Multi-Classification Algorithm for Human Motion Recognition Based on IR-UWB Radar
In this paper, a multi-classification algorithm for human motion recognition based on Impulse-Radio Ultra-wideband (IR-UWB) radar is presented. The algorithm includes three parts. First, the k-NearestNeighbor (KNN) algorithm is used to classify the radial features of pre-processed signal to determin...
Saved in:
| Published in | IEEE sensors journal Vol. 20; no. 21; pp. 12848 - 12858 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2020.3000498 |
Cover
| Abstract | In this paper, a multi-classification algorithm for human motion recognition based on Impulse-Radio Ultra-wideband (IR-UWB) radar is presented. The algorithm includes three parts. First, the k-NearestNeighbor (KNN) algorithm is used to classify the radial features of pre-processed signal to determine the subject's radial displacement direction. Then, the power spectrum feature extraction algorithm and Doppler shifts feature extraction algorithm are proposed to extract and visualize the characteristics from the different categories classified by the first part. Finally, the feature spectrograms obtained by the second part are sent into Convolutional Neural Networks (CNNs) for training and testing to realize the recognition of human motions. To verify the performance of proposed algorithm, dataset was created from 15 persons including 12 kinds of motions. The Five-Fold Cross Validation was conducted to calculate the recognition accuracy. As a result, the average accuracy of judging the radial displacement directions of subjects was up to 99%. Furthermore, the average accuracy of estimating the motions of subjects reached 98%. Experiments have proved that the proposed algorithm can achieve high recognition accuracy in daily human motions and is feasible in a variety of test environments. |
|---|---|
| AbstractList | In this paper, a multi-classification algorithm for human motion recognition based on Impulse-Radio Ultra-wideband (IR-UWB) radar is presented. The algorithm includes three parts. First, the k-NearestNeighbor (KNN) algorithm is used to classify the radial features of pre-processed signal to determine the subject's radial displacement direction. Then, the power spectrum feature extraction algorithm and Doppler shifts feature extraction algorithm are proposed to extract and visualize the characteristics from the different categories classified by the first part. Finally, the feature spectrograms obtained by the second part are sent into Convolutional Neural Networks (CNNs) for training and testing to realize the recognition of human motions. To verify the performance of proposed algorithm, dataset was created from 15 persons including 12 kinds of motions. The Five-Fold Cross Validation was conducted to calculate the recognition accuracy. As a result, the average accuracy of judging the radial displacement directions of subjects was up to 99%. Furthermore, the average accuracy of estimating the motions of subjects reached 98%. Experiments have proved that the proposed algorithm can achieve high recognition accuracy in daily human motions and is feasible in a variety of test environments. |
| Author | Zhang, Yi Qi, Rui Li, Yubing Li, Xiuping |
| Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0001-5152-2528 surname: Qi fullname: Qi, Rui email: qiziyao@bupt.edu.cn organization: College of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Xiuping orcidid: 0000-0003-4350-9651 surname: Li fullname: Li, Xiuping organization: College of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Yi orcidid: 0000-0001-7083-5802 surname: Zhang fullname: Zhang, Yi organization: College of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 4 givenname: Yubing orcidid: 0000-0002-8380-077X surname: Li fullname: Li, Yubing organization: College of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China |
| BookMark | eNp9kE9PwjAYhxuDiYB-AONliedh_67rEQgKBjSiRG9Nt7VYMlZsx8Fv7wbEgwdP_SV9nvfN--uBTuUqDcA1ggOEoLh7fJ08DTDEcEAghFSkZ6CLGEtjxGnaaTOBMSX84wL0QthAiARnvAteFvuytvG4VCFYY3NVW1dFw3LtvK0_t5FxPprut6qKFu7wtdS5W1f2kEcq6CJqwmwZr95H0VIVyl-Cc6PKoK9Obx-s7idv42k8f36YjYfzOMeC1HGeIcaRKbThKURQFQgSnmSmYIJgzJOCGsozqrDWgmFOOWQJzzhSwogEZynpg9vj3J13X3sdarlxe181KyWmNKUJTUXSUPxI5d6F4LWRua0PR9Ze2VIiKNv-ZNufbPuTp_4aE_0xd95ulf_-17k5OlZr_cuLhmackR-0pnvZ |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_JSEN_2022_3205116 crossref_primary_10_1016_j_cag_2023_06_007 crossref_primary_10_1109_TIM_2024_3485432 crossref_primary_10_1016_j_entcom_2024_100788 crossref_primary_10_1016_j_measurement_2024_114939 crossref_primary_10_1109_JSEN_2024_3360187 crossref_primary_10_1016_j_petrol_2022_111075 crossref_primary_10_1109_JSEN_2024_3513983 crossref_primary_10_1109_JIOT_2024_3443865 crossref_primary_10_1109_JSEN_2022_3156762 crossref_primary_10_1109_JSEN_2022_3157894 crossref_primary_10_1109_JSEN_2021_3110367 crossref_primary_10_1109_COMST_2023_3334269 crossref_primary_10_1109_TAES_2024_3427101 crossref_primary_10_3390_s21113881 crossref_primary_10_1109_JSAC_2022_3155523 crossref_primary_10_3390_s24175533 crossref_primary_10_1007_s13349_022_00624_x crossref_primary_10_1109_TGRS_2022_3203468 crossref_primary_10_3390_s21124018 crossref_primary_10_1049_sil2_12060 crossref_primary_10_1109_ACCESS_2023_3322726 crossref_primary_10_3390_electronics9122140 |
| Cites_doi | 10.1049/iet-rsn.2014.0250 10.1109/ACCESS.2019.2913393 10.1109/JSEN.2016.2609392 10.1049/iet-rsn.2015.0084 10.1109/TAES.2018.2799758 10.1109/LGRS.2015.2452946 10.1109/JETCAS.2018.2797313 10.1109/LGRS.2015.2491329 10.1109/LGRS.2017.2765341 10.1109/TAES.2018.2801378 10.1109/TCYB.2014.2335540 10.1049/iet-rsn.2013.0165 10.1109/TAES.2006.1603402 10.1109/TIP.2015.2456412 10.1109/TGRS.2019.2908758 10.1109/THMS.2014.2362520 10.1109/MSP.2018.2842646 10.1023/A:1009715923555 10.1109/ACCESS.2019.2920969 10.1109/JERM.2019.2893587 10.1109/LGRS.2014.2311819 10.1049/iet-rsn.2011.0101 10.1049/joe.2019.0145 10.1049/iet-rsn.2015.0113 10.1109/TGRS.2009.2012849 10.1049/iet-rsn.2018.5054 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2020.3000498 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 12858 |
| ExternalDocumentID | 10_1109_JSEN_2020_3000498 9110575 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-cb1571fdef78010ad10376bfd5932276d4f47b4a2ee9527470567b71a9f962b83 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:11:55 EDT 2025 Wed Oct 01 04:14:44 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 Wed Aug 27 02:31:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-cb1571fdef78010ad10376bfd5932276d4f47b4a2ee9527470567b71a9f962b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5152-2528 0000-0001-7083-5802 0000-0002-8380-077X 0000-0003-4350-9651 |
| PQID | 2448464896 |
| PQPubID | 75733 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2448464896 ieee_primary_9110575 crossref_citationtrail_10_1109_JSEN_2020_3000498 crossref_primary_10_1109_JSEN_2020_3000498 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref10 ref2 ref1 szegedy (ref22) 2015 ref19 lyons (ref16) 2008 ref24 ref26 ref25 richards (ref17) 2014 ref21 kim (ref9) 2009; 47 (ref23) 2018 ref28 ref27 langen (ref20) 2016 ref29 ref8 ref7 he (ref32) 2014; abs 1412 1710 ref4 ref3 ref6 ref5 yang (ref18) 2011; 7 |
| References_xml | – ident: ref1 doi: 10.1049/iet-rsn.2014.0250 – ident: ref6 doi: 10.1109/ACCESS.2019.2913393 – ident: ref5 doi: 10.1109/JSEN.2016.2609392 – ident: ref25 doi: 10.1049/iet-rsn.2015.0084 – ident: ref28 doi: 10.1109/TAES.2018.2799758 – ident: ref26 doi: 10.1109/LGRS.2015.2452946 – volume: abs 1412 1710 year: 2014 ident: ref32 article-title: Convolutional neural networks at constrained time cost publication-title: CoRR – ident: ref11 doi: 10.1109/JETCAS.2018.2797313 – ident: ref8 doi: 10.1109/LGRS.2015.2491329 – ident: ref29 doi: 10.1109/LGRS.2017.2765341 – ident: ref31 doi: 10.1109/TAES.2018.2801378 – ident: ref3 doi: 10.1109/TCYB.2014.2335540 – ident: ref14 doi: 10.1049/iet-rsn.2013.0165 – ident: ref19 doi: 10.1109/TAES.2006.1603402 – ident: ref2 doi: 10.1109/TIP.2015.2456412 – ident: ref15 doi: 10.1109/TGRS.2019.2908758 – start-page: 2818 year: 2015 ident: ref22 article-title: Rethinking the inception architecture for computer vision publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref7 doi: 10.1109/THMS.2014.2362520 – ident: ref21 doi: 10.1109/MSP.2018.2842646 – ident: ref33 doi: 10.1023/A:1009715923555 – ident: ref4 doi: 10.1109/ACCESS.2019.2920969 – ident: ref30 doi: 10.1109/JERM.2019.2893587 – year: 2014 ident: ref17 publication-title: Fundamentals of Radar Signal Processing – year: 2008 ident: ref16 article-title: Quadrature signals: Complex but not complicated – ident: ref24 doi: 10.1109/LGRS.2014.2311819 – year: 2018 ident: ref23 publication-title: XeThru X4 Radar User Guide-UWB Basic Principles and X4 Operation – ident: ref12 doi: 10.1049/iet-rsn.2011.0101 – ident: ref27 doi: 10.1049/joe.2019.0145 – volume: 7 start-page: 29 year: 2011 ident: ref18 article-title: MATLAB simulation and analysis of the Welch method in the classical power spectrum estimation publication-title: Electron Test – year: 2016 ident: ref20 article-title: Ultra-wideband radar simulator for classifying humans and animals based on micro-Doppler signatures – ident: ref13 doi: 10.1049/iet-rsn.2015.0113 – volume: 47 start-page: 1328 year: 2009 ident: ref9 article-title: Human activity classification based on micro-Doppler signatures using a support vector machine publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2009.2012849 – ident: ref10 doi: 10.1049/iet-rsn.2018.5054 |
| SSID | ssj0019757 |
| Score | 2.4329379 |
| Snippet | In this paper, a multi-classification algorithm for human motion recognition based on Impulse-Radio Ultra-wideband (IR-UWB) radar is presented. The algorithm... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12848 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Classification Classification algorithms convolutional neural networks (CNNs) Doppler radar Doppler shift Doppler shifts feature Feature extraction Human motion Human motion recognition IR-UWB radar k-NearestNeighbor (KNN) Legged locomotion Motion perception power spectrum feature Recognition Sensors Signal processing Spectrograms Ultrawideband radar |
| Title | Multi-Classification Algorithm for Human Motion Recognition Based on IR-UWB Radar |
| URI | https://ieeexplore.ieee.org/document/9110575 https://www.proquest.com/docview/2448464896 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAC3DgjRgv5cAJkdF2adMcAQ3BpE1iMLFblTQJIGBDozvAr8dJu4mXEDcfkiqK4_pzYn8GOJA8CqxWERWSScpytPRUSk6lCEyqchsZ7dk-O8lFj7X6cX8Gjqa1MMYYn3xm6k70b_l6mI_dVdkxGqaDF7Mwy9OkrNWavhgI7lk90YADyhq8X71ghoE4bl03OxgJRhigekScfvFBvqnKjz-xdy_ny9CeLKzMKnmsjwtVz9-_cTb-d-UrsFThTHJSHoxVmDGDNVj8xD64BvNVA_T7t3W48oW41LfIdMlDXl_k5OluOHoo7p8JQlvi7_tJ27f9Id1J4hHKp-gJNUHhskt7t6ekK7UcbUDvvHlzdkGrbgs0R5df0FyFMQ-tNpaj1wqkdhWEibI6RogX8UQzy7hiMjJGxC6WRejEFQ-lsCKJVNrYhLnBcGC2gDCTSJE2QhWrmNk4T4VFXKY4wk2pbUPWIJjsf5ZXVOSuI8ZT5kOSQGROZZlTWVaprAaH0ykvJQ_HX4PXnQqmA6vdr8HuRMlZZamvGcIbhGAsFcn277N2YMF9u6w_3IW5YjQ2ewhECrXvT-AH1_jYAQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BPQCHlqcIpeBDTwiH3Y29Xh-hAoVHIjUQkdvKXtukKiQobA7tr-_Yu4lKQai3Odhay-PZ-cae-QbgqxJJ5IxOqFRMUVagpWdKCapkZDNduMSawPbZTdt9djnggwU4mtfCWGtD8pltejG85ZtxMfVXZcdomB5eLMIHzhjjVbXW_M1AisDriSYcUdYSg_oNM47k8eXNWRdjwQRD1ICJsxdeKLRVefUvDg7m_BN0Zkur8kp-Nqelbha__2Ft_N-1r8HHGmmSk-porMOCHW3A6l_8gxuwXLdAH_7ahO-hFJeGJpk-fShojJw83I8nP8rhI0FwS8KNP-mExj-kN0s9QvkUfaEhKFz0aP_ulPSUUZMt6J-f3X5r07rfAi3Q6Ze00DEXsTPWCfRbkTK-hjDVznAEeYlIDXNMaKYSayX30SyCJ6FFrKSTaaKz1jYsjcYjuwOE2VTJrBVrrjlzvMikQ2SmBQJOZVxLNSCa7X9e1GTkvifGQx6CkkjmXmW5V1leq6wBh_MpTxUTx3uDN70K5gPr3W_A3kzJeW2rzzkCHARhLJPp7tuzDmC5fdu5zq8vulefYcV_p6pG3IOlcjK1XxCWlHo_nMY_VFHbTg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Classification+Algorithm+for+Human+Motion+Recognition+Based+on+IR-UWB+Radar&rft.jtitle=IEEE+sensors+journal&rft.au=Qi%2C+Rui&rft.au=Li%2C+Xiuping&rft.au=Zhang%2C+Yi&rft.au=Li%2C+Yubing&rft.date=2020-11-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=20&rft.issue=21&rft.spage=12848&rft.epage=12858&rft_id=info:doi/10.1109%2FJSEN.2020.3000498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2020_3000498 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |