Multi-Classification Algorithm for Human Motion Recognition Based on IR-UWB Radar

In this paper, a multi-classification algorithm for human motion recognition based on Impulse-Radio Ultra-wideband (IR-UWB) radar is presented. The algorithm includes three parts. First, the k-NearestNeighbor (KNN) algorithm is used to classify the radial features of pre-processed signal to determin...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 20; no. 21; pp. 12848 - 12858
Main Authors Qi, Rui, Li, Xiuping, Zhang, Yi, Li, Yubing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2020.3000498

Cover

Abstract In this paper, a multi-classification algorithm for human motion recognition based on Impulse-Radio Ultra-wideband (IR-UWB) radar is presented. The algorithm includes three parts. First, the k-NearestNeighbor (KNN) algorithm is used to classify the radial features of pre-processed signal to determine the subject's radial displacement direction. Then, the power spectrum feature extraction algorithm and Doppler shifts feature extraction algorithm are proposed to extract and visualize the characteristics from the different categories classified by the first part. Finally, the feature spectrograms obtained by the second part are sent into Convolutional Neural Networks (CNNs) for training and testing to realize the recognition of human motions. To verify the performance of proposed algorithm, dataset was created from 15 persons including 12 kinds of motions. The Five-Fold Cross Validation was conducted to calculate the recognition accuracy. As a result, the average accuracy of judging the radial displacement directions of subjects was up to 99%. Furthermore, the average accuracy of estimating the motions of subjects reached 98%. Experiments have proved that the proposed algorithm can achieve high recognition accuracy in daily human motions and is feasible in a variety of test environments.
AbstractList In this paper, a multi-classification algorithm for human motion recognition based on Impulse-Radio Ultra-wideband (IR-UWB) radar is presented. The algorithm includes three parts. First, the k-NearestNeighbor (KNN) algorithm is used to classify the radial features of pre-processed signal to determine the subject's radial displacement direction. Then, the power spectrum feature extraction algorithm and Doppler shifts feature extraction algorithm are proposed to extract and visualize the characteristics from the different categories classified by the first part. Finally, the feature spectrograms obtained by the second part are sent into Convolutional Neural Networks (CNNs) for training and testing to realize the recognition of human motions. To verify the performance of proposed algorithm, dataset was created from 15 persons including 12 kinds of motions. The Five-Fold Cross Validation was conducted to calculate the recognition accuracy. As a result, the average accuracy of judging the radial displacement directions of subjects was up to 99%. Furthermore, the average accuracy of estimating the motions of subjects reached 98%. Experiments have proved that the proposed algorithm can achieve high recognition accuracy in daily human motions and is feasible in a variety of test environments.
Author Zhang, Yi
Qi, Rui
Li, Yubing
Li, Xiuping
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0001-5152-2528
  surname: Qi
  fullname: Qi, Rui
  email: qiziyao@bupt.edu.cn
  organization: College of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Xiuping
  orcidid: 0000-0003-4350-9651
  surname: Li
  fullname: Li, Xiuping
  organization: College of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Yi
  orcidid: 0000-0001-7083-5802
  surname: Zhang
  fullname: Zhang, Yi
  organization: College of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Yubing
  orcidid: 0000-0002-8380-077X
  surname: Li
  fullname: Li, Yubing
  organization: College of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China
BookMark eNp9kE9PwjAYhxuDiYB-AONliedh_67rEQgKBjSiRG9Nt7VYMlZsx8Fv7wbEgwdP_SV9nvfN--uBTuUqDcA1ggOEoLh7fJ08DTDEcEAghFSkZ6CLGEtjxGnaaTOBMSX84wL0QthAiARnvAteFvuytvG4VCFYY3NVW1dFw3LtvK0_t5FxPprut6qKFu7wtdS5W1f2kEcq6CJqwmwZr95H0VIVyl-Cc6PKoK9Obx-s7idv42k8f36YjYfzOMeC1HGeIcaRKbThKURQFQgSnmSmYIJgzJOCGsozqrDWgmFOOWQJzzhSwogEZynpg9vj3J13X3sdarlxe181KyWmNKUJTUXSUPxI5d6F4LWRua0PR9Ze2VIiKNv-ZNufbPuTp_4aE_0xd95ulf_-17k5OlZr_cuLhmackR-0pnvZ
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2022_3205116
crossref_primary_10_1016_j_cag_2023_06_007
crossref_primary_10_1109_TIM_2024_3485432
crossref_primary_10_1016_j_entcom_2024_100788
crossref_primary_10_1016_j_measurement_2024_114939
crossref_primary_10_1109_JSEN_2024_3360187
crossref_primary_10_1016_j_petrol_2022_111075
crossref_primary_10_1109_JSEN_2024_3513983
crossref_primary_10_1109_JIOT_2024_3443865
crossref_primary_10_1109_JSEN_2022_3156762
crossref_primary_10_1109_JSEN_2022_3157894
crossref_primary_10_1109_JSEN_2021_3110367
crossref_primary_10_1109_COMST_2023_3334269
crossref_primary_10_1109_TAES_2024_3427101
crossref_primary_10_3390_s21113881
crossref_primary_10_1109_JSAC_2022_3155523
crossref_primary_10_3390_s24175533
crossref_primary_10_1007_s13349_022_00624_x
crossref_primary_10_1109_TGRS_2022_3203468
crossref_primary_10_3390_s21124018
crossref_primary_10_1049_sil2_12060
crossref_primary_10_1109_ACCESS_2023_3322726
crossref_primary_10_3390_electronics9122140
Cites_doi 10.1049/iet-rsn.2014.0250
10.1109/ACCESS.2019.2913393
10.1109/JSEN.2016.2609392
10.1049/iet-rsn.2015.0084
10.1109/TAES.2018.2799758
10.1109/LGRS.2015.2452946
10.1109/JETCAS.2018.2797313
10.1109/LGRS.2015.2491329
10.1109/LGRS.2017.2765341
10.1109/TAES.2018.2801378
10.1109/TCYB.2014.2335540
10.1049/iet-rsn.2013.0165
10.1109/TAES.2006.1603402
10.1109/TIP.2015.2456412
10.1109/TGRS.2019.2908758
10.1109/THMS.2014.2362520
10.1109/MSP.2018.2842646
10.1023/A:1009715923555
10.1109/ACCESS.2019.2920969
10.1109/JERM.2019.2893587
10.1109/LGRS.2014.2311819
10.1049/iet-rsn.2011.0101
10.1049/joe.2019.0145
10.1049/iet-rsn.2015.0113
10.1109/TGRS.2009.2012849
10.1049/iet-rsn.2018.5054
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3000498
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 12858
ExternalDocumentID 10_1109_JSEN_2020_3000498
9110575
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-cb1571fdef78010ad10376bfd5932276d4f47b4a2ee9527470567b71a9f962b83
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:11:55 EDT 2025
Wed Oct 01 04:14:44 EDT 2025
Thu Apr 24 22:52:28 EDT 2025
Wed Aug 27 02:31:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-cb1571fdef78010ad10376bfd5932276d4f47b4a2ee9527470567b71a9f962b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5152-2528
0000-0001-7083-5802
0000-0002-8380-077X
0000-0003-4350-9651
PQID 2448464896
PQPubID 75733
PageCount 11
ParticipantIDs proquest_journals_2448464896
ieee_primary_9110575
crossref_citationtrail_10_1109_JSEN_2020_3000498
crossref_primary_10_1109_JSEN_2020_3000498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
szegedy (ref22) 2015
ref19
lyons (ref16) 2008
ref24
ref26
ref25
richards (ref17) 2014
ref21
kim (ref9) 2009; 47
(ref23) 2018
ref28
ref27
langen (ref20) 2016
ref29
ref8
ref7
he (ref32) 2014; abs 1412 1710
ref4
ref3
ref6
ref5
yang (ref18) 2011; 7
References_xml – ident: ref1
  doi: 10.1049/iet-rsn.2014.0250
– ident: ref6
  doi: 10.1109/ACCESS.2019.2913393
– ident: ref5
  doi: 10.1109/JSEN.2016.2609392
– ident: ref25
  doi: 10.1049/iet-rsn.2015.0084
– ident: ref28
  doi: 10.1109/TAES.2018.2799758
– ident: ref26
  doi: 10.1109/LGRS.2015.2452946
– volume: abs 1412 1710
  year: 2014
  ident: ref32
  article-title: Convolutional neural networks at constrained time cost
  publication-title: CoRR
– ident: ref11
  doi: 10.1109/JETCAS.2018.2797313
– ident: ref8
  doi: 10.1109/LGRS.2015.2491329
– ident: ref29
  doi: 10.1109/LGRS.2017.2765341
– ident: ref31
  doi: 10.1109/TAES.2018.2801378
– ident: ref3
  doi: 10.1109/TCYB.2014.2335540
– ident: ref14
  doi: 10.1049/iet-rsn.2013.0165
– ident: ref19
  doi: 10.1109/TAES.2006.1603402
– ident: ref2
  doi: 10.1109/TIP.2015.2456412
– ident: ref15
  doi: 10.1109/TGRS.2019.2908758
– start-page: 2818
  year: 2015
  ident: ref22
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref7
  doi: 10.1109/THMS.2014.2362520
– ident: ref21
  doi: 10.1109/MSP.2018.2842646
– ident: ref33
  doi: 10.1023/A:1009715923555
– ident: ref4
  doi: 10.1109/ACCESS.2019.2920969
– ident: ref30
  doi: 10.1109/JERM.2019.2893587
– year: 2014
  ident: ref17
  publication-title: Fundamentals of Radar Signal Processing
– year: 2008
  ident: ref16
  article-title: Quadrature signals: Complex but not complicated
– ident: ref24
  doi: 10.1109/LGRS.2014.2311819
– year: 2018
  ident: ref23
  publication-title: XeThru X4 Radar User Guide-UWB Basic Principles and X4 Operation
– ident: ref12
  doi: 10.1049/iet-rsn.2011.0101
– ident: ref27
  doi: 10.1049/joe.2019.0145
– volume: 7
  start-page: 29
  year: 2011
  ident: ref18
  article-title: MATLAB simulation and analysis of the Welch method in the classical power spectrum estimation
  publication-title: Electron Test
– year: 2016
  ident: ref20
  article-title: Ultra-wideband radar simulator for classifying humans and animals based on micro-Doppler signatures
– ident: ref13
  doi: 10.1049/iet-rsn.2015.0113
– volume: 47
  start-page: 1328
  year: 2009
  ident: ref9
  article-title: Human activity classification based on micro-Doppler signatures using a support vector machine
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2009.2012849
– ident: ref10
  doi: 10.1049/iet-rsn.2018.5054
SSID ssj0019757
Score 2.4329379
Snippet In this paper, a multi-classification algorithm for human motion recognition based on Impulse-Radio Ultra-wideband (IR-UWB) radar is presented. The algorithm...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12848
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Classification
Classification algorithms
convolutional neural networks (CNNs)
Doppler radar
Doppler shift
Doppler shifts feature
Feature extraction
Human motion
Human motion recognition
IR-UWB radar
k-NearestNeighbor (KNN)
Legged locomotion
Motion perception
power spectrum feature
Recognition
Sensors
Signal processing
Spectrograms
Ultrawideband radar
Title Multi-Classification Algorithm for Human Motion Recognition Based on IR-UWB Radar
URI https://ieeexplore.ieee.org/document/9110575
https://www.proquest.com/docview/2448464896
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAC3DgjRgv5cAJkdF2adMcAQ3BpE1iMLFblTQJIGBDozvAr8dJu4mXEDcfkiqK4_pzYn8GOJA8CqxWERWSScpytPRUSk6lCEyqchsZ7dk-O8lFj7X6cX8Gjqa1MMYYn3xm6k70b_l6mI_dVdkxGqaDF7Mwy9OkrNWavhgI7lk90YADyhq8X71ghoE4bl03OxgJRhigekScfvFBvqnKjz-xdy_ny9CeLKzMKnmsjwtVz9-_cTb-d-UrsFThTHJSHoxVmDGDNVj8xD64BvNVA_T7t3W48oW41LfIdMlDXl_k5OluOHoo7p8JQlvi7_tJ27f9Id1J4hHKp-gJNUHhskt7t6ekK7UcbUDvvHlzdkGrbgs0R5df0FyFMQ-tNpaj1wqkdhWEibI6RogX8UQzy7hiMjJGxC6WRejEFQ-lsCKJVNrYhLnBcGC2gDCTSJE2QhWrmNk4T4VFXKY4wk2pbUPWIJjsf5ZXVOSuI8ZT5kOSQGROZZlTWVaprAaH0ykvJQ_HX4PXnQqmA6vdr8HuRMlZZamvGcIbhGAsFcn277N2YMF9u6w_3IW5YjQ2ewhECrXvT-AH1_jYAQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BPQCHlqcIpeBDTwiH3Y29Xh-hAoVHIjUQkdvKXtukKiQobA7tr-_Yu4lKQai3Odhay-PZ-cae-QbgqxJJ5IxOqFRMUVagpWdKCapkZDNduMSawPbZTdt9djnggwU4mtfCWGtD8pltejG85ZtxMfVXZcdomB5eLMIHzhjjVbXW_M1AisDriSYcUdYSg_oNM47k8eXNWRdjwQRD1ICJsxdeKLRVefUvDg7m_BN0Zkur8kp-Nqelbha__2Ft_N-1r8HHGmmSk-porMOCHW3A6l_8gxuwXLdAH_7ahO-hFJeGJpk-fShojJw83I8nP8rhI0FwS8KNP-mExj-kN0s9QvkUfaEhKFz0aP_ulPSUUZMt6J-f3X5r07rfAi3Q6Ze00DEXsTPWCfRbkTK-hjDVznAEeYlIDXNMaKYSayX30SyCJ6FFrKSTaaKz1jYsjcYjuwOE2VTJrBVrrjlzvMikQ2SmBQJOZVxLNSCa7X9e1GTkvifGQx6CkkjmXmW5V1leq6wBh_MpTxUTx3uDN70K5gPr3W_A3kzJeW2rzzkCHARhLJPp7tuzDmC5fdu5zq8vulefYcV_p6pG3IOlcjK1XxCWlHo_nMY_VFHbTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Classification+Algorithm+for+Human+Motion+Recognition+Based+on+IR-UWB+Radar&rft.jtitle=IEEE+sensors+journal&rft.au=Qi%2C+Rui&rft.au=Li%2C+Xiuping&rft.au=Zhang%2C+Yi&rft.au=Li%2C+Yubing&rft.date=2020-11-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=20&rft.issue=21&rft.spage=12848&rft.epage=12858&rft_id=info:doi/10.1109%2FJSEN.2020.3000498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2020_3000498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon