An ISAR Imaging Method Based on Improved CAMP Algorithm

Compressed sensing (CS) provides a new idea for inverse synthetic aperture radar (ISAR) imaging. Complex approximate message passing (CAMP) algorithm, as a new CS reconstruction algorithm, has characteristics of fast convergence and good reconstruction, which is suitable for ISAR imaging. However, t...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 12; pp. 13514 - 13521
Main Authors Cheng, Ping, Cheng, Jiawei, Wang, Xinxin, Zhao, Jiaqun
Format Journal Article
LanguageEnglish
Published New York IEEE 15.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2021.3068281

Cover

Abstract Compressed sensing (CS) provides a new idea for inverse synthetic aperture radar (ISAR) imaging. Complex approximate message passing (CAMP) algorithm, as a new CS reconstruction algorithm, has characteristics of fast convergence and good reconstruction, which is suitable for ISAR imaging. However, the off-grid problem is inevitable in ISAR imaging, which affects the reconstruction performance seriously and needs to be solved urgently. To solve the off-grid problem, a parametric CS ISAR imaging model is built in this paper, in which the off-grid is considered as an unknown parameter. To solve the joint optimization problem efficiently, first-order Taylor series approximation is used and the optimization problem is transformed into two least squares problems. To verify the effectiveness of the proposed method, it is applied into random sparse signals, complex sinusoids, quasi-real ISAR data and real ISAR data. Compared with the existing algorithms, the proposed method has got higher reconstruction signal-to-noise ratio (RSNR), smaller relative reconstruction error, smaller frequency position error and better imaging result. Therefore the proposed method is an effective CS ISAR imaging method which can solve the off-grid problem well.
AbstractList Compressed sensing (CS) provides a new idea for inverse synthetic aperture radar (ISAR) imaging. Complex approximate message passing (CAMP) algorithm, as a new CS reconstruction algorithm, has characteristics of fast convergence and good reconstruction, which is suitable for ISAR imaging. However, the off-grid problem is inevitable in ISAR imaging, which affects the reconstruction performance seriously and needs to be solved urgently. To solve the off-grid problem, a parametric CS ISAR imaging model is built in this paper, in which the off-grid is considered as an unknown parameter. To solve the joint optimization problem efficiently, first-order Taylor series approximation is used and the optimization problem is transformed into two least squares problems. To verify the effectiveness of the proposed method, it is applied into random sparse signals, complex sinusoids, quasi-real ISAR data and real ISAR data. Compared with the existing algorithms, the proposed method has got higher reconstruction signal-to-noise ratio (RSNR), smaller relative reconstruction error, smaller frequency position error and better imaging result. Therefore the proposed method is an effective CS ISAR imaging method which can solve the off-grid problem well.
Author Cheng, Jiawei
Wang, Xinxin
Zhao, Jiaqun
Cheng, Ping
Author_xml – sequence: 1
  givenname: Ping
  orcidid: 0000-0003-0917-6072
  surname: Cheng
  fullname: Cheng, Ping
  email: chengping1219@163.com
  organization: College of Computer and Information, Hohai University, Nanjing, China
– sequence: 2
  givenname: Jiawei
  surname: Cheng
  fullname: Cheng, Jiawei
  organization: College of Computer and Information, Hohai University, Nanjing, China
– sequence: 3
  givenname: Xinxin
  surname: Wang
  fullname: Wang, Xinxin
  organization: College of Computer and Information, Hohai University, Nanjing, China
– sequence: 4
  givenname: Jiaqun
  surname: Zhao
  fullname: Zhao, Jiaqun
  email: zhaojq@hhu.edu.cn
  organization: College of Science, Hohai University, Nanjing, China
BookMark eNp9kEtLw0AUhQepYFv9AeIm4DpxHpnXMpaqlVbFKrgbJplJm9Jk6mQq-O9NaHHhwtU9cM-59_CNwKBxjQXgEsEEIShvHpfTpwRDjBICmcACnYAholTEiKdi0GsC45TwjzMwatsNhEhyyoeAZ000W2av0azWq6pZRQsb1s5Et7q1JnLdst5599XpSbZ4ibLtyvkqrOtzcFrqbWsvjnMM3u-mb5OHeP58P5tk87jAkoS4MIjlSEuTY80F5syInBQYljllaYkx14RwQ01ZMNT1hpAylnOqS8ssLfOCjMH14W7X4nNv26A2bu-b7qXCNEUpk0KwzsUPrsK7tvW2VEUVdKhcE7yutgpB1VNSPSXVU1JHSl0S_UnufFVr__1v5uqQqay1v35JBMESkh9wzHI3
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2022_3229126
crossref_primary_10_1109_TGRS_2022_3169206
crossref_primary_10_1109_TGRS_2024_3385027
crossref_primary_10_1109_JSEN_2021_3090948
crossref_primary_10_1080_01431161_2024_2339204
crossref_primary_10_1109_JSEN_2022_3192534
Cites_doi 10.1109/ICSP.2018.8652489
10.1109/JSEN.2018.2791568
10.3390/s140405929
10.1109/JSEN.2019.2947559
10.1109/LGRS.2017.2768664
10.1109/TGRS.2017.2671519
10.1109/RADAR.2013.6586048
10.1049/iet-rsn.2017.0401
10.1109/JSEN.2020.3004037
10.1109/TIT.2013.2252232
10.1109/TAES.2019.2909791
10.1109/ISIT.2011.6033942
10.1109/JSEN.2020.2970465
10.1109/TCI.2017.2750330
10.1109/TSP.2007.916124
10.1109/VTS-APWCS.2019.8851644
10.1109/TSP.2020.3044847
10.1109/RADAR.2014.7060461
10.1109/TIT.2017.2688381
10.1109/LGRS.2016.2522769
10.1016/j.dsp.2013.12.008
10.1109/TGRS.2020.2978096
10.1016/j.sigpro.2017.03.003
10.1109/TIT.2006.871582
10.1109/TSP.2011.2112650
10.1002/tee.22199
10.1109/JSEN.2019.2899112
10.1109/IGARSS.2018.8518704
10.1109/TGRS.2011.2160183
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2021.3068281
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore digital library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 13521
ExternalDocumentID 10_1109_JSEN_2021_3068281
9383290
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-cd16b1a9db2a78276d8b3c20fb564f227a337d5dfc6106800566b75afe6e5fbc3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:12:15 EDT 2025
Thu Apr 24 22:54:30 EDT 2025
Wed Oct 01 04:14:51 EDT 2025
Wed Aug 27 02:50:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-cd16b1a9db2a78276d8b3c20fb564f227a337d5dfc6106800566b75afe6e5fbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0917-6072
PQID 2541469886
PQPubID 75733
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2021_3068281
proquest_journals_2541469886
ieee_primary_9383290
crossref_primary_10_1109_JSEN_2021_3068281
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
chen (ref20) 2017
ref2
ref1
ref17
shi (ref9) 2009; 37
ref16
ref19
maleki (ref10) 2011
ref23
ref26
ref25
ref22
ref21
guo (ref18) 2016; 35
ref28
ref27
cheng (ref29) 2018; 69
ref8
ref7
ref4
ref3
ref6
ref5
wang (ref24) 2016; 44
References_xml – volume: 37
  start-page: 1070
  year: 2009
  ident: ref9
  article-title: Advances in theory and application of compressed sensing
  publication-title: Acta Electronica Sinica
– ident: ref12
  doi: 10.1109/ICSP.2018.8652489
– ident: ref2
  doi: 10.1109/JSEN.2018.2791568
– ident: ref22
  doi: 10.3390/s140405929
– ident: ref35
  doi: 10.1109/JSEN.2019.2947559
– ident: ref3
  doi: 10.1109/LGRS.2017.2768664
– ident: ref17
  doi: 10.1109/TGRS.2017.2671519
– ident: ref31
  doi: 10.1109/RADAR.2013.6586048
– ident: ref30
  doi: 10.1049/iet-rsn.2017.0401
– ident: ref14
  doi: 10.1109/JSEN.2020.3004037
– ident: ref16
  doi: 10.1109/TIT.2013.2252232
– ident: ref28
  doi: 10.1109/TAES.2019.2909791
– ident: ref11
  doi: 10.1109/ISIT.2011.6033942
– ident: ref4
  doi: 10.1109/JSEN.2020.2970465
– ident: ref7
  doi: 10.1109/TCI.2017.2750330
– ident: ref8
  doi: 10.1109/TSP.2007.916124
– volume: 69
  start-page: 326
  year: 2018
  ident: ref29
  article-title: Fast off grid compressed sensing ISAR imaging algorithm
  publication-title: J Electr Eng
– ident: ref13
  doi: 10.1109/VTS-APWCS.2019.8851644
– start-page: 1
  year: 2017
  ident: ref20
  article-title: Iteratively reweighted complex approximate message passing for ISAR imaging with cluster sparse structure
  publication-title: Proc ICSP
– ident: ref15
  doi: 10.1109/TSP.2020.3044847
– ident: ref23
  doi: 10.1109/RADAR.2014.7060461
– ident: ref33
  doi: 10.1109/TIT.2017.2688381
– ident: ref19
  doi: 10.1109/LGRS.2016.2522769
– year: 2011
  ident: ref10
  article-title: Approximate message passing algorithms for compressed sensing
– ident: ref26
  doi: 10.1016/j.dsp.2013.12.008
– ident: ref34
  doi: 10.1109/TGRS.2020.2978096
– ident: ref27
  doi: 10.1016/j.sigpro.2017.03.003
– ident: ref1
  doi: 10.1109/TIT.2006.871582
– ident: ref21
  doi: 10.1109/TSP.2011.2112650
– ident: ref6
  doi: 10.1002/tee.22199
– volume: 35
  start-page: 24
  year: 2016
  ident: ref18
  article-title: Parallel implementation of sparse reconstruction algorithm based on CAMP
  publication-title: Foreign Electron Meas Technol
– ident: ref5
  doi: 10.1109/JSEN.2019.2899112
– ident: ref25
  doi: 10.1109/IGARSS.2018.8518704
– volume: 44
  start-page: 1314
  year: 2016
  ident: ref24
  article-title: Bayesian compressive sensing based sparse imaging for off grid target in frequency diverse MIMO radar
  publication-title: Acta Electron Sin
– ident: ref32
  doi: 10.1109/TGRS.2011.2160183
SSID ssj0019757
Score 2.348275
Snippet Compressed sensing (CS) provides a new idea for inverse synthetic aperture radar (ISAR) imaging. Complex approximate message passing (CAMP) algorithm, as a new...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13514
SubjectTerms Algorithms
Approximation algorithms
Complex approximate message passing (CAMP)
compressed sensing (CS)
Image reconstruction
Imaging
Inverse synthetic aperture radar
inverse synthetic aperture radar (ISAR)
Matching pursuit algorithms
Message passing
off-grid
Optimization
Position errors
Radar imaging
Reconstruction
Scattering
Sensors
Signal to noise ratio
Taylor series
Title An ISAR Imaging Method Based on Improved CAMP Algorithm
URI https://ieeexplore.ieee.org/document/9383290
https://www.proquest.com/docview/2541469886
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore digital library
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgF-DAGzEYqAdOiI42bZLmWCYQQxpCPKTdqiZNGGJsCLoD_HqctJt4CXGL1KSK7CT2Fzv-AA40oxGXEUVYEkg_ZlT5CJuFz6kyIkd7GyT2cXLvkp3fxRd92p-Do9lbGK21Sz7Tbdt0sfxirCb2quxYIJwiAgH6PE9Y9VZrFjEQ3FX1xA0c-HHE-3UEMwzE8cXN6SUiQRK20T9GhBF-sUGOVOXHSezMy9kK9KYTq7JKHtuTUrbV-7eajf-d-Sos136ml1YLYw3m9Ggdlj5VH1yHhZoAffC2ATwded2b9NrrPjnaIq_nmKW9EzRyhTfGj-7yAdudtHflpcP78ctDOXjahLuz09vOuV9zKvgKDXvpqyJkMsxFIUmOzgFnRSIjRQIjKYsNITyPIl7QwihUHktspVAmOc2NZpoaqaItaIzGI70Nnop1rgUixESLWMdCcmViJgkTJjI6IE0IplLOVF1w3PJeDDMHPAKRWcVkVjFZrZgmHM6GPFfVNv7qvGEFPetYy7gJrakqs3o_vmbEsp0zkSRs5_dRu7Bo_22TwELagkb5MtF76G6Uct-tsw8ak81b
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hOLAceC6iyysHTitSEseP-BgQqAVSIR5Sb1Hs2ICAdsWmh-XXM3bTCliEuFmKrVgztmc-z3g-gD3DWSJUwhCWRCqknOkQYbMMBdNWlmhvo9Q9Ts57vHNDT_usPwP707cwxhiffGbarulj-dVQj9xV2YFEOEUkAvQ5Rill49da05iBFL6uJ27hKKSJ6DcxzDiSB6dXxz3EgiRuo4eMGCN-Z4U8rcp_Z7E3MCdLkE-mNs4reWiPatXWLx-qNn537suw2HiaQTZeGiswYwarsPCm_uAqzDcU6Hf_1kBkg6B7lV0G3SdPXBTknls6OEQzVwVD_OivH7B9lOUXQfZ4O3y-r--efsLNyfH1USdsWBVCjaa9DnUVcxWXslKkRPdA8CpViSaRVYxTS4gok0RUrLIa1cdTVyuUK8FKa7hhVulkHWYHw4HZgEBTUxqJGDE1khoqldCWckW4tIk1EWlBNJFyoZuS44754rHw0COShVNM4RRTNIppwe_pkD_jehtfdV5zgp52bGTcgq2JKotmR_4tiOM75zJN-a_PR-3CfOc6Py_Ou72zTfjh_uNSwmK2BbP188hso_NRqx2_5l4BCc3QqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ISAR+Imaging+Method+Based+on+Improved+CAMP+Algorithm&rft.jtitle=IEEE+sensors+journal&rft.au=Cheng%2C+Ping&rft.au=Cheng%2C+Jiawei&rft.au=Wang%2C+Xinxin&rft.au=Zhao%2C+Jiaqun&rft.date=2021-06-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=21&rft.issue=12&rft.spage=13514&rft.epage=13521&rft_id=info:doi/10.1109%2FJSEN.2021.3068281&rft.externalDocID=9383290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon