An ISAR Imaging Method Based on Improved CAMP Algorithm
Compressed sensing (CS) provides a new idea for inverse synthetic aperture radar (ISAR) imaging. Complex approximate message passing (CAMP) algorithm, as a new CS reconstruction algorithm, has characteristics of fast convergence and good reconstruction, which is suitable for ISAR imaging. However, t...
Saved in:
| Published in | IEEE sensors journal Vol. 21; no. 12; pp. 13514 - 13521 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
15.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2021.3068281 |
Cover
| Abstract | Compressed sensing (CS) provides a new idea for inverse synthetic aperture radar (ISAR) imaging. Complex approximate message passing (CAMP) algorithm, as a new CS reconstruction algorithm, has characteristics of fast convergence and good reconstruction, which is suitable for ISAR imaging. However, the off-grid problem is inevitable in ISAR imaging, which affects the reconstruction performance seriously and needs to be solved urgently. To solve the off-grid problem, a parametric CS ISAR imaging model is built in this paper, in which the off-grid is considered as an unknown parameter. To solve the joint optimization problem efficiently, first-order Taylor series approximation is used and the optimization problem is transformed into two least squares problems. To verify the effectiveness of the proposed method, it is applied into random sparse signals, complex sinusoids, quasi-real ISAR data and real ISAR data. Compared with the existing algorithms, the proposed method has got higher reconstruction signal-to-noise ratio (RSNR), smaller relative reconstruction error, smaller frequency position error and better imaging result. Therefore the proposed method is an effective CS ISAR imaging method which can solve the off-grid problem well. |
|---|---|
| AbstractList | Compressed sensing (CS) provides a new idea for inverse synthetic aperture radar (ISAR) imaging. Complex approximate message passing (CAMP) algorithm, as a new CS reconstruction algorithm, has characteristics of fast convergence and good reconstruction, which is suitable for ISAR imaging. However, the off-grid problem is inevitable in ISAR imaging, which affects the reconstruction performance seriously and needs to be solved urgently. To solve the off-grid problem, a parametric CS ISAR imaging model is built in this paper, in which the off-grid is considered as an unknown parameter. To solve the joint optimization problem efficiently, first-order Taylor series approximation is used and the optimization problem is transformed into two least squares problems. To verify the effectiveness of the proposed method, it is applied into random sparse signals, complex sinusoids, quasi-real ISAR data and real ISAR data. Compared with the existing algorithms, the proposed method has got higher reconstruction signal-to-noise ratio (RSNR), smaller relative reconstruction error, smaller frequency position error and better imaging result. Therefore the proposed method is an effective CS ISAR imaging method which can solve the off-grid problem well. |
| Author | Cheng, Jiawei Wang, Xinxin Zhao, Jiaqun Cheng, Ping |
| Author_xml | – sequence: 1 givenname: Ping orcidid: 0000-0003-0917-6072 surname: Cheng fullname: Cheng, Ping email: chengping1219@163.com organization: College of Computer and Information, Hohai University, Nanjing, China – sequence: 2 givenname: Jiawei surname: Cheng fullname: Cheng, Jiawei organization: College of Computer and Information, Hohai University, Nanjing, China – sequence: 3 givenname: Xinxin surname: Wang fullname: Wang, Xinxin organization: College of Computer and Information, Hohai University, Nanjing, China – sequence: 4 givenname: Jiaqun surname: Zhao fullname: Zhao, Jiaqun email: zhaojq@hhu.edu.cn organization: College of Science, Hohai University, Nanjing, China |
| BookMark | eNp9kEtLw0AUhQepYFv9AeIm4DpxHpnXMpaqlVbFKrgbJplJm9Jk6mQq-O9NaHHhwtU9cM-59_CNwKBxjQXgEsEEIShvHpfTpwRDjBICmcACnYAholTEiKdi0GsC45TwjzMwatsNhEhyyoeAZ000W2av0azWq6pZRQsb1s5Et7q1JnLdst5599XpSbZ4ibLtyvkqrOtzcFrqbWsvjnMM3u-mb5OHeP58P5tk87jAkoS4MIjlSEuTY80F5syInBQYljllaYkx14RwQ01ZMNT1hpAylnOqS8ssLfOCjMH14W7X4nNv26A2bu-b7qXCNEUpk0KwzsUPrsK7tvW2VEUVdKhcE7yutgpB1VNSPSXVU1JHSl0S_UnufFVr__1v5uqQqay1v35JBMESkh9wzHI3 |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_JSEN_2022_3229126 crossref_primary_10_1109_TGRS_2022_3169206 crossref_primary_10_1109_TGRS_2024_3385027 crossref_primary_10_1109_JSEN_2021_3090948 crossref_primary_10_1080_01431161_2024_2339204 crossref_primary_10_1109_JSEN_2022_3192534 |
| Cites_doi | 10.1109/ICSP.2018.8652489 10.1109/JSEN.2018.2791568 10.3390/s140405929 10.1109/JSEN.2019.2947559 10.1109/LGRS.2017.2768664 10.1109/TGRS.2017.2671519 10.1109/RADAR.2013.6586048 10.1049/iet-rsn.2017.0401 10.1109/JSEN.2020.3004037 10.1109/TIT.2013.2252232 10.1109/TAES.2019.2909791 10.1109/ISIT.2011.6033942 10.1109/JSEN.2020.2970465 10.1109/TCI.2017.2750330 10.1109/TSP.2007.916124 10.1109/VTS-APWCS.2019.8851644 10.1109/TSP.2020.3044847 10.1109/RADAR.2014.7060461 10.1109/TIT.2017.2688381 10.1109/LGRS.2016.2522769 10.1016/j.dsp.2013.12.008 10.1109/TGRS.2020.2978096 10.1016/j.sigpro.2017.03.003 10.1109/TIT.2006.871582 10.1109/TSP.2011.2112650 10.1002/tee.22199 10.1109/JSEN.2019.2899112 10.1109/IGARSS.2018.8518704 10.1109/TGRS.2011.2160183 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2021.3068281 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore digital library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 13521 |
| ExternalDocumentID | 10_1109_JSEN_2021_3068281 9383290 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-cd16b1a9db2a78276d8b3c20fb564f227a337d5dfc6106800566b75afe6e5fbc3 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:12:15 EDT 2025 Thu Apr 24 22:54:30 EDT 2025 Wed Oct 01 04:14:51 EDT 2025 Wed Aug 27 02:50:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-cd16b1a9db2a78276d8b3c20fb564f227a337d5dfc6106800566b75afe6e5fbc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0917-6072 |
| PQID | 2541469886 |
| PQPubID | 75733 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2021_3068281 proquest_journals_2541469886 ieee_primary_9383290 crossref_primary_10_1109_JSEN_2021_3068281 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-15 |
| PublicationDateYYYYMMDD | 2021-06-15 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 chen (ref20) 2017 ref2 ref1 ref17 shi (ref9) 2009; 37 ref16 ref19 maleki (ref10) 2011 ref23 ref26 ref25 ref22 ref21 guo (ref18) 2016; 35 ref28 ref27 cheng (ref29) 2018; 69 ref8 ref7 ref4 ref3 ref6 ref5 wang (ref24) 2016; 44 |
| References_xml | – volume: 37 start-page: 1070 year: 2009 ident: ref9 article-title: Advances in theory and application of compressed sensing publication-title: Acta Electronica Sinica – ident: ref12 doi: 10.1109/ICSP.2018.8652489 – ident: ref2 doi: 10.1109/JSEN.2018.2791568 – ident: ref22 doi: 10.3390/s140405929 – ident: ref35 doi: 10.1109/JSEN.2019.2947559 – ident: ref3 doi: 10.1109/LGRS.2017.2768664 – ident: ref17 doi: 10.1109/TGRS.2017.2671519 – ident: ref31 doi: 10.1109/RADAR.2013.6586048 – ident: ref30 doi: 10.1049/iet-rsn.2017.0401 – ident: ref14 doi: 10.1109/JSEN.2020.3004037 – ident: ref16 doi: 10.1109/TIT.2013.2252232 – ident: ref28 doi: 10.1109/TAES.2019.2909791 – ident: ref11 doi: 10.1109/ISIT.2011.6033942 – ident: ref4 doi: 10.1109/JSEN.2020.2970465 – ident: ref7 doi: 10.1109/TCI.2017.2750330 – ident: ref8 doi: 10.1109/TSP.2007.916124 – volume: 69 start-page: 326 year: 2018 ident: ref29 article-title: Fast off grid compressed sensing ISAR imaging algorithm publication-title: J Electr Eng – ident: ref13 doi: 10.1109/VTS-APWCS.2019.8851644 – start-page: 1 year: 2017 ident: ref20 article-title: Iteratively reweighted complex approximate message passing for ISAR imaging with cluster sparse structure publication-title: Proc ICSP – ident: ref15 doi: 10.1109/TSP.2020.3044847 – ident: ref23 doi: 10.1109/RADAR.2014.7060461 – ident: ref33 doi: 10.1109/TIT.2017.2688381 – ident: ref19 doi: 10.1109/LGRS.2016.2522769 – year: 2011 ident: ref10 article-title: Approximate message passing algorithms for compressed sensing – ident: ref26 doi: 10.1016/j.dsp.2013.12.008 – ident: ref34 doi: 10.1109/TGRS.2020.2978096 – ident: ref27 doi: 10.1016/j.sigpro.2017.03.003 – ident: ref1 doi: 10.1109/TIT.2006.871582 – ident: ref21 doi: 10.1109/TSP.2011.2112650 – ident: ref6 doi: 10.1002/tee.22199 – volume: 35 start-page: 24 year: 2016 ident: ref18 article-title: Parallel implementation of sparse reconstruction algorithm based on CAMP publication-title: Foreign Electron Meas Technol – ident: ref5 doi: 10.1109/JSEN.2019.2899112 – ident: ref25 doi: 10.1109/IGARSS.2018.8518704 – volume: 44 start-page: 1314 year: 2016 ident: ref24 article-title: Bayesian compressive sensing based sparse imaging for off grid target in frequency diverse MIMO radar publication-title: Acta Electron Sin – ident: ref32 doi: 10.1109/TGRS.2011.2160183 |
| SSID | ssj0019757 |
| Score | 2.348275 |
| Snippet | Compressed sensing (CS) provides a new idea for inverse synthetic aperture radar (ISAR) imaging. Complex approximate message passing (CAMP) algorithm, as a new... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13514 |
| SubjectTerms | Algorithms Approximation algorithms Complex approximate message passing (CAMP) compressed sensing (CS) Image reconstruction Imaging Inverse synthetic aperture radar inverse synthetic aperture radar (ISAR) Matching pursuit algorithms Message passing off-grid Optimization Position errors Radar imaging Reconstruction Scattering Sensors Signal to noise ratio Taylor series |
| Title | An ISAR Imaging Method Based on Improved CAMP Algorithm |
| URI | https://ieeexplore.ieee.org/document/9383290 https://www.proquest.com/docview/2541469886 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore digital library customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgF-DAGzEYqAdOiI42bZLmWCYQQxpCPKTdqiZNGGJsCLoD_HqctJt4CXGL1KSK7CT2Fzv-AA40oxGXEUVYEkg_ZlT5CJuFz6kyIkd7GyT2cXLvkp3fxRd92p-Do9lbGK21Sz7Tbdt0sfxirCb2quxYIJwiAgH6PE9Y9VZrFjEQ3FX1xA0c-HHE-3UEMwzE8cXN6SUiQRK20T9GhBF-sUGOVOXHSezMy9kK9KYTq7JKHtuTUrbV-7eajf-d-Sos136ml1YLYw3m9Ggdlj5VH1yHhZoAffC2ATwded2b9NrrPjnaIq_nmKW9EzRyhTfGj-7yAdudtHflpcP78ctDOXjahLuz09vOuV9zKvgKDXvpqyJkMsxFIUmOzgFnRSIjRQIjKYsNITyPIl7QwihUHktspVAmOc2NZpoaqaItaIzGI70Nnop1rgUixESLWMdCcmViJgkTJjI6IE0IplLOVF1w3PJeDDMHPAKRWcVkVjFZrZgmHM6GPFfVNv7qvGEFPetYy7gJrakqs3o_vmbEsp0zkSRs5_dRu7Bo_22TwELagkb5MtF76G6Uct-tsw8ak81b |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hOLAceC6iyysHTitSEseP-BgQqAVSIR5Sb1Hs2ICAdsWmh-XXM3bTCliEuFmKrVgztmc-z3g-gD3DWSJUwhCWRCqknOkQYbMMBdNWlmhvo9Q9Ts57vHNDT_usPwP707cwxhiffGbarulj-dVQj9xV2YFEOEUkAvQ5Rill49da05iBFL6uJ27hKKSJ6DcxzDiSB6dXxz3EgiRuo4eMGCN-Z4U8rcp_Z7E3MCdLkE-mNs4reWiPatXWLx-qNn537suw2HiaQTZeGiswYwarsPCm_uAqzDcU6Hf_1kBkg6B7lV0G3SdPXBTknls6OEQzVwVD_OivH7B9lOUXQfZ4O3y-r--efsLNyfH1USdsWBVCjaa9DnUVcxWXslKkRPdA8CpViSaRVYxTS4gok0RUrLIa1cdTVyuUK8FKa7hhVulkHWYHw4HZgEBTUxqJGDE1khoqldCWckW4tIk1EWlBNJFyoZuS44754rHw0COShVNM4RRTNIppwe_pkD_jehtfdV5zgp52bGTcgq2JKotmR_4tiOM75zJN-a_PR-3CfOc6Py_Ou72zTfjh_uNSwmK2BbP188hso_NRqx2_5l4BCc3QqA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ISAR+Imaging+Method+Based+on+Improved+CAMP+Algorithm&rft.jtitle=IEEE+sensors+journal&rft.au=Cheng%2C+Ping&rft.au=Cheng%2C+Jiawei&rft.au=Wang%2C+Xinxin&rft.au=Zhao%2C+Jiaqun&rft.date=2021-06-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=21&rft.issue=12&rft.spage=13514&rft.epage=13521&rft_id=info:doi/10.1109%2FJSEN.2021.3068281&rft.externalDocID=9383290 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |