A Novel Sequence Tensor Recovery Algorithm for Quick and Accurate Anomaly Detection

Anomalous traffic detection is a vital task in advanced Internet supervision and maintenance. To detect anomalies accurately, various data representations, such as vectors, matrices, and tensors, have been adopted to model traffic data. Among them, tensor-based methods outperform others due to their...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 9; no. 5; pp. 3531 - 3545
Main Authors Huang, Wenbin, Xie, Kun, Li, Jie
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4697
2334-329X
DOI10.1109/TNSE.2022.3189365

Cover

Abstract Anomalous traffic detection is a vital task in advanced Internet supervision and maintenance. To detect anomalies accurately, various data representations, such as vectors, matrices, and tensors, have been adopted to model traffic data. Among them, tensor-based methods outperform others due to their capability of capturing comprehensive correlations between complex network traffic. However, existing tensor-based algorithms remain certain shortcomings, such as working offline, cannot timely detect traffic anomalies, and high computation costs. To conquer the aforementioned deficiencies, we propose a novel sequence tensor recovery (STR) algorithm in this paper, which utilizes the results of historical tensor decomposition to achieve quick and accurate anomaly detection with low consumption when traffic data series arrive. Furthermore, we propose a dynamic sequence tensor recovery (DSTR) algorithm to improve anomaly detection accuracy by better capturing the variation over time of the comprehensive correlation of traffic data hidden in the tensor structure. The experimental results on two real traffic traces, Abilene and G<inline-formula><tex-math notation="LaTeX">\grave{E}</tex-math></inline-formula> ANT, indicate the proposed STR and DSTR algorithms are superior to the state-of-the-art algorithms in terms of accuracy and computation cost.
AbstractList Anomalous traffic detection is a vital task in advanced Internet supervision and maintenance. To detect anomalies accurately, various data representations, such as vectors, matrices, and tensors, have been adopted to model traffic data. Among them, tensor-based methods outperform others due to their capability of capturing comprehensive correlations between complex network traffic. However, existing tensor-based algorithms remain certain shortcomings, such as working offline, cannot timely detect traffic anomalies, and high computation costs. To conquer the aforementioned deficiencies, we propose a novel sequence tensor recovery (STR) algorithm in this paper, which utilizes the results of historical tensor decomposition to achieve quick and accurate anomaly detection with low consumption when traffic data series arrive. Furthermore, we propose a dynamic sequence tensor recovery (DSTR) algorithm to improve anomaly detection accuracy by better capturing the variation over time of the comprehensive correlation of traffic data hidden in the tensor structure. The experimental results on two real traffic traces, Abilene and G<inline-formula><tex-math notation="LaTeX">\grave{E}</tex-math></inline-formula> ANT, indicate the proposed STR and DSTR algorithms are superior to the state-of-the-art algorithms in terms of accuracy and computation cost.
Anomalous traffic detection is a vital task in advanced Internet supervision and maintenance. To detect anomalies accurately, various data representations, such as vectors, matrices, and tensors, have been adopted to model traffic data. Among them, tensor-based methods outperform others due to their capability of capturing comprehensive correlations between complex network traffic. However, existing tensor-based algorithms remain certain shortcomings, such as working offline, cannot timely detect traffic anomalies, and high computation costs. To conquer the aforementioned deficiencies, we propose a novel sequence tensor recovery (STR) algorithm in this paper, which utilizes the results of historical tensor decomposition to achieve quick and accurate anomaly detection with low consumption when traffic data series arrive. Furthermore, we propose a dynamic sequence tensor recovery (DSTR) algorithm to improve anomaly detection accuracy by better capturing the variation over time of the comprehensive correlation of traffic data hidden in the tensor structure. The experimental results on two real traffic traces, Abilene and G[Formula Omitted] ANT, indicate the proposed STR and DSTR algorithms are superior to the state-of-the-art algorithms in terms of accuracy and computation cost.
Author Huang, Wenbin
Xie, Kun
Li, Jie
Author_xml – sequence: 1
  givenname: Wenbin
  orcidid: 0000-0001-7309-2426
  surname: Huang
  fullname: Huang, Wenbin
  email: wenbinhuang@hnu.edu.cn
  organization: Department of College of Computer Science and Electronics Engineering, Hunan University, Changsha, China
– sequence: 2
  givenname: Kun
  orcidid: 0000-0002-2163-2723
  surname: Xie
  fullname: Xie, Kun
  email: xiekun@hnu.edu.cn
  organization: Department of College of Computer Science and Electronics Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0001-7896-5388
  surname: Li
  fullname: Li, Jie
  email: jieli2014@hnu.edu.cn
  organization: Department of School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
BookMark eNp9kEtLw0AUhQepYK39AeJmwHXqPNJMZhlqfUCpaCu4GyaTG01NZ-pkIvTfm9DiwoWrc7mcc-_hO0cD6ywgdEnJhFIib9bL1XzCCGMTTlPJk-kJGjLO44gz-TboZyaiOJHiDI2bZkMIoSxNOOdDtMrw0n1DjVfw1YI1gNdgG-fxC5hu7_c4q9-dr8LHFpfd-rmtzCfWtsCZMa3XAXBm3VbXe3wLAUyonL1Ap6WuGxgfdYRe7-br2UO0eLp_nGWLyDDJQ1QwmQtSpkKnRcI1BZiSgmuYMpEDNQkXNC4NGDPNgcW0KPIy7dQQRkRJtOYjdH24u_OuK98EtXGtt91LxQRlJCEdnc4lDi7jXdN4KJWpgu57Bq-rWlGieoiqh6h6iOoIsUvSP8mdr7ba7__NXB0yFQD8-mXKmEwI_wFT0X8R
CODEN ITNSD5
CitedBy_id crossref_primary_10_1109_TMC_2024_3401096
crossref_primary_10_1109_TPDS_2023_3316717
crossref_primary_10_1109_JIOT_2024_3360294
crossref_primary_10_1109_TMC_2023_3328038
crossref_primary_10_1109_TNSE_2023_3305125
crossref_primary_10_1016_j_ins_2024_121210
crossref_primary_10_1109_TMC_2022_3221463
crossref_primary_10_1109_TMC_2024_3411791
crossref_primary_10_1080_09540091_2023_2218069
crossref_primary_10_1145_3689429
Cites_doi 10.1007/978-981-10-8058-6
10.1109/TMC.2016.2595569
10.1109/INFOCOM.2015.7218633
10.1145/3292500.3330680
10.1109/ICDM.2011.52
10.1177/0022002719861676
10.1109/TPAMI.2017.2748590
10.1109/TSG.2020.2978769
10.1109/JIOT.2021.3110588
10.1016/j.jnca.2015.11.016
10.1016/j.apm.2017.04.002
10.1007/s11235-018-0475-8
10.1109/LSP.2018.2819892
10.1049/iet-gtd.2019.1790
10.1016/j.amc.2019.124783
10.1109/TCSS.2018.2813320
10.1109/INFOCOM.2019.8737562
10.1371/journal.pone.0204507
10.1109/INFOCOM.2018.8486332
10.1109/INFOCOM.2017.8057217
10.1109/TSP.2017.2690524
10.1109/TPAMI.2019.2891760
10.1109/TSP.2017.2784361
10.1109/INFOCOM48880.2022.9796653
10.1145/1111322.1111341
10.1016/j.sigpro.2019.107271
10.1007/978-3-662-00672-6
10.1109/PIC.2010.5687485
10.1109/INFOCOM.2016.7524463
10.1007/s11263-019-01257-2
10.1109/TNET.2017.2761704
10.1109/TNET.2018.2797094
10.1109/24.664004
10.1109/TNET.2018.2819507
10.1016/j.ins.2019.09.074
10.1109/NOMS.2012.6211919
10.1109/CNS.2019.8802833
10.1109/TMC.2017.2775230
10.1016/j.trc.2020.102763
10.1007/978-1-4471-2227-2
10.1023/B:JONS.0000015698.32353.61
10.1007/s10479-019-03508-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2022.3189365
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 3545
ExternalDocumentID 10_1109_TNSE_2022_3189365
9822960
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972144; 62025201
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-d29b70f87a8d63a1ee50d3ae527be1c63714fcecc5be241ddbf8241c0207f0aa3
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Mon Jun 30 09:52:36 EDT 2025
Wed Oct 01 03:54:48 EDT 2025
Thu Apr 24 23:09:34 EDT 2025
Wed Aug 27 02:14:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d29b70f87a8d63a1ee50d3ae527be1c63714fcecc5be241ddbf8241c0207f0aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2163-2723
0000-0001-7309-2426
0000-0001-7896-5388
PQID 2712060110
PQPubID 2040409
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TNSE_2022_3189365
proquest_journals_2712060110
ieee_primary_9822960
crossref_primary_10_1109_TNSE_2022_3189365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref10
Anandkumar (ref37) 2016
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref41
ref44
Rubinstein (ref51) 2008
ref49
ref8
ref7
ref9
ref5
Li (ref6) 2018
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Jimeng (ref27) 2006
Kakarla (ref3) 2020
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Filsfils (ref4) 2020
ref29
Liu (ref11) 2017
References_xml – start-page: 268
  year: 2016
  ident: ref37
  article-title: Tensor vs matrix methods: Robust tensor decomposition under block sparse perturbations
  publication-title: Proc. Artif. Intell. Statist.
– ident: ref39
  doi: 10.1007/978-981-10-8058-6
– ident: ref33
  doi: 10.1109/TMC.2016.2595569
– ident: ref32
  doi: 10.1109/INFOCOM.2015.7218633
– ident: ref30
  doi: 10.1145/3292500.3330680
– ident: ref18
  doi: 10.1109/ICDM.2011.52
– ident: ref2
  doi: 10.1177/0022002719861676
– ident: ref17
  doi: 10.1109/TPAMI.2017.2748590
– ident: ref20
  doi: 10.1109/TSG.2020.2978769
– ident: ref16
  doi: 10.1109/JIOT.2021.3110588
– ident: ref5
  doi: 10.1016/j.jnca.2015.11.016
– ident: ref40
  doi: 10.1016/j.apm.2017.04.002
– ident: ref44
  doi: 10.1007/s11235-018-0475-8
– ident: ref23
  doi: 10.1109/LSP.2018.2819892
– ident: ref47
  doi: 10.1049/iet-gtd.2019.1790
– ident: ref34
  doi: 10.1016/j.amc.2019.124783
– year: 2008
  ident: ref51
  article-title: Compromising PCA-based anomaly detectors for network-wide traffic
– ident: ref22
  doi: 10.1109/TCSS.2018.2813320
– ident: ref50
  doi: 10.1109/INFOCOM.2019.8737562
– ident: ref1
  doi: 10.1371/journal.pone.0204507
– ident: ref24
  doi: 10.1109/INFOCOM.2018.8486332
– ident: ref35
  doi: 10.1007/s11235-018-0475-8
– ident: ref13
  doi: 10.1109/INFOCOM.2017.8057217
– ident: ref36
  doi: 10.1109/TSP.2017.2690524
– ident: ref38
  doi: 10.1109/TPAMI.2019.2891760
– ident: ref10
  doi: 10.1109/TSP.2017.2784361
– ident: ref9
  doi: 10.1109/INFOCOM48880.2022.9796653
– ident: ref29
  doi: 10.1145/1111322.1111341
– start-page: 4
  year: 2017
  ident: ref11
  article-title: Streaming classification with emerging new class by class matrix sketching
  publication-title: Proc. 31st AAAI Conf. Artif. Intell.
– ident: ref14
  doi: 10.1016/j.sigpro.2019.107271
– ident: ref45
  doi: 10.1007/978-3-662-00672-6
– start-page: 374
  volume-title: Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining
  year: 2006
  ident: ref27
  article-title: Beyond streams and graphs: Dynamic tensor analysis
– ident: ref7
  doi: 10.1109/PIC.2010.5687485
– ident: ref48
  doi: 10.1109/INFOCOM.2016.7524463
– ident: ref21
  doi: 10.1007/s11263-019-01257-2
– ident: ref25
  doi: 10.1109/TNET.2017.2761704
– start-page: 999
  volume-title: Proc. Netw. Syst. Des. Implementation
  year: 2020
  ident: ref3
  article-title: Finding network misconfigurations by automatic template inference
– ident: ref49
  doi: 10.1109/TNET.2018.2797094
– ident: ref8
  doi: 10.1109/24.664004
– ident: ref26
  doi: 10.1109/TNET.2018.2819507
– ident: ref15
  doi: 10.1016/j.ins.2019.09.074
– ident: ref53
  doi: 10.1109/NOMS.2012.6211919
– ident: ref19
  doi: 10.1109/CNS.2019.8802833
– ident: ref31
  doi: 10.1109/TMC.2017.2775230
– ident: ref46
  doi: 10.1016/j.trc.2020.102763
– ident: ref41
  doi: 10.1007/978-1-4471-2227-2
– year: 2020
  ident: ref4
  article-title: Applying Attestation to the Border Gateway Protocol
– ident: ref52
  doi: 10.1023/B:JONS.0000015698.32353.61
– year: 2018
  ident: ref6
  article-title: Anomaly detection with generative adversarial networks for multivariate time series
– ident: ref12
  doi: 10.1007/s10479-019-03508-4
SSID ssj0001286333
Score 2.2939823
Snippet Anomalous traffic detection is a vital task in advanced Internet supervision and maintenance. To detect anomalies accurately, various data representations,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3531
SubjectTerms Accuracy
Algorithms
Anomalies
Anomaly detection
Communications traffic
Computation
Correlation
Costs
Heuristic algorithms
Mathematical analysis
Matrix decomposition
Monitoring
Network security
Online anomaly detection
Sequence traffic monitor
Tensor recovery
Tensors
Traffic models
Title A Novel Sequence Tensor Recovery Algorithm for Quick and Accurate Anomaly Detection
URI https://ieeexplore.ieee.org/document/9822960
https://www.proquest.com/docview/2712060110
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHDyJXdP0ke6x-EAEF2RX8FbSZKribitrK-ivd9J2l0VFPLWHpAwzab6ZZOYbgOMgkMJPec8xBDYUoHDPUTzgjjYSM2Hv4rQtcL7th9f3_s1D8LAAp7NaGESsk8-wa1_ru3xT6MoelZ1ZrjnyuBdhUUZhU6s1d54ShZ7ntReXLu-dDfuDSwoAhaC4lFDZwscc9NS9VH5swDWqXK3B7VSeJpnkpVuVaVd_fqNq_K_A67DaupcsbtbDBixgvgkrc6SDWzCIWb94xxEbtFnUbEihbDFhNhKlhf3B4tFjMXkun8aMPFp2Vz3rF6Zyw2KtK8ssweK8GKvRB7vAss7kyrfh_upyeH7ttK0VHE34XjpG9FLJs0iqyISechEDbjyFgZApujq0PH6ZJvMGKRLGG5NmET01OZcy40p5O7CUFznuAuNowsi4vis4-lKJKIh4mKXCcEWbly86wKdaT3TLO27bX4ySOv7gvcQaKrGGSlpDdeBkNuW1Id34a_CWVfxsYKvzDhxMTZu0v-VbIiRJGVqXZ-_3WfuwbL_dJJEdwFI5qfCQvI4yPaqX2xewqtOi
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ReqA98EZdnj70VJHFceIke4x4aAvsStUuErfIsSeAWJJqmyDBr2ecZFcriqqekoOtjGYcfzP2zDcA36UMhZ_ynmMIbChA4Z6juOSONiFmwt7FaVvgPBgG_Rv_8lbeLsHxvBYGEevkM-za1_ou3xS6skdlJ5ZrjjzuT_BZ-r4vm2qthROVKPA8r726dHnvZDwcnVMIKARFpoTLFkAWwKfupvLXFlzjysUaDGYSNekkj92qTLv69R1Z4_-KvA6rrYPJ4mZFbMAS5pvwdYF2cAtGMRsWzzhhozaPmo0pmC2mzMaitLRfWDy5K6YP5f0TI5-W_aoe9CNTuWGx1pXllmBxXjypyQs7w7LO5cq34ebifHzad9rmCo4mhC8dI3ppyLMoVJEJPOUiSm48hVKEKbo6sEx-mSYDyxQJ5Y1Js4iemtzLMONKeTuwnBc5fgPG0QSRcX1XcPRDJSIZ8SBLheGKti9fdIDPtJ7olnncNsCYJHUEwnuJNVRiDZW0hurAj_mU3w3txr8Gb1nFzwe2Ou_A_sy0Sftj_klESFIG1unZ_XjWEaz0x4Pr5Prn8GoPvtjvNCll-7BcTis8IB-kTA_rpfcG7hXW7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Sequence+Tensor+Recovery+Algorithm+for+Quick+and+Accurate+Anomaly+Detection&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Huang%2C+Wenbin&rft.au=Xie%2C+Kun&rft.au=Li%2C+Jie&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=9&rft.issue=5&rft.spage=3531&rft_id=info:doi/10.1109%2FTNSE.2022.3189365&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon