Meta-Reweighted Regularization for Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain distribution discrepancy, and the adversarial learning based paradigm has achieved remarkable success. On top of the derived domain-invariant featur...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 35; no. 3; pp. 2781 - 2795
Main Authors Li, Shuang, Ma, Wenxuan, Zhang, Jinming, Liu, Chi Harold, Liang, Jian, Wang, Guoren
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2021.3114536

Cover

Abstract Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain distribution discrepancy, and the adversarial learning based paradigm has achieved remarkable success. On top of the derived domain-invariant feature representations, a promising stream of recent works seeks to further regularize the classification decision boundary via self-training to learn target adaptive classifier with pseudo-labeled target samples. However, since the pseudo labels are inevitably noisy, most of prior methods focus on manually designing elaborate target selection algorithms or optimization objectives to combat the negative effect caused by the incorrect pseudo labels. Different from them, in this paper, we propose a simple and powerful meta-learning based target-reweighting regularization algorithm, called MetaReg, which regularizes the model training by learning to reweight the noisy pseudo-labeled target samples. Specifically, MetaReg is motivated by the intuition that an ideal target classifier trained on correct target pseudo labels should make small classification errors on target-like source samples. Therefore, we explicitly define a meta reweighting problem that aims to find the optimal weights for different target pseudo labels by minimizing the classification loss on a designed validation set, a class-balanced set consisting of source samples that are most similar to target ones. Note that the optimization problem can be solved efficiently with a simplified approximation technique. As a result, the automatically learned optimal weights are utilized to reweight pseudo-labeled target samples, and regularize the model learning by target supervision with the learned different importance. Comprehensive experiments on several cross-domain image and text datasets verify that MetaReg could outperform the non-regularized UDA counterparts with state-of-the-art performance. Code is available at https://github.com/BIT-DA/MetaReg .
AbstractList Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain distribution discrepancy, and the adversarial learning based paradigm has achieved remarkable success. On top of the derived domain-invariant feature representations, a promising stream of recent works seeks to further regularize the classification decision boundary via self-training to learn target adaptive classifier with pseudo-labeled target samples. However, since the pseudo labels are inevitably noisy, most of prior methods focus on manually designing elaborate target selection algorithms or optimization objectives to combat the negative effect caused by the incorrect pseudo labels. Different from them, in this paper, we propose a simple and powerful meta-learning based target-reweighting regularization algorithm, called MetaReg, which regularizes the model training by learning to reweight the noisy pseudo-labeled target samples. Specifically, MetaReg is motivated by the intuition that an ideal target classifier trained on correct target pseudo labels should make small classification errors on target-like source samples. Therefore, we explicitly define a meta reweighting problem that aims to find the optimal weights for different target pseudo labels by minimizing the classification loss on a designed validation set, a class-balanced set consisting of source samples that are most similar to target ones. Note that the optimization problem can be solved efficiently with a simplified approximation technique. As a result, the automatically learned optimal weights are utilized to reweight pseudo-labeled target samples, and regularize the model learning by target supervision with the learned different importance. Comprehensive experiments on several cross-domain image and text datasets verify that MetaReg could outperform the non-regularized UDA counterparts with state-of-the-art performance. Code is available at https://github.com/BIT-DA/MetaReg .
Author Liu, Chi Harold
Zhang, Jinming
Liang, Jian
Ma, Wenxuan
Li, Shuang
Wang, Guoren
Author_xml – sequence: 1
  givenname: Shuang
  surname: Li
  fullname: Li, Shuang
  email: shuangli@bit.edu.cn
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Wenxuan
  surname: Ma
  fullname: Ma, Wenxuan
  email: wenxuanma@bit.edu.cn
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Jinming
  surname: Zhang
  fullname: Zhang, Jinming
  email: jinmingzhang@bit.edu.cn
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Chi Harold
  orcidid: 0000-0002-0252-329X
  surname: Liu
  fullname: Liu, Chi Harold
  email: chiliu@bit.edu.cn
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Jian
  orcidid: 0000-0001-5352-0278
  surname: Liang
  fullname: Liang, Jian
  email: liangjianzb12@gmail.com
  organization: AI for International Department, Alibaba Group, Beijing, China
– sequence: 6
  givenname: Guoren
  surname: Wang
  fullname: Wang, Guoren
  email: wanggrbit@bit.edu.cn
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
BookMark eNp9kEtPwkAQxzcGEwH9AMZLE8_Fne6rPRLwFTEmBM6bZR-4BNq6WzT66S2WePDgaSaZ_yPzG6BeWZUWoUvAIwBc3CyeprejDGcwIgCUEX6C-sBYnmZQQK_dMYWUEirO0CDGDcY4Fzn00fjZNiqd2w_r16-NNcncrvdbFfyXanxVJq4KybKM-9qGdx_b-7TaKV8mY6Pq5kdyjk6d2kZ7cZxDtLy7XUwe0tnL_eNkPEt1VpAmNTnT2FBlDLcr5ojhNMeMUrfiuh25dYq7PFNCG0WAaGEFdiulC3BgSBsxRNddbh2qt72NjdxU-1C2lTITglBGMWetCjqVDlWMwTpZB79T4VMClgdS8kBKHkjJI6nWI_54tO9-a4Ly23-dV53TW2t_mwpGORdAvgHsgXiR
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_TKDE_2023_3316168
crossref_primary_10_1007_s10115_023_02043_w
crossref_primary_10_1109_JIOT_2024_3490037
crossref_primary_10_1109_TAI_2024_3404411
crossref_primary_10_1109_TKDE_2023_3266785
crossref_primary_10_1109_TIP_2024_3364500
crossref_primary_10_1016_j_jai_2023_11_003
crossref_primary_10_1109_TIP_2025_3533199
crossref_primary_10_1109_TPAMI_2024_3438154
Cites_doi 10.1007/978-3-030-01219-9_18
10.1609/aaai.v34i04.5757
10.1109/CVPR42600.2020.00400
10.1109/TKDE.2018.2837085
10.1609/aaai.v32i1.11767
10.1109/5.726791
10.1109/CVPR.2019.00049
10.1109/TKDE.2016.2554549
10.1145/3343031.3351070
10.7551/mitpress/7503.003.0069
10.1109/CVPR46437.2021.01499
10.1109/TPAMI.2021.3079209
10.1109/CVPR42600.2020.00410
10.1109/TNNLS.2016.2538282
10.1109/TKDE.2009.191
10.1109/ICCV.2013.274
10.1109/CVPR42600.2020.00763
10.1109/TPAMI.2018.2868685
10.1109/TKDE.2013.111
10.1609/aaai.v32i1.11596
10.1109/CVPR42600.2020.01247
10.1109/CVPR.2017.572
10.1109/CVPR.2018.00392
10.1109/TPAMI.2020.3009758
10.5555/3454287.3455008
10.1109/CVPR.2018.00835
10.1609/aaai.v34i04.5745
10.24963/ijcai.2020/440
10.1609/aaai.v33i01.33015345
10.1109/CVPR.2019.00753
10.1109/TKDE.2016.2551241
10.5555/2946645.2946704
10.3115/1610075.1610094
10.1609/aaai.v30i1.10306
10.1109/TKDE.2018.2864732
10.18653/vl/N19-142
10.1109/TKDE.2020.2984212
10.1109/CVPR.2016.90
10.1007/s10994-009-5152-4
10.1007/978-3-319-49409-8_35
10.7551/mitpress/7503.003.0022
10.1609/aaai.v34i07.6801
10.1609/aaai.v33i01.33015613
10.1109/TKDE.2005.186
10.1145/3065386
10.1109/TPAMI.2019.2962476
10.1109/CVPR.2019.00517
10.1109/CVPR42600.2020.00442
10.1109/ICCV.2019.00608
10.1109/CVPR.2019.00072
10.1007/978-3-642-15561-1_16
10.1109/CVPR42600.2020.01257
10.1109/ICCV.2019.00151
10.1007/978-3-030-01424-7_34
10.1109/TKDE.2018.2843342
10.1109/TPAMI.2019.2918284
10.1109/CVPR.2019.00234
10.1109/CVPR.2017.316
10.1109/TIP.2018.2839528
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2021.3114536
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 2795
ExternalDocumentID 10_1109_TKDE_2021_3114536
9546671
Genre orig-research
GrantInformation_xml – fundername: National Research and Development Program of China
  grantid: 2019YQ1700
– fundername: National Natural Science Foundation of China
  grantid: 61902028; 61872337
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
1OL
5VS
9M8
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-d85c0d4add6eb5f3d6480544fb6c5448efa6f82a7cda313c7e70fbac91f1d3293
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 06:25:47 EDT 2025
Wed Oct 01 02:06:26 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Wed Aug 27 02:48:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d85c0d4add6eb5f3d6480544fb6c5448efa6f82a7cda313c7e70fbac91f1d3293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0252-329X
0000-0001-5352-0278
PQID 2773454065
PQPubID 85438
PageCount 15
ParticipantIDs crossref_primary_10_1109_TKDE_2021_3114536
proquest_journals_2773454065
crossref_citationtrail_10_1109_TKDE_2021_3114536
ieee_primary_9546671
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
Long (ref9)
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
Saito (ref50)
ref17
ref16
ref18
ref51
Balaji (ref54)
ref46
ref45
ref48
ref47
ref42
ref41
Liu (ref67)
ref44
Tzeng (ref34) 2014
Chen (ref39)
Peng (ref60) 2017
Vaswani (ref3)
ref49
Pedregosa (ref79) 2011; 12
Lee (ref29); 3
ref8
ref7
ref4
Long (ref36)
ref6
ref5
ref40
ref80
Berthelot (ref28)
ref35
ref78
ref37
Blitzer (ref10)
ref31
ref75
ref74
ref33
ref32
ref76
ref2
ref1
Zhang (ref21)
ref38
Long (ref19)
Xie (ref30)
You (ref65)
ref71
ref70
ref73
ref72
Ren (ref57)
ref24
ref68
ref23
ref26
Chen (ref77)
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref27
ref62
ref61
Goodfellow (ref43)
References_xml – ident: ref25
  doi: 10.1007/978-3-030-01219-9_18
– ident: ref32
  doi: 10.1609/aaai.v34i04.5757
– ident: ref74
  doi: 10.1109/CVPR42600.2020.00400
– ident: ref78
  doi: 10.1109/TKDE.2018.2837085
– ident: ref38
  doi: 10.1609/aaai.v32i1.11767
– ident: ref80
  doi: 10.1109/5.726791
– start-page: 4013
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref67
  article-title: Transferable adversarial training: A general approach to adapting deep classifiers
– ident: ref55
  doi: 10.1109/CVPR.2019.00049
– ident: ref14
  doi: 10.1109/TKDE.2016.2554549
– ident: ref31
  doi: 10.1145/3343031.3351070
– ident: ref40
  doi: 10.7551/mitpress/7503.003.0069
– ident: ref24
  doi: 10.1109/CVPR46437.2021.01499
– ident: ref51
  doi: 10.1109/TPAMI.2021.3079209
– ident: ref70
  doi: 10.1109/CVPR42600.2020.00410
– ident: ref33
  doi: 10.1109/TNNLS.2016.2538282
– ident: ref11
  doi: 10.1109/TKDE.2009.191
– ident: ref47
  doi: 10.1109/ICCV.2013.274
– ident: ref56
  doi: 10.1109/CVPR42600.2020.00763
– ident: ref35
  doi: 10.1109/TPAMI.2018.2868685
– year: 2014
  ident: ref34
  article-title: Deep domain confusion: Maximizing for domain invariance
– ident: ref8
  doi: 10.1109/TKDE.2013.111
– ident: ref52
  doi: 10.1609/aaai.v32i1.11596
– start-page: 767
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref77
  article-title: Marginalized denoising autoencoders for domain adaptation
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref79
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– ident: ref22
  doi: 10.1109/CVPR42600.2020.01247
– ident: ref59
  doi: 10.1109/CVPR.2017.572
– ident: ref20
  doi: 10.1109/CVPR.2018.00392
– start-page: 5423
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: Learning semantic representations for unsupervised domain adaptation
– start-page: 4334
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref57
  article-title: Learning to reweight examples for robust deep learning
– year: 2017
  ident: ref60
  article-title: VisDa: The visual domain adaptation challenge
– ident: ref5
  doi: 10.1109/TPAMI.2020.3009758
– start-page: 2672
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref43
  article-title: Generative adversarial nets
– ident: ref62
  doi: 10.5555/3454287.3455008
– ident: ref71
  doi: 10.1109/CVPR.2018.00835
– start-page: 5998
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref3
  article-title: Attention is all you need
– ident: ref42
  doi: 10.1609/aaai.v34i04.5745
– ident: ref23
  doi: 10.24963/ijcai.2020/440
– ident: ref68
  doi: 10.1609/aaai.v33i01.33015345
– ident: ref73
  doi: 10.1109/CVPR.2019.00753
– ident: ref12
  doi: 10.1109/TKDE.2016.2551241
– start-page: 440
  volume-title: Proc. Annu. Meet. Assoc. Comput. Linguistics
  ident: ref10
  article-title: Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification
– start-page: 97
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref9
  article-title: Learning transferable features with deep adaptation networks
– ident: ref18
  doi: 10.5555/2946645.2946704
– ident: ref61
  doi: 10.3115/1610075.1610094
– ident: ref76
  doi: 10.1609/aaai.v30i1.10306
– ident: ref13
  doi: 10.1109/TKDE.2018.2864732
– start-page: 1081
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref39
  article-title: Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation
– ident: ref4
  doi: 10.18653/vl/N19-142
– ident: ref44
  doi: 10.1109/TKDE.2020.2984212
– ident: ref63
  doi: 10.1109/CVPR.2016.90
– start-page: 5049
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref28
  article-title: MixMatch: A holistic approach to semi-supervised learning
– ident: ref6
  doi: 10.1007/s10994-009-5152-4
– ident: ref41
  doi: 10.1007/978-3-319-49409-8_35
– start-page: 7124
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref65
  article-title: Towards accurate model selection in deep unsupervised domain adaptation
– ident: ref7
  doi: 10.7551/mitpress/7503.003.0022
– start-page: 1647
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Conditional adversarial domain adaptation
– ident: ref17
  doi: 10.1609/aaai.v34i07.6801
– ident: ref46
  doi: 10.1609/aaai.v33i01.33015613
– ident: ref49
  doi: 10.1109/TKDE.2005.186
– ident: ref64
  doi: 10.1145/3065386
– ident: ref27
  doi: 10.1109/TPAMI.2019.2962476
– ident: ref72
  doi: 10.1109/CVPR.2019.00517
– start-page: 2988
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref50
  article-title: Asymmetric tri-training for unsupervised domain adaptation
– ident: ref75
  doi: 10.1109/CVPR42600.2020.00442
– ident: ref26
  doi: 10.1109/ICCV.2019.00608
– ident: ref48
  doi: 10.1109/CVPR.2019.00072
– ident: ref58
  doi: 10.1007/978-3-642-15561-1_16
– start-page: 998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref54
  article-title: MetaReg: Towards domain generalization using meta-regularization
– ident: ref53
  doi: 10.1109/CVPR42600.2020.01257
– ident: ref69
  doi: 10.1109/ICCV.2019.00151
– ident: ref45
  doi: 10.1007/978-3-030-01424-7_34
– ident: ref1
  doi: 10.1145/3065386
– ident: ref16
  doi: 10.1109/TKDE.2018.2843342
– start-page: 7404
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref21
  article-title: Bridging theory and algorithm for domain adaptation
– start-page: 2208
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref36
  article-title: Deep transfer learning with joint adaptation networks
– ident: ref2
  doi: 10.1109/TPAMI.2019.2918284
– ident: ref66
  doi: 10.1109/CVPR.2019.00234
– volume: 3
  start-page: 896
  issue: 2
  volume-title: Proc. Workshop Challenges Representation Learn., Int. Conf. Mach. Learn.
  ident: ref29
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– ident: ref37
  doi: 10.1109/CVPR.2017.316
– ident: ref15
  doi: 10.1109/TIP.2018.2839528
SSID ssj0008781
Score 2.4799867
Snippet Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2781
SubjectTerms Adaptation
Adaptation models
Adaptive sampling
adversarial learning
Adversarial machine learning
Algorithms
Classification
Classifiers
Data models
Domain adaptation
Domains
Knowledge management
Labels
Machine learning
meta learning
Noise measurement
Optimization
Predictive models
Regularization
sample reweighting
self training
Task analysis
Training
Title Meta-Reweighted Regularization for Unsupervised Domain Adaptation
URI https://ieeexplore.ieee.org/document/9546671
https://www.proquest.com/docview/2773454065
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-oJz34LU6n9OBJ7GyWNEmPww-GMg_iwFtJk1cQtRtbh-Bfb5JmU1TEUwtNSngveR9J3u8HcJJKbTJqVKwZK2JmShNLtOsqpZqUTCpDPR3Q4I73h-zmMX1cgrNFLQwi-stn2HGv_izfjPTMbZWdZynj3BWMLwvJm1qthdWVwhOS2uzC5kSUiXCCSZLs_OH28spmgl1iE1TCUo_G_OmDPKnKD0vs3cv1BgzmA2tulTx3ZnXR0e_fMBv_O_JNWA9xZtRrJsYWLGG1DRtzDocoLOltWPsCSLgDvQHWKr7HN79hiia691T1k1CsGdkINxpW09nYWZip_X45elVPVdQzatyc6e_C8Prq4aIfB5KFWFtPX8dGpjoxzJo5jkVaUsOZtGEcKwuu7UNiqXgpu0pooyihWqBIykLpjJTEUPuLPVipRhXuQ6QxowUxGh0EvOgmbjuYWReJ2hBBsqIFyVzsuQ4I5I4I4yX3mUiS5U5TudNUHjTVgtNFl3EDv_FX4x0n-UXDIPQWtOe6zcMCneZdIagDH-Tpwe-9DmHVMcs3183asFJPZnhk44-6OPYT7wOnlNcn
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD6IPqgP3sV57YNPYmezJE37OLwwL_NBNvCtpMkpiNqNrUPw15uk2RQV8amFJiWck5xLkvN9AMc8UTqlWoaKsTxkutBhgmZdcapIwRKpqaMD6t7HnT67eeSPc3A6q4VBRHf5DJv21Z3l64Ga2K2ys5SzOLYF4wucMcbraq2Z3U2EoyQ1-YXJiigT_gyTROlZ7_bi0uSCLWJSVMK4w2P-9EKOVuWHLXYO5moVutOh1fdKnpuTKm-q92-ojf8d-xqs-EgzaNdTYx3msNyA1SmLQ-AX9QYsf4Ek3IR2FysZPuCb2zJFHTw4svqRL9cMTIwb9MvxZGhtzNh8vxi8yqcyaGs5rE_1t6B_ddk774SeZiFUxtdXoU64ijQzhi7GnBdUxywxgRwr8liZR4KFjIukJYXSkhKqBIqoyKVKSUE0Nb_YhvlyUOIOBApTmhOt0ILAi1ZkN4SZcZKoNBEkzRsQTcWeKY9BbqkwXjKXi0RpZjWVWU1lXlMNOJl1GdYAHH813rSSnzX0Qm_A_lS3mV-i46wlBLXwgzHf_b3XESx2et277O76_nYPlizPfH35bB_mq9EED0w0UuWHbhJ-ABWW2nQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-Reweighted+Regularization+for+Unsupervised+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Li%2C+Shuang&rft.au=Ma%2C+Wenxuan&rft.au=Zhang%2C+Jinming&rft.au=Liu%2C+Chi+Harold&rft.date=2023-03-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=35&rft.issue=3&rft.spage=2781&rft.epage=2795&rft_id=info:doi/10.1109%2FTKDE.2021.3114536&rft.externalDocID=9546671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon