Meta-Reweighted Regularization for Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain distribution discrepancy, and the adversarial learning based paradigm has achieved remarkable success. On top of the derived domain-invariant featur...
Saved in:
| Published in | IEEE transactions on knowledge and data engineering Vol. 35; no. 3; pp. 2781 - 2795 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1041-4347 1558-2191 |
| DOI | 10.1109/TKDE.2021.3114536 |
Cover
| Abstract | Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain distribution discrepancy, and the adversarial learning based paradigm has achieved remarkable success. On top of the derived domain-invariant feature representations, a promising stream of recent works seeks to further regularize the classification decision boundary via self-training to learn target adaptive classifier with pseudo-labeled target samples. However, since the pseudo labels are inevitably noisy, most of prior methods focus on manually designing elaborate target selection algorithms or optimization objectives to combat the negative effect caused by the incorrect pseudo labels. Different from them, in this paper, we propose a simple and powerful meta-learning based target-reweighting regularization algorithm, called MetaReg, which regularizes the model training by learning to reweight the noisy pseudo-labeled target samples. Specifically, MetaReg is motivated by the intuition that an ideal target classifier trained on correct target pseudo labels should make small classification errors on target-like source samples. Therefore, we explicitly define a meta reweighting problem that aims to find the optimal weights for different target pseudo labels by minimizing the classification loss on a designed validation set, a class-balanced set consisting of source samples that are most similar to target ones. Note that the optimization problem can be solved efficiently with a simplified approximation technique. As a result, the automatically learned optimal weights are utilized to reweight pseudo-labeled target samples, and regularize the model learning by target supervision with the learned different importance. Comprehensive experiments on several cross-domain image and text datasets verify that MetaReg could outperform the non-regularized UDA counterparts with state-of-the-art performance. Code is available at https://github.com/BIT-DA/MetaReg . |
|---|---|
| AbstractList | Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain distribution discrepancy, and the adversarial learning based paradigm has achieved remarkable success. On top of the derived domain-invariant feature representations, a promising stream of recent works seeks to further regularize the classification decision boundary via self-training to learn target adaptive classifier with pseudo-labeled target samples. However, since the pseudo labels are inevitably noisy, most of prior methods focus on manually designing elaborate target selection algorithms or optimization objectives to combat the negative effect caused by the incorrect pseudo labels. Different from them, in this paper, we propose a simple and powerful meta-learning based target-reweighting regularization algorithm, called MetaReg, which regularizes the model training by learning to reweight the noisy pseudo-labeled target samples. Specifically, MetaReg is motivated by the intuition that an ideal target classifier trained on correct target pseudo labels should make small classification errors on target-like source samples. Therefore, we explicitly define a meta reweighting problem that aims to find the optimal weights for different target pseudo labels by minimizing the classification loss on a designed validation set, a class-balanced set consisting of source samples that are most similar to target ones. Note that the optimization problem can be solved efficiently with a simplified approximation technique. As a result, the automatically learned optimal weights are utilized to reweight pseudo-labeled target samples, and regularize the model learning by target supervision with the learned different importance. Comprehensive experiments on several cross-domain image and text datasets verify that MetaReg could outperform the non-regularized UDA counterparts with state-of-the-art performance. Code is available at https://github.com/BIT-DA/MetaReg . |
| Author | Liu, Chi Harold Zhang, Jinming Liang, Jian Ma, Wenxuan Li, Shuang Wang, Guoren |
| Author_xml | – sequence: 1 givenname: Shuang surname: Li fullname: Li, Shuang email: shuangli@bit.edu.cn organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Wenxuan surname: Ma fullname: Ma, Wenxuan email: wenxuanma@bit.edu.cn organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Jinming surname: Zhang fullname: Zhang, Jinming email: jinmingzhang@bit.edu.cn organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Chi Harold orcidid: 0000-0002-0252-329X surname: Liu fullname: Liu, Chi Harold email: chiliu@bit.edu.cn organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Jian orcidid: 0000-0001-5352-0278 surname: Liang fullname: Liang, Jian email: liangjianzb12@gmail.com organization: AI for International Department, Alibaba Group, Beijing, China – sequence: 6 givenname: Guoren surname: Wang fullname: Wang, Guoren email: wanggrbit@bit.edu.cn organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China |
| BookMark | eNp9kEtPwkAQxzcGEwH9AMZLE8_Fne6rPRLwFTEmBM6bZR-4BNq6WzT66S2WePDgaSaZ_yPzG6BeWZUWoUvAIwBc3CyeprejDGcwIgCUEX6C-sBYnmZQQK_dMYWUEirO0CDGDcY4Fzn00fjZNiqd2w_r16-NNcncrvdbFfyXanxVJq4KybKM-9qGdx_b-7TaKV8mY6Pq5kdyjk6d2kZ7cZxDtLy7XUwe0tnL_eNkPEt1VpAmNTnT2FBlDLcr5ojhNMeMUrfiuh25dYq7PFNCG0WAaGEFdiulC3BgSBsxRNddbh2qt72NjdxU-1C2lTITglBGMWetCjqVDlWMwTpZB79T4VMClgdS8kBKHkjJI6nWI_54tO9-a4Ly23-dV53TW2t_mwpGORdAvgHsgXiR |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1109_TKDE_2023_3316168 crossref_primary_10_1007_s10115_023_02043_w crossref_primary_10_1109_JIOT_2024_3490037 crossref_primary_10_1109_TAI_2024_3404411 crossref_primary_10_1109_TKDE_2023_3266785 crossref_primary_10_1109_TIP_2024_3364500 crossref_primary_10_1016_j_jai_2023_11_003 crossref_primary_10_1109_TIP_2025_3533199 crossref_primary_10_1109_TPAMI_2024_3438154 |
| Cites_doi | 10.1007/978-3-030-01219-9_18 10.1609/aaai.v34i04.5757 10.1109/CVPR42600.2020.00400 10.1109/TKDE.2018.2837085 10.1609/aaai.v32i1.11767 10.1109/5.726791 10.1109/CVPR.2019.00049 10.1109/TKDE.2016.2554549 10.1145/3343031.3351070 10.7551/mitpress/7503.003.0069 10.1109/CVPR46437.2021.01499 10.1109/TPAMI.2021.3079209 10.1109/CVPR42600.2020.00410 10.1109/TNNLS.2016.2538282 10.1109/TKDE.2009.191 10.1109/ICCV.2013.274 10.1109/CVPR42600.2020.00763 10.1109/TPAMI.2018.2868685 10.1109/TKDE.2013.111 10.1609/aaai.v32i1.11596 10.1109/CVPR42600.2020.01247 10.1109/CVPR.2017.572 10.1109/CVPR.2018.00392 10.1109/TPAMI.2020.3009758 10.5555/3454287.3455008 10.1109/CVPR.2018.00835 10.1609/aaai.v34i04.5745 10.24963/ijcai.2020/440 10.1609/aaai.v33i01.33015345 10.1109/CVPR.2019.00753 10.1109/TKDE.2016.2551241 10.5555/2946645.2946704 10.3115/1610075.1610094 10.1609/aaai.v30i1.10306 10.1109/TKDE.2018.2864732 10.18653/vl/N19-142 10.1109/TKDE.2020.2984212 10.1109/CVPR.2016.90 10.1007/s10994-009-5152-4 10.1007/978-3-319-49409-8_35 10.7551/mitpress/7503.003.0022 10.1609/aaai.v34i07.6801 10.1609/aaai.v33i01.33015613 10.1109/TKDE.2005.186 10.1145/3065386 10.1109/TPAMI.2019.2962476 10.1109/CVPR.2019.00517 10.1109/CVPR42600.2020.00442 10.1109/ICCV.2019.00608 10.1109/CVPR.2019.00072 10.1007/978-3-642-15561-1_16 10.1109/CVPR42600.2020.01257 10.1109/ICCV.2019.00151 10.1007/978-3-030-01424-7_34 10.1109/TKDE.2018.2843342 10.1109/TPAMI.2019.2918284 10.1109/CVPR.2019.00234 10.1109/CVPR.2017.316 10.1109/TIP.2018.2839528 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2021.3114536 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 2795 |
| ExternalDocumentID | 10_1109_TKDE_2021_3114536 9546671 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research and Development Program of China grantid: 2019YQ1700 – fundername: National Natural Science Foundation of China grantid: 61902028; 61872337 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB 1OL 5VS 9M8 AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L H~9 ICLAB IFJZH RNI RZB TAF VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-d85c0d4add6eb5f3d6480544fb6c5448efa6f82a7cda313c7e70fbac91f1d3293 |
| IEDL.DBID | RIE |
| ISSN | 1041-4347 |
| IngestDate | Mon Jun 30 06:25:47 EDT 2025 Wed Oct 01 02:06:26 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Wed Aug 27 02:48:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-d85c0d4add6eb5f3d6480544fb6c5448efa6f82a7cda313c7e70fbac91f1d3293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0252-329X 0000-0001-5352-0278 |
| PQID | 2773454065 |
| PQPubID | 85438 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TKDE_2021_3114536 proquest_journals_2773454065 crossref_citationtrail_10_1109_TKDE_2021_3114536 ieee_primary_9546671 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 Long (ref9) ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 Saito (ref50) ref17 ref16 ref18 ref51 Balaji (ref54) ref46 ref45 ref48 ref47 ref42 ref41 Liu (ref67) ref44 Tzeng (ref34) 2014 Chen (ref39) Peng (ref60) 2017 Vaswani (ref3) ref49 Pedregosa (ref79) 2011; 12 Lee (ref29); 3 ref8 ref7 ref4 Long (ref36) ref6 ref5 ref40 ref80 Berthelot (ref28) ref35 ref78 ref37 Blitzer (ref10) ref31 ref75 ref74 ref33 ref32 ref76 ref2 ref1 Zhang (ref21) ref38 Long (ref19) Xie (ref30) You (ref65) ref71 ref70 ref73 ref72 Ren (ref57) ref24 ref68 ref23 ref26 Chen (ref77) ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref27 ref62 ref61 Goodfellow (ref43) |
| References_xml | – ident: ref25 doi: 10.1007/978-3-030-01219-9_18 – ident: ref32 doi: 10.1609/aaai.v34i04.5757 – ident: ref74 doi: 10.1109/CVPR42600.2020.00400 – ident: ref78 doi: 10.1109/TKDE.2018.2837085 – ident: ref38 doi: 10.1609/aaai.v32i1.11767 – ident: ref80 doi: 10.1109/5.726791 – start-page: 4013 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref67 article-title: Transferable adversarial training: A general approach to adapting deep classifiers – ident: ref55 doi: 10.1109/CVPR.2019.00049 – ident: ref14 doi: 10.1109/TKDE.2016.2554549 – ident: ref31 doi: 10.1145/3343031.3351070 – ident: ref40 doi: 10.7551/mitpress/7503.003.0069 – ident: ref24 doi: 10.1109/CVPR46437.2021.01499 – ident: ref51 doi: 10.1109/TPAMI.2021.3079209 – ident: ref70 doi: 10.1109/CVPR42600.2020.00410 – ident: ref33 doi: 10.1109/TNNLS.2016.2538282 – ident: ref11 doi: 10.1109/TKDE.2009.191 – ident: ref47 doi: 10.1109/ICCV.2013.274 – ident: ref56 doi: 10.1109/CVPR42600.2020.00763 – ident: ref35 doi: 10.1109/TPAMI.2018.2868685 – year: 2014 ident: ref34 article-title: Deep domain confusion: Maximizing for domain invariance – ident: ref8 doi: 10.1109/TKDE.2013.111 – ident: ref52 doi: 10.1609/aaai.v32i1.11596 – start-page: 767 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref77 article-title: Marginalized denoising autoencoders for domain adaptation – volume: 12 start-page: 2825 year: 2011 ident: ref79 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. – ident: ref22 doi: 10.1109/CVPR42600.2020.01247 – ident: ref59 doi: 10.1109/CVPR.2017.572 – ident: ref20 doi: 10.1109/CVPR.2018.00392 – start-page: 5423 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref30 article-title: Learning semantic representations for unsupervised domain adaptation – start-page: 4334 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref57 article-title: Learning to reweight examples for robust deep learning – year: 2017 ident: ref60 article-title: VisDa: The visual domain adaptation challenge – ident: ref5 doi: 10.1109/TPAMI.2020.3009758 – start-page: 2672 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref43 article-title: Generative adversarial nets – ident: ref62 doi: 10.5555/3454287.3455008 – ident: ref71 doi: 10.1109/CVPR.2018.00835 – start-page: 5998 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref3 article-title: Attention is all you need – ident: ref42 doi: 10.1609/aaai.v34i04.5745 – ident: ref23 doi: 10.24963/ijcai.2020/440 – ident: ref68 doi: 10.1609/aaai.v33i01.33015345 – ident: ref73 doi: 10.1109/CVPR.2019.00753 – ident: ref12 doi: 10.1109/TKDE.2016.2551241 – start-page: 440 volume-title: Proc. Annu. Meet. Assoc. Comput. Linguistics ident: ref10 article-title: Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification – start-page: 97 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref9 article-title: Learning transferable features with deep adaptation networks – ident: ref18 doi: 10.5555/2946645.2946704 – ident: ref61 doi: 10.3115/1610075.1610094 – ident: ref76 doi: 10.1609/aaai.v30i1.10306 – ident: ref13 doi: 10.1109/TKDE.2018.2864732 – start-page: 1081 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref39 article-title: Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation – ident: ref4 doi: 10.18653/vl/N19-142 – ident: ref44 doi: 10.1109/TKDE.2020.2984212 – ident: ref63 doi: 10.1109/CVPR.2016.90 – start-page: 5049 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref28 article-title: MixMatch: A holistic approach to semi-supervised learning – ident: ref6 doi: 10.1007/s10994-009-5152-4 – ident: ref41 doi: 10.1007/978-3-319-49409-8_35 – start-page: 7124 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref65 article-title: Towards accurate model selection in deep unsupervised domain adaptation – ident: ref7 doi: 10.7551/mitpress/7503.003.0022 – start-page: 1647 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref19 article-title: Conditional adversarial domain adaptation – ident: ref17 doi: 10.1609/aaai.v34i07.6801 – ident: ref46 doi: 10.1609/aaai.v33i01.33015613 – ident: ref49 doi: 10.1109/TKDE.2005.186 – ident: ref64 doi: 10.1145/3065386 – ident: ref27 doi: 10.1109/TPAMI.2019.2962476 – ident: ref72 doi: 10.1109/CVPR.2019.00517 – start-page: 2988 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref50 article-title: Asymmetric tri-training for unsupervised domain adaptation – ident: ref75 doi: 10.1109/CVPR42600.2020.00442 – ident: ref26 doi: 10.1109/ICCV.2019.00608 – ident: ref48 doi: 10.1109/CVPR.2019.00072 – ident: ref58 doi: 10.1007/978-3-642-15561-1_16 – start-page: 998 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref54 article-title: MetaReg: Towards domain generalization using meta-regularization – ident: ref53 doi: 10.1109/CVPR42600.2020.01257 – ident: ref69 doi: 10.1109/ICCV.2019.00151 – ident: ref45 doi: 10.1007/978-3-030-01424-7_34 – ident: ref1 doi: 10.1145/3065386 – ident: ref16 doi: 10.1109/TKDE.2018.2843342 – start-page: 7404 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref21 article-title: Bridging theory and algorithm for domain adaptation – start-page: 2208 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref36 article-title: Deep transfer learning with joint adaptation networks – ident: ref2 doi: 10.1109/TPAMI.2019.2918284 – ident: ref66 doi: 10.1109/CVPR.2019.00234 – volume: 3 start-page: 896 issue: 2 volume-title: Proc. Workshop Challenges Representation Learn., Int. Conf. Mach. Learn. ident: ref29 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks – ident: ref37 doi: 10.1109/CVPR.2017.316 – ident: ref15 doi: 10.1109/TIP.2018.2839528 |
| SSID | ssj0008781 |
| Score | 2.4799867 |
| Snippet | Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2781 |
| SubjectTerms | Adaptation Adaptation models Adaptive sampling adversarial learning Adversarial machine learning Algorithms Classification Classifiers Data models Domain adaptation Domains Knowledge management Labels Machine learning meta learning Noise measurement Optimization Predictive models Regularization sample reweighting self training Task analysis Training |
| Title | Meta-Reweighted Regularization for Unsupervised Domain Adaptation |
| URI | https://ieeexplore.ieee.org/document/9546671 https://www.proquest.com/docview/2773454065 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-oJz34LU6n9OBJ7GyWNEmPww-GMg_iwFtJk1cQtRtbh-Bfb5JmU1TEUwtNSngveR9J3u8HcJJKbTJqVKwZK2JmShNLtOsqpZqUTCpDPR3Q4I73h-zmMX1cgrNFLQwi-stn2HGv_izfjPTMbZWdZynj3BWMLwvJm1qthdWVwhOS2uzC5kSUiXCCSZLs_OH28spmgl1iE1TCUo_G_OmDPKnKD0vs3cv1BgzmA2tulTx3ZnXR0e_fMBv_O_JNWA9xZtRrJsYWLGG1DRtzDocoLOltWPsCSLgDvQHWKr7HN79hiia691T1k1CsGdkINxpW09nYWZip_X45elVPVdQzatyc6e_C8Prq4aIfB5KFWFtPX8dGpjoxzJo5jkVaUsOZtGEcKwuu7UNiqXgpu0pooyihWqBIykLpjJTEUPuLPVipRhXuQ6QxowUxGh0EvOgmbjuYWReJ2hBBsqIFyVzsuQ4I5I4I4yX3mUiS5U5TudNUHjTVgtNFl3EDv_FX4x0n-UXDIPQWtOe6zcMCneZdIagDH-Tpwe-9DmHVMcs3183asFJPZnhk44-6OPYT7wOnlNcn |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD6IPqgP3sV57YNPYmezJE37OLwwL_NBNvCtpMkpiNqNrUPw15uk2RQV8amFJiWck5xLkvN9AMc8UTqlWoaKsTxkutBhgmZdcapIwRKpqaMD6t7HnT67eeSPc3A6q4VBRHf5DJv21Z3l64Ga2K2ys5SzOLYF4wucMcbraq2Z3U2EoyQ1-YXJiigT_gyTROlZ7_bi0uSCLWJSVMK4w2P-9EKOVuWHLXYO5moVutOh1fdKnpuTKm-q92-ojf8d-xqs-EgzaNdTYx3msNyA1SmLQ-AX9QYsf4Ek3IR2FysZPuCb2zJFHTw4svqRL9cMTIwb9MvxZGhtzNh8vxi8yqcyaGs5rE_1t6B_ddk774SeZiFUxtdXoU64ijQzhi7GnBdUxywxgRwr8liZR4KFjIukJYXSkhKqBIqoyKVKSUE0Nb_YhvlyUOIOBApTmhOt0ILAi1ZkN4SZcZKoNBEkzRsQTcWeKY9BbqkwXjKXi0RpZjWVWU1lXlMNOJl1GdYAHH813rSSnzX0Qm_A_lS3mV-i46wlBLXwgzHf_b3XESx2et277O76_nYPlizPfH35bB_mq9EED0w0UuWHbhJ-ABWW2nQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-Reweighted+Regularization+for+Unsupervised+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Li%2C+Shuang&rft.au=Ma%2C+Wenxuan&rft.au=Zhang%2C+Jinming&rft.au=Liu%2C+Chi+Harold&rft.date=2023-03-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=35&rft.issue=3&rft.spage=2781&rft.epage=2795&rft_id=info:doi/10.1109%2FTKDE.2021.3114536&rft.externalDocID=9546671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |