A Novel Sequence Tensor Recovery Algorithm for Quick and Accurate Anomaly Detection
Anomalous traffic detection is a vital task in advanced Internet supervision and maintenance. To detect anomalies accurately, various data representations, such as vectors, matrices, and tensors, have been adopted to model traffic data. Among them, tensor-based methods outperform others due to their...
        Saved in:
      
    
          | Published in | IEEE transactions on network science and engineering Vol. 9; no. 5; pp. 3531 - 3545 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.09.2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2327-4697 2334-329X  | 
| DOI | 10.1109/TNSE.2022.3189365 | 
Cover
| Abstract | Anomalous traffic detection is a vital task in advanced Internet supervision and maintenance. To detect anomalies accurately, various data representations, such as vectors, matrices, and tensors, have been adopted to model traffic data. Among them, tensor-based methods outperform others due to their capability of capturing comprehensive correlations between complex network traffic. However, existing tensor-based algorithms remain certain shortcomings, such as working offline, cannot timely detect traffic anomalies, and high computation costs. To conquer the aforementioned deficiencies, we propose a novel sequence tensor recovery (STR) algorithm in this paper, which utilizes the results of historical tensor decomposition to achieve quick and accurate anomaly detection with low consumption when traffic data series arrive. Furthermore, we propose a dynamic sequence tensor recovery (DSTR) algorithm to improve anomaly detection accuracy by better capturing the variation over time of the comprehensive correlation of traffic data hidden in the tensor structure. The experimental results on two real traffic traces, Abilene and G<inline-formula><tex-math notation="LaTeX">\grave{E}</tex-math></inline-formula> ANT, indicate the proposed STR and DSTR algorithms are superior to the state-of-the-art algorithms in terms of accuracy and computation cost. | 
    
|---|---|
| AbstractList | Anomalous traffic detection is a vital task in advanced Internet supervision and maintenance. To detect anomalies accurately, various data representations, such as vectors, matrices, and tensors, have been adopted to model traffic data. Among them, tensor-based methods outperform others due to their capability of capturing comprehensive correlations between complex network traffic. However, existing tensor-based algorithms remain certain shortcomings, such as working offline, cannot timely detect traffic anomalies, and high computation costs. To conquer the aforementioned deficiencies, we propose a novel sequence tensor recovery (STR) algorithm in this paper, which utilizes the results of historical tensor decomposition to achieve quick and accurate anomaly detection with low consumption when traffic data series arrive. Furthermore, we propose a dynamic sequence tensor recovery (DSTR) algorithm to improve anomaly detection accuracy by better capturing the variation over time of the comprehensive correlation of traffic data hidden in the tensor structure. The experimental results on two real traffic traces, Abilene and G<inline-formula><tex-math notation="LaTeX">\grave{E}</tex-math></inline-formula> ANT, indicate the proposed STR and DSTR algorithms are superior to the state-of-the-art algorithms in terms of accuracy and computation cost. Anomalous traffic detection is a vital task in advanced Internet supervision and maintenance. To detect anomalies accurately, various data representations, such as vectors, matrices, and tensors, have been adopted to model traffic data. Among them, tensor-based methods outperform others due to their capability of capturing comprehensive correlations between complex network traffic. However, existing tensor-based algorithms remain certain shortcomings, such as working offline, cannot timely detect traffic anomalies, and high computation costs. To conquer the aforementioned deficiencies, we propose a novel sequence tensor recovery (STR) algorithm in this paper, which utilizes the results of historical tensor decomposition to achieve quick and accurate anomaly detection with low consumption when traffic data series arrive. Furthermore, we propose a dynamic sequence tensor recovery (DSTR) algorithm to improve anomaly detection accuracy by better capturing the variation over time of the comprehensive correlation of traffic data hidden in the tensor structure. The experimental results on two real traffic traces, Abilene and G[Formula Omitted] ANT, indicate the proposed STR and DSTR algorithms are superior to the state-of-the-art algorithms in terms of accuracy and computation cost.  | 
    
| Author | Huang, Wenbin Xie, Kun Li, Jie  | 
    
| Author_xml | – sequence: 1 givenname: Wenbin orcidid: 0000-0001-7309-2426 surname: Huang fullname: Huang, Wenbin email: wenbinhuang@hnu.edu.cn organization: Department of College of Computer Science and Electronics Engineering, Hunan University, Changsha, China – sequence: 2 givenname: Kun orcidid: 0000-0002-2163-2723 surname: Xie fullname: Xie, Kun email: xiekun@hnu.edu.cn organization: Department of College of Computer Science and Electronics Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Jie orcidid: 0000-0001-7896-5388 surname: Li fullname: Li, Jie email: jieli2014@hnu.edu.cn organization: Department of School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China  | 
    
| BookMark | eNp9kEtLw0AUhQepYK39AeJmwHXqPNJMZhlqfUCpaCu4GyaTG01NZ-pkIvTfm9DiwoWrc7mcc-_hO0cD6ywgdEnJhFIib9bL1XzCCGMTTlPJk-kJGjLO44gz-TboZyaiOJHiDI2bZkMIoSxNOOdDtMrw0n1DjVfw1YI1gNdgG-fxC5hu7_c4q9-dr8LHFpfd-rmtzCfWtsCZMa3XAXBm3VbXe3wLAUyonL1Ap6WuGxgfdYRe7-br2UO0eLp_nGWLyDDJQ1QwmQtSpkKnRcI1BZiSgmuYMpEDNQkXNC4NGDPNgcW0KPIy7dQQRkRJtOYjdH24u_OuK98EtXGtt91LxQRlJCEdnc4lDi7jXdN4KJWpgu57Bq-rWlGieoiqh6h6iOoIsUvSP8mdr7ba7__NXB0yFQD8-mXKmEwI_wFT0X8R | 
    
| CODEN | ITNSD5 | 
    
| CitedBy_id | crossref_primary_10_1109_TMC_2024_3401096 crossref_primary_10_1109_TPDS_2023_3316717 crossref_primary_10_1109_JIOT_2024_3360294 crossref_primary_10_1109_TMC_2023_3328038 crossref_primary_10_1109_TNSE_2023_3305125 crossref_primary_10_1016_j_ins_2024_121210 crossref_primary_10_1109_TMC_2022_3221463 crossref_primary_10_1109_TMC_2024_3411791 crossref_primary_10_1080_09540091_2023_2218069 crossref_primary_10_1145_3689429  | 
    
| Cites_doi | 10.1007/978-981-10-8058-6 10.1109/TMC.2016.2595569 10.1109/INFOCOM.2015.7218633 10.1145/3292500.3330680 10.1109/ICDM.2011.52 10.1177/0022002719861676 10.1109/TPAMI.2017.2748590 10.1109/TSG.2020.2978769 10.1109/JIOT.2021.3110588 10.1016/j.jnca.2015.11.016 10.1016/j.apm.2017.04.002 10.1007/s11235-018-0475-8 10.1109/LSP.2018.2819892 10.1049/iet-gtd.2019.1790 10.1016/j.amc.2019.124783 10.1109/TCSS.2018.2813320 10.1109/INFOCOM.2019.8737562 10.1371/journal.pone.0204507 10.1109/INFOCOM.2018.8486332 10.1109/INFOCOM.2017.8057217 10.1109/TSP.2017.2690524 10.1109/TPAMI.2019.2891760 10.1109/TSP.2017.2784361 10.1109/INFOCOM48880.2022.9796653 10.1145/1111322.1111341 10.1016/j.sigpro.2019.107271 10.1007/978-3-662-00672-6 10.1109/PIC.2010.5687485 10.1109/INFOCOM.2016.7524463 10.1007/s11263-019-01257-2 10.1109/TNET.2017.2761704 10.1109/TNET.2018.2797094 10.1109/24.664004 10.1109/TNET.2018.2819507 10.1016/j.ins.2019.09.074 10.1109/NOMS.2012.6211919 10.1109/CNS.2019.8802833 10.1109/TMC.2017.2775230 10.1016/j.trc.2020.102763 10.1007/978-1-4471-2227-2 10.1023/B:JONS.0000015698.32353.61 10.1007/s10479-019-03508-4  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TNSE.2022.3189365 | 
    
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2334-329X | 
    
| EndPage | 3545 | 
    
| ExternalDocumentID | 10_1109_TNSE_2022_3189365 9822960  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61972144; 62025201 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c293t-d29b70f87a8d63a1ee50d3ae527be1c63714fcecc5be241ddbf8241c0207f0aa3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2327-4697 | 
    
| IngestDate | Mon Jun 30 09:52:36 EDT 2025 Wed Oct 01 03:54:48 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 Wed Aug 27 02:14:23 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c293t-d29b70f87a8d63a1ee50d3ae527be1c63714fcecc5be241ddbf8241c0207f0aa3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2163-2723 0000-0001-7309-2426 0000-0001-7896-5388  | 
    
| PQID | 2712060110 | 
    
| PQPubID | 2040409 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TNSE_2022_3189365 proquest_journals_2712060110 ieee_primary_9822960 crossref_primary_10_1109_TNSE_2022_3189365  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-09-01 | 
    
| PublicationDateYYYYMMDD | 2022-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE transactions on network science and engineering | 
    
| PublicationTitleAbbrev | TNSE | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref10 Anandkumar (ref37) 2016 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref41 ref44 Rubinstein (ref51) 2008 ref49 ref8 ref7 ref9 ref5 Li (ref6) 2018 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Jimeng (ref27) 2006 Kakarla (ref3) 2020 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Filsfils (ref4) 2020 ref29 Liu (ref11) 2017  | 
    
| References_xml | – start-page: 268 year: 2016 ident: ref37 article-title: Tensor vs matrix methods: Robust tensor decomposition under block sparse perturbations publication-title: Proc. Artif. Intell. Statist. – ident: ref39 doi: 10.1007/978-981-10-8058-6 – ident: ref33 doi: 10.1109/TMC.2016.2595569 – ident: ref32 doi: 10.1109/INFOCOM.2015.7218633 – ident: ref30 doi: 10.1145/3292500.3330680 – ident: ref18 doi: 10.1109/ICDM.2011.52 – ident: ref2 doi: 10.1177/0022002719861676 – ident: ref17 doi: 10.1109/TPAMI.2017.2748590 – ident: ref20 doi: 10.1109/TSG.2020.2978769 – ident: ref16 doi: 10.1109/JIOT.2021.3110588 – ident: ref5 doi: 10.1016/j.jnca.2015.11.016 – ident: ref40 doi: 10.1016/j.apm.2017.04.002 – ident: ref44 doi: 10.1007/s11235-018-0475-8 – ident: ref23 doi: 10.1109/LSP.2018.2819892 – ident: ref47 doi: 10.1049/iet-gtd.2019.1790 – ident: ref34 doi: 10.1016/j.amc.2019.124783 – year: 2008 ident: ref51 article-title: Compromising PCA-based anomaly detectors for network-wide traffic – ident: ref22 doi: 10.1109/TCSS.2018.2813320 – ident: ref50 doi: 10.1109/INFOCOM.2019.8737562 – ident: ref1 doi: 10.1371/journal.pone.0204507 – ident: ref24 doi: 10.1109/INFOCOM.2018.8486332 – ident: ref35 doi: 10.1007/s11235-018-0475-8 – ident: ref13 doi: 10.1109/INFOCOM.2017.8057217 – ident: ref36 doi: 10.1109/TSP.2017.2690524 – ident: ref38 doi: 10.1109/TPAMI.2019.2891760 – ident: ref10 doi: 10.1109/TSP.2017.2784361 – ident: ref9 doi: 10.1109/INFOCOM48880.2022.9796653 – ident: ref29 doi: 10.1145/1111322.1111341 – start-page: 4 year: 2017 ident: ref11 article-title: Streaming classification with emerging new class by class matrix sketching publication-title: Proc. 31st AAAI Conf. Artif. Intell. – ident: ref14 doi: 10.1016/j.sigpro.2019.107271 – ident: ref45 doi: 10.1007/978-3-662-00672-6 – start-page: 374 volume-title: Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining year: 2006 ident: ref27 article-title: Beyond streams and graphs: Dynamic tensor analysis – ident: ref7 doi: 10.1109/PIC.2010.5687485 – ident: ref48 doi: 10.1109/INFOCOM.2016.7524463 – ident: ref21 doi: 10.1007/s11263-019-01257-2 – ident: ref25 doi: 10.1109/TNET.2017.2761704 – start-page: 999 volume-title: Proc. Netw. Syst. Des. Implementation year: 2020 ident: ref3 article-title: Finding network misconfigurations by automatic template inference – ident: ref49 doi: 10.1109/TNET.2018.2797094 – ident: ref8 doi: 10.1109/24.664004 – ident: ref26 doi: 10.1109/TNET.2018.2819507 – ident: ref15 doi: 10.1016/j.ins.2019.09.074 – ident: ref53 doi: 10.1109/NOMS.2012.6211919 – ident: ref19 doi: 10.1109/CNS.2019.8802833 – ident: ref31 doi: 10.1109/TMC.2017.2775230 – ident: ref46 doi: 10.1016/j.trc.2020.102763 – ident: ref41 doi: 10.1007/978-1-4471-2227-2 – year: 2020 ident: ref4 article-title: Applying Attestation to the Border Gateway Protocol – ident: ref52 doi: 10.1023/B:JONS.0000015698.32353.61 – year: 2018 ident: ref6 article-title: Anomaly detection with generative adversarial networks for multivariate time series – ident: ref12 doi: 10.1007/s10479-019-03508-4  | 
    
| SSID | ssj0001286333 | 
    
| Score | 2.2939823 | 
    
| Snippet | Anomalous traffic detection is a vital task in advanced Internet supervision and maintenance. To detect anomalies accurately, various data representations,... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 3531 | 
    
| SubjectTerms | Accuracy Algorithms Anomalies Anomaly detection Communications traffic Computation Correlation Costs Heuristic algorithms Mathematical analysis Matrix decomposition Monitoring Network security Online anomaly detection Sequence traffic monitor Tensor recovery Tensors Traffic models  | 
    
| Title | A Novel Sequence Tensor Recovery Algorithm for Quick and Accurate Anomaly Detection | 
    
| URI | https://ieeexplore.ieee.org/document/9822960 https://www.proquest.com/docview/2712060110  | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2327-4697 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHDyJXdP0ke6x-EAEF2RX8FbSZKribitrK-ivd9J2l0VFPLWHpAwzab6ZZOYbgOMgkMJPec8xBDYUoHDPUTzgjjYSM2Hv4rQtcL7th9f3_s1D8LAAp7NaGESsk8-wa1_ru3xT6MoelZ1ZrjnyuBdhUUZhU6s1d54ShZ7ntReXLu-dDfuDSwoAhaC4lFDZwscc9NS9VH5swDWqXK3B7VSeJpnkpVuVaVd_fqNq_K_A67DaupcsbtbDBixgvgkrc6SDWzCIWb94xxEbtFnUbEihbDFhNhKlhf3B4tFjMXkun8aMPFp2Vz3rF6Zyw2KtK8ssweK8GKvRB7vAss7kyrfh_upyeH7ttK0VHE34XjpG9FLJs0iqyISechEDbjyFgZApujq0PH6ZJvMGKRLGG5NmET01OZcy40p5O7CUFznuAuNowsi4vis4-lKJKIh4mKXCcEWbly86wKdaT3TLO27bX4ySOv7gvcQaKrGGSlpDdeBkNuW1Id34a_CWVfxsYKvzDhxMTZu0v-VbIiRJGVqXZ-_3WfuwbL_dJJEdwFI5qfCQvI4yPaqX2xewqtOi | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ReqA98EZdnj70VJHFceIke4x4aAvsStUuErfIsSeAWJJqmyDBr2ecZFcriqqekoOtjGYcfzP2zDcA36UMhZ_ynmMIbChA4Z6juOSONiFmwt7FaVvgPBgG_Rv_8lbeLsHxvBYGEevkM-za1_ou3xS6skdlJ5ZrjjzuT_BZ-r4vm2qthROVKPA8r726dHnvZDwcnVMIKARFpoTLFkAWwKfupvLXFlzjysUaDGYSNekkj92qTLv69R1Z4_-KvA6rrYPJ4mZFbMAS5pvwdYF2cAtGMRsWzzhhozaPmo0pmC2mzMaitLRfWDy5K6YP5f0TI5-W_aoe9CNTuWGx1pXllmBxXjypyQs7w7LO5cq34ebifHzad9rmCo4mhC8dI3ppyLMoVJEJPOUiSm48hVKEKbo6sEx-mSYDyxQJ5Y1Js4iemtzLMONKeTuwnBc5fgPG0QSRcX1XcPRDJSIZ8SBLheGKti9fdIDPtJ7olnncNsCYJHUEwnuJNVRiDZW0hurAj_mU3w3txr8Gb1nFzwe2Ou_A_sy0Sftj_klESFIG1unZ_XjWEaz0x4Pr5Prn8GoPvtjvNCll-7BcTis8IB-kTA_rpfcG7hXW7w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Sequence+Tensor+Recovery+Algorithm+for+Quick+and+Accurate+Anomaly+Detection&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Huang%2C+Wenbin&rft.au=Xie%2C+Kun&rft.au=Li%2C+Jie&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=9&rft.issue=5&rft.spage=3531&rft_id=info:doi/10.1109%2FTNSE.2022.3189365&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |