to performance bottlenecks. To overcome these problems, we propose a dynamic spatial-temporal graph convolutional network (DSTGCN). Specifically, we design a dynamic graph generation module that collects information on geographical proximity and spatial heterogeneity between node pairs in advance and adaptively fuses the two types of information at each time step to generate a new dynamic graph. The dynamic graph module gives DSTGCN the ability to capture dynamic traffic information. In addition, we construct a graph convolution cycle module that captures local temporal dependencies on the basis of merging spatial relationships. It complements the dynamic graph module to jointly capture the spatial-temporal dependence of the traffic data. We validate the effectiveness of our model on two types of traffic prediction tasks, with DSTGCN outperforming the majority of baseline models.
Author Hu, Jia
Lin, Xianghong
Wang, Chu
Author_xml – sequence: 1
  givenname: Jia
  orcidid: 0000-0002-2852-6528
  surname: Hu
  fullname: Hu, Jia
  organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
– sequence: 2
  givenname: Xianghong
  orcidid: 0000-0002-7932-0546
  surname: Lin
  fullname: Lin, Xianghong
  email: linxh@nwnu.edu.cn
  organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
– sequence: 3
  givenname: Chu
  orcidid: 0000-0002-8687-9911
  surname: Wang
  fullname: Wang, Chu
  organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
BookMark eNp9kE9Lw0AQxRepYFv9AOIl4Dl1_2Szu94krVUpVUgEb8tms4upaTZuUqXf3oQWDx48zTC838y8NwGj2tUGgEsEZwhBcfOULtYzDDGeEcRiiOITMEaU8hCxiI-GnsAwIuztDEzadgMhEoyyMUjnabZM1rfBfF-rbamDtFFdqaowM9vGeVUFS6-a9yBx9Zerdl3p6n62Nt238x-BdT7IvLK2B1-8KUo9CM7BqVVVay6OdQpe7xdZ8hCunpePyd0q1FiQLiwEjbjgiuTIcg15HiliKC80ZULTvMgjTS1m3OiC8DgSeSHyOOIcYWMUt4JMwfVhb-Pd5860ndy4ne__ayWOORa9Zzyo0EGlvWtbb6xsfLlVfi8RlEN2cshODtnJY3Y9w_4wuuzU4K3zqqz-Ja8OZGmM-b0kGGMCUvIDwCF-Hw
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3390_app13169304
crossref_primary_10_1109_TII_2024_3476542
crossref_primary_10_12677_SEA_2023_122029
crossref_primary_10_12677_ORF_2023_133234
crossref_primary_10_1631_FITEE_2300571
crossref_primary_10_3390_s23239308
crossref_primary_10_3390_ijgi12030100
crossref_primary_10_1109_JSEN_2023_3316152
crossref_primary_10_3390_app14104325
crossref_primary_10_1016_j_knosys_2024_111952
crossref_primary_10_1109_TNSM_2024_3453381
crossref_primary_10_1007_s10479_023_05223_7
crossref_primary_10_1016_j_ins_2024_121767
Cites_doi 10.1109/TMM.2021.3088307
10.18653/v1/P19-1128
10.1061/(asce)0733-947x(2003)129:6(664)
10.1109/TKDE.2023.3284156
10.3837/tiis.2016.01.008
10.1016/j.trc.2014.02.009
10.18653/v1/P19-1466
10.1109/72.279188
10.1145/2939672.2939754
10.1145/3532611
10.1145/3366423.3380186
10.1609/aaai.v33i01.3301922
10.1609/aaai.v31i1.10735
10.24963/ijcai.2019/264
10.1145/3459637.3482297
10.1609/aaai.v33i01.33015668
10.1145/3442381.3450120
10.21437/SSW.2016
10.1145/3394486.3403118
10.1145/3447548.3467275
10.1609/aaai.v34i01.5477
10.1162/neco.1997.9.8.1735
10.1145/3511020
10.1109/TITS.2004.837813
10.1145/3292500.3330884
10.1109/TKDE.2021.3056502
10.1609/aaai.v32i1.11836
10.3115/v1/D14-1179
10.1145/2939672.2939753
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3176016
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 13124
ExternalDocumentID 10_1109_JSEN_2022_3176016
9777905
Genre orig-research
GrantInformation_xml – fundername: Youth Science and Technology Fund Project of Gansu Province
  grantid: 20JR10RA097
– fundername: National Natural Science Foundation of China
  grantid: 61762080
  funderid: 10.13039/501100001809
– fundername: Lanzhou Municipal Science Technology Project
  grantid: 2019-1-34
– fundername: Key Research and Development Project of Gansu Province
  grantid: 20YF8GA049
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-d954898a3b1f8c08b4a3e58dc579c5bdb4c5f278ecd38649bd9b648812eea8f93
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:11:10 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Oct 01 05:05:47 EDT 2025
Wed Aug 27 02:23:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d954898a3b1f8c08b4a3e58dc579c5bdb4c5f278ecd38649bd9b648812eea8f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2852-6528
0000-0002-7932-0546
0000-0002-8687-9911
PQID 2682915329
PQPubID 75733
PageCount 9
ParticipantIDs ieee_primary_9777905
crossref_primary_10_1109_JSEN_2022_3176016
proquest_journals_2682915329
crossref_citationtrail_10_1109_JSEN_2022_3176016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Yu (ref35) 2017
ref24
ref23
ref26
Gilmer (ref27)
ref25
ref20
Kipf (ref29) 2016
Li (ref11) 2017
ref22
ref21
Gasteiger (ref28) 2018
ref8
ref7
ref9
ref4
ref3
Kingma (ref34) 2014
ref6
ref5
References_xml – ident: ref21
  doi: 10.1109/TMM.2021.3088307
– ident: ref26
  doi: 10.18653/v1/P19-1128
– ident: ref6
  doi: 10.1061/(asce)0733-947x(2003)129:6(664)
– ident: ref14
  doi: 10.1109/TKDE.2023.3284156
– ident: ref4
  doi: 10.3837/tiis.2016.01.008
– ident: ref17
  doi: 10.1016/j.trc.2014.02.009
– year: 2017
  ident: ref35
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
  publication-title: arXiv:1709.04875
– year: 2014
  ident: ref34
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref25
  doi: 10.18653/v1/P19-1466
– start-page: 1263
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref27
  article-title: Neural message passing for quantum chemistry
– year: 2016
  ident: ref29
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv:1609.02907
– ident: ref7
  doi: 10.1109/72.279188
– ident: ref30
  doi: 10.1145/2939672.2939754
– year: 2017
  ident: ref11
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
  publication-title: arXiv:1707.01926
– ident: ref13
  doi: 10.1145/3532611
– ident: ref1
  doi: 10.1145/3366423.3380186
– ident: ref3
  doi: 10.1609/aaai.v33i01.3301922
– ident: ref18
  doi: 10.1609/aaai.v31i1.10735
– ident: ref32
  doi: 10.24963/ijcai.2019/264
– ident: ref22
  doi: 10.1145/3459637.3482297
– ident: ref20
  doi: 10.1609/aaai.v33i01.33015668
– ident: ref23
  doi: 10.1145/3442381.3450120
– ident: ref33
  doi: 10.21437/SSW.2016
– ident: ref12
  doi: 10.1145/3394486.3403118
– ident: ref16
  doi: 10.1145/3447548.3467275
– ident: ref2
  doi: 10.1609/aaai.v34i01.5477
– ident: ref8
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref24
  doi: 10.1145/3511020
– year: 2018
  ident: ref28
  article-title: Predict then propagate: Graph neural networks meet personalized PageRank
  publication-title: arXiv:1810.05997
– ident: ref5
  doi: 10.1109/TITS.2004.837813
– ident: ref10
  doi: 10.1145/3292500.3330884
– ident: ref15
  doi: 10.1109/TKDE.2021.3056502
– ident: ref19
  doi: 10.1609/aaai.v32i1.11836
– ident: ref9
  doi: 10.3115/v1/D14-1179
– ident: ref31
  doi: 10.1145/2939672.2939753
SSID ssj0019757
Score 2.4484231
Snippet Traffic prediction is an important part of building a smart city. Reasonable traffic prediction can help the relevant departments to make important decisions...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13116
SubjectTerms Artificial neural networks
Correlation
dynamic graph
Heterogeneity
Modules
Nodes
Predictive models
Roads
Sensor phenomena and characterization
Sensors
spatial heterogeneity
spatial-temporal correlation
Task analysis
Traffic information
Traffic prediction
Vehicle dynamics
Title DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
URI https://ieeexplore.ieee.org/document/9777905
https://www.proquest.com/docview/2682915329
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_UF_XBj6k4v8iDT2Jn16Zt4pvM6RhsCNtgbyVJUwTHJnMT9K_3rs2GX4hvpb2UkLvL3eUuvwM4F5nk-CnxVJIbj-sYVSpXsRfmaG0NRSCGDvQ73bg14O1hNFyBy-VdGGttUXxma_RY5PKziZnTUdkV-iqEJ7UKq4mIy7tay4yBTApUT1Rg3-NhMnQZzLovr9q9ZhcjwSDAAJVKQOIvNqhoqvJjJy7My902dBYTK6tKnmrzma6Z92-Yjf-d-Q5sOT-T3ZSCsQsrdlyBzU_ogxVYdw3QH9_2oHfb6983utfstuxQz6hVMYqm1y-hq0bsnihZYzJ-dcKK77plDTlDx5eh0SM0CvYwpdQPEezD4K7Zb7Q812_BM2j0Z15G4G9SqFDXc2F8obkKbSQyEyXSRDrT3ER5kAhrslDEXOpM6hg3gHpgrRK5DA9gbTwZ20NgYSBt4itcdG64ElxxGRrfz3LcW7mxqgr-ggOpcWDk1BNjlBZBiS9TYlpKTEsd06pwsRzyXCJx_EW8R0xYErr1r8LJgs2p09WXNIhFIFFuAnn0-6hj2KB_l0W6J7A2m87tKboiM31WyOAHBcLZxg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED_x8VD2sAEdWgcDP_A0LW2aOInN29RSutJGk9pKfYtsxxESqJ1YO2n89dwlbsVgQrxFyVmxfHe-O9_5dwDnIpccPyWeSgrjcR2jShUq9sICra2hCMTQgf4ojftTPphFsy34trkLY60ti89skx7LXH6-MCs6Kmuhr0J4UtuwG3HOo-q21iZnIJMS1xNV2Pd4mMxcDrPty9ZgfJliLBgEGKJSEUj8jxUq26q82ItLA9P7AKP11Kq6ktvmaqmb5uEZauNb574P752nyb5XonEAW3Z-CO-e4A8eQs21QL_5W4dxdzy56qQXrFv1qGfUrBiF05tU4FV37IooWWcx_-PEFd-lVRU5Q9eXodkjPAr2856SP0TwEaa9y0mn77mOC55Bs7_0coJ_k0KFul0I4wvNVWgjkZsokSbSueYmKoJEWJOHIuZS51LHuAW0A2uVKGR4BDvzxdx-AhYG0ia-wkXnhivBFZeh8f28wN2VG6sa4K85kBkHR05dMe6yMizxZUZMy4hpmWNaA75uhvyqsDheI64TEzaEbv0bcLJmc-a09XcWxCKQKDeB_Pz_UWdQ609Gw2z4I70-hj36T1WyewI7y_uV_YKOyVKflvL4CJb03RM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DSTGCN%3A+Dynamic+Spatial-Temporal+Graph+Convolutional+Network+for+Traffic+Prediction&rft.jtitle=IEEE+sensors+journal&rft.au=Hu%2C+Jia&rft.au=Lin%2C+Xianghong&rft.au=Chu%2C+Wang&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=13&rft.spage=13116&rft_id=info:doi/10.1109%2FJSEN.2022.3176016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon