DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
Traffic prediction is an important part of building a smart city. Reasonable traffic prediction can help the relevant departments to make important decisions and help people to plan their travel routes. However, due to its complex spatial-temporal correlation has been a challenging task, and even th...
        Saved in:
      
    
          | Published in | IEEE sensors journal Vol. 22; no. 13; pp. 13116 - 13124 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.07.2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1530-437X 1558-1748  | 
| DOI | 10.1109/JSEN.2022.3176016 | 
Cover
| Abstract | Traffic prediction is an important part of building a smart city. Reasonable traffic prediction can help the relevant departments to make important decisions and help people to plan their travel routes. However, due to its complex spatial-temporal correlation has been a challenging task, and even though current research has progressed to some extent, it still generally focuses on modelling relationships between node pairs and between node history information, neglecting the analysis of node properties, leading to performance bottlenecks. To overcome these problems, we propose a dynamic spatial-temporal graph convolutional network (DSTGCN). Specifically, we design a dynamic graph generation module that collects information on geographical proximity and spatial heterogeneity between node pairs in advance and adaptively fuses the two types of information at each time step to generate a new dynamic graph. The dynamic graph module gives DSTGCN the ability to capture dynamic traffic information. In addition, we construct a graph convolution cycle module that captures local temporal dependencies on the basis of merging spatial relationships. It complements the dynamic graph module to jointly capture the spatial-temporal dependence of the traffic data. We validate the effectiveness of our model on two types of traffic prediction tasks, with DSTGCN outperforming the majority of baseline models. | 
    
|---|---|
| AbstractList | Traffic prediction is an important part of building a smart city. Reasonable traffic prediction can help the relevant departments to make important decisions and help people to plan their travel routes. However, due to its complex spatial-temporal correlation has been a challenging task, and even though current research has progressed to some extent, it still generally focuses on modelling relationships between node pairs and between node history information, neglecting the analysis of node properties, leading to performance bottlenecks. To overcome these problems, we propose a dynamic spatial-temporal graph convolutional network (DSTGCN). Specifically, we design a dynamic graph generation module that collects information on geographical proximity and spatial heterogeneity between node pairs in advance and adaptively fuses the two types of information at each time step to generate a new dynamic graph. The dynamic graph module gives DSTGCN the ability to capture dynamic traffic information. In addition, we construct a graph convolution cycle module that captures local temporal dependencies on the basis of merging spatial relationships. It complements the dynamic graph module to jointly capture the spatial-temporal dependence of the traffic data. We validate the effectiveness of our model on two types of traffic prediction tasks, with DSTGCN outperforming the majority of baseline models. | 
    
| Author | Hu, Jia Lin, Xianghong Wang, Chu  | 
    
| Author_xml | – sequence: 1 givenname: Jia orcidid: 0000-0002-2852-6528 surname: Hu fullname: Hu, Jia organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China – sequence: 2 givenname: Xianghong orcidid: 0000-0002-7932-0546 surname: Lin fullname: Lin, Xianghong email: linxh@nwnu.edu.cn organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China – sequence: 3 givenname: Chu orcidid: 0000-0002-8687-9911 surname: Wang fullname: Wang, Chu organization: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China  | 
    
| BookMark | eNp9kE9Lw0AQxRepYFv9AOIl4Dl1_2Szu94krVUpVUgEb8tms4upaTZuUqXf3oQWDx48zTC838y8NwGj2tUGgEsEZwhBcfOULtYzDDGeEcRiiOITMEaU8hCxiI-GnsAwIuztDEzadgMhEoyyMUjnabZM1rfBfF-rbamDtFFdqaowM9vGeVUFS6-a9yBx9Zerdl3p6n62Nt238x-BdT7IvLK2B1-8KUo9CM7BqVVVay6OdQpe7xdZ8hCunpePyd0q1FiQLiwEjbjgiuTIcg15HiliKC80ZULTvMgjTS1m3OiC8DgSeSHyOOIcYWMUt4JMwfVhb-Pd5860ndy4ne__ayWOORa9Zzyo0EGlvWtbb6xsfLlVfi8RlEN2cshODtnJY3Y9w_4wuuzU4K3zqqz-Ja8OZGmM-b0kGGMCUvIDwCF-Hw | 
    
| CODEN | ISJEAZ | 
    
| CitedBy_id | crossref_primary_10_3390_app13169304 crossref_primary_10_1109_TII_2024_3476542 crossref_primary_10_12677_SEA_2023_122029 crossref_primary_10_12677_ORF_2023_133234 crossref_primary_10_1631_FITEE_2300571 crossref_primary_10_3390_s23239308 crossref_primary_10_3390_ijgi12030100 crossref_primary_10_1109_JSEN_2023_3316152 crossref_primary_10_3390_app14104325 crossref_primary_10_1016_j_knosys_2024_111952 crossref_primary_10_1109_TNSM_2024_3453381 crossref_primary_10_1007_s10479_023_05223_7 crossref_primary_10_1016_j_ins_2024_121767  | 
    
| Cites_doi | 10.1109/TMM.2021.3088307 10.18653/v1/P19-1128 10.1061/(asce)0733-947x(2003)129:6(664) 10.1109/TKDE.2023.3284156 10.3837/tiis.2016.01.008 10.1016/j.trc.2014.02.009 10.18653/v1/P19-1466 10.1109/72.279188 10.1145/2939672.2939754 10.1145/3532611 10.1145/3366423.3380186 10.1609/aaai.v33i01.3301922 10.1609/aaai.v31i1.10735 10.24963/ijcai.2019/264 10.1145/3459637.3482297 10.1609/aaai.v33i01.33015668 10.1145/3442381.3450120 10.21437/SSW.2016 10.1145/3394486.3403118 10.1145/3447548.3467275 10.1609/aaai.v34i01.5477 10.1162/neco.1997.9.8.1735 10.1145/3511020 10.1109/TITS.2004.837813 10.1145/3292500.3330884 10.1109/TKDE.2021.3056502 10.1609/aaai.v32i1.11836 10.3115/v1/D14-1179 10.1145/2939672.2939753  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| DOI | 10.1109/JSEN.2022.3176016 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Engineering  | 
    
| EISSN | 1558-1748 | 
    
| EndPage | 13124 | 
    
| ExternalDocumentID | 10_1109_JSEN_2022_3176016 9777905  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Youth Science and Technology Fund Project of Gansu Province grantid: 20JR10RA097 – fundername: National Natural Science Foundation of China grantid: 61762080 funderid: 10.13039/501100001809 – fundername: Lanzhou Municipal Science Technology Project grantid: 2019-1-34 – fundername: Key Research and Development Project of Gansu Province grantid: 20YF8GA049  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c293t-d954898a3b1f8c08b4a3e58dc579c5bdb4c5f278ecd38649bd9b648812eea8f93 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1530-437X | 
    
| IngestDate | Mon Jun 30 10:11:10 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Oct 01 05:05:47 EDT 2025 Wed Aug 27 02:23:53 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c293t-d954898a3b1f8c08b4a3e58dc579c5bdb4c5f278ecd38649bd9b648812eea8f93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2852-6528 0000-0002-7932-0546 0000-0002-8687-9911  | 
    
| PQID | 2682915329 | 
    
| PQPubID | 75733 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | ieee_primary_9777905 crossref_primary_10_1109_JSEN_2022_3176016 proquest_journals_2682915329 crossref_citationtrail_10_1109_JSEN_2022_3176016  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-07-01 | 
    
| PublicationDateYYYYMMDD | 2022-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE sensors journal | 
    
| PublicationTitleAbbrev | JSEN | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Yu (ref35) 2017 ref24 ref23 ref26 Gilmer (ref27) ref25 ref20 Kipf (ref29) 2016 Li (ref11) 2017 ref22 ref21 Gasteiger (ref28) 2018 ref8 ref7 ref9 ref4 ref3 Kingma (ref34) 2014 ref6 ref5  | 
    
| References_xml | – ident: ref21 doi: 10.1109/TMM.2021.3088307 – ident: ref26 doi: 10.18653/v1/P19-1128 – ident: ref6 doi: 10.1061/(asce)0733-947x(2003)129:6(664) – ident: ref14 doi: 10.1109/TKDE.2023.3284156 – ident: ref4 doi: 10.3837/tiis.2016.01.008 – ident: ref17 doi: 10.1016/j.trc.2014.02.009 – year: 2017 ident: ref35 article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting publication-title: arXiv:1709.04875 – year: 2014 ident: ref34 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref25 doi: 10.18653/v1/P19-1466 – start-page: 1263 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref27 article-title: Neural message passing for quantum chemistry – year: 2016 ident: ref29 article-title: Semi-supervised classification with graph convolutional networks publication-title: arXiv:1609.02907 – ident: ref7 doi: 10.1109/72.279188 – ident: ref30 doi: 10.1145/2939672.2939754 – year: 2017 ident: ref11 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting publication-title: arXiv:1707.01926 – ident: ref13 doi: 10.1145/3532611 – ident: ref1 doi: 10.1145/3366423.3380186 – ident: ref3 doi: 10.1609/aaai.v33i01.3301922 – ident: ref18 doi: 10.1609/aaai.v31i1.10735 – ident: ref32 doi: 10.24963/ijcai.2019/264 – ident: ref22 doi: 10.1145/3459637.3482297 – ident: ref20 doi: 10.1609/aaai.v33i01.33015668 – ident: ref23 doi: 10.1145/3442381.3450120 – ident: ref33 doi: 10.21437/SSW.2016 – ident: ref12 doi: 10.1145/3394486.3403118 – ident: ref16 doi: 10.1145/3447548.3467275 – ident: ref2 doi: 10.1609/aaai.v34i01.5477 – ident: ref8 doi: 10.1162/neco.1997.9.8.1735 – ident: ref24 doi: 10.1145/3511020 – year: 2018 ident: ref28 article-title: Predict then propagate: Graph neural networks meet personalized PageRank publication-title: arXiv:1810.05997 – ident: ref5 doi: 10.1109/TITS.2004.837813 – ident: ref10 doi: 10.1145/3292500.3330884 – ident: ref15 doi: 10.1109/TKDE.2021.3056502 – ident: ref19 doi: 10.1609/aaai.v32i1.11836 – ident: ref9 doi: 10.3115/v1/D14-1179 – ident: ref31 doi: 10.1145/2939672.2939753  | 
    
| SSID | ssj0019757 | 
    
| Score | 2.4484231 | 
    
| Snippet | Traffic prediction is an important part of building a smart city. Reasonable traffic prediction can help the relevant departments to make important decisions... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 13116 | 
    
| SubjectTerms | Artificial neural networks Correlation dynamic graph Heterogeneity Modules Nodes Predictive models Roads Sensor phenomena and characterization Sensors spatial heterogeneity spatial-temporal correlation Task analysis Traffic information Traffic prediction Vehicle dynamics  | 
    
| Title | DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction | 
    
| URI | https://ieeexplore.ieee.org/document/9777905 https://www.proquest.com/docview/2682915329  | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_UF_XBj6k4v8iDT2Jn16Zt4pvM6RhsCNtgbyVJUwTHJnMT9K_3rs2GX4hvpb2UkLvL3eUuvwM4F5nk-CnxVJIbj-sYVSpXsRfmaG0NRSCGDvQ73bg14O1hNFyBy-VdGGttUXxma_RY5PKziZnTUdkV-iqEJ7UKq4mIy7tay4yBTApUT1Rg3-NhMnQZzLovr9q9ZhcjwSDAAJVKQOIvNqhoqvJjJy7My902dBYTK6tKnmrzma6Z92-Yjf-d-Q5sOT-T3ZSCsQsrdlyBzU_ogxVYdw3QH9_2oHfb6983utfstuxQz6hVMYqm1y-hq0bsnihZYzJ-dcKK77plDTlDx5eh0SM0CvYwpdQPEezD4K7Zb7Q812_BM2j0Z15G4G9SqFDXc2F8obkKbSQyEyXSRDrT3ER5kAhrslDEXOpM6hg3gHpgrRK5DA9gbTwZ20NgYSBt4itcdG64ElxxGRrfz3LcW7mxqgr-ggOpcWDk1BNjlBZBiS9TYlpKTEsd06pwsRzyXCJx_EW8R0xYErr1r8LJgs2p09WXNIhFIFFuAnn0-6hj2KB_l0W6J7A2m87tKboiM31WyOAHBcLZxg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED_x8VD2sAEdWgcDP_A0LW2aOInN29RSutJGk9pKfYtsxxESqJ1YO2n89dwlbsVgQrxFyVmxfHe-O9_5dwDnIpccPyWeSgrjcR2jShUq9sICra2hCMTQgf4ojftTPphFsy34trkLY60ti89skx7LXH6-MCs6Kmuhr0J4UtuwG3HOo-q21iZnIJMS1xNV2Pd4mMxcDrPty9ZgfJliLBgEGKJSEUj8jxUq26q82ItLA9P7AKP11Kq6ktvmaqmb5uEZauNb574P752nyb5XonEAW3Z-CO-e4A8eQs21QL_5W4dxdzy56qQXrFv1qGfUrBiF05tU4FV37IooWWcx_-PEFd-lVRU5Q9eXodkjPAr2856SP0TwEaa9y0mn77mOC55Bs7_0coJ_k0KFul0I4wvNVWgjkZsokSbSueYmKoJEWJOHIuZS51LHuAW0A2uVKGR4BDvzxdx-AhYG0ia-wkXnhivBFZeh8f28wN2VG6sa4K85kBkHR05dMe6yMizxZUZMy4hpmWNaA75uhvyqsDheI64TEzaEbv0bcLJmc-a09XcWxCKQKDeB_Pz_UWdQ609Gw2z4I70-hj36T1WyewI7y_uV_YKOyVKflvL4CJb03RM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DSTGCN%3A+Dynamic+Spatial-Temporal+Graph+Convolutional+Network+for+Traffic+Prediction&rft.jtitle=IEEE+sensors+journal&rft.au=Hu%2C+Jia&rft.au=Lin%2C+Xianghong&rft.au=Chu%2C+Wang&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=13&rft.spage=13116&rft_id=info:doi/10.1109%2FJSEN.2022.3176016&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |