Tensor Kalman Filter and Its Applications
Kalman filter is one of the most important estimation algorithms, which estimates certain unknown variables given the measurements observed over time subject to a dynamic system, for many applications in science and engineering including environmental science, ecometrics, robotics, financial analysi...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 35; no. 6; pp. 6435 - 6448 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1041-4347 1558-2191 |
DOI | 10.1109/TKDE.2022.3169129 |
Cover
Abstract | Kalman filter is one of the most important estimation algorithms, which estimates certain unknown variables given the measurements observed over time subject to a dynamic system, for many applications in science and engineering including environmental science, ecometrics, robotics, financial analysis, data mining, etc. With the recent emergence of the Big Data era, it is often necessary to characterize multiple relationships among various kinds of signals/data in tensor form. The conventional Kalman filter paradigm is based on the low-dimensional state-space representation, which is restricted by the state-transition, observation-model, process-noise covariance, and observation-noise covariance matrices. However, we often need to express some or all of them in terms of tensors in practice. Very lately, the aforementioned Kalman filter in tensor form was tackled using tensor decomposition but the exact estimator has never been established so far. In this work, we propose a new generalized Kalman filter framework consisting of state, state-transition model, observation-model, process-noise covariance, and observation-noise covariance tensors of arbitrary orders by applying the Sherman-Morrison-Woodbury identity and block tensor inverse, which we call "Tensor Kalman Filter" (TKF). Our proposed new approach can produce the exact Kalman filter estimator without any need of tensor decomposition (approximation). The pertinent computational- and memory-complexity studies are also provided in this paper. Finally, numerical experiments are conducted to evaluate the prediction performance of the proposed new TKF over biomedical signal data in comparison with other existing high-dimensional prediction methods. |
---|---|
AbstractList | Kalman filter is one of the most important estimation algorithms, which estimates certain unknown variables given the measurements observed over time subject to a dynamic system, for many applications in science and engineering including environmental science, ecometrics, robotics, financial analysis, data mining, etc. With the recent emergence of the Big Data era, it is often necessary to characterize multiple relationships among various kinds of signals/data in tensor form. The conventional Kalman filter paradigm is based on the low-dimensional state-space representation, which is restricted by the state-transition, observation-model, process-noise covariance, and observation-noise covariance matrices. However, we often need to express some or all of them in terms of tensors in practice. Very lately, the aforementioned Kalman filter in tensor form was tackled using tensor decomposition but the exact estimator has never been established so far. In this work, we propose a new generalized Kalman filter framework consisting of state, state-transition model, observation-model, process-noise covariance, and observation-noise covariance tensors of arbitrary orders by applying the Sherman-Morrison-Woodbury identity and block tensor inverse, which we call "Tensor Kalman Filter" (TKF). Our proposed new approach can produce the exact Kalman filter estimator without any need of tensor decomposition (approximation). The pertinent computational- and memory-complexity studies are also provided in this paper. Finally, numerical experiments are conducted to evaluate the prediction performance of the proposed new TKF over biomedical signal data in comparison with other existing high-dimensional prediction methods. |
Author | Wu, Hsiao-Chun Chang, Shih Yu |
Author_xml | – sequence: 1 givenname: Shih Yu orcidid: 0000-0002-3576-0021 surname: Chang fullname: Chang, Shih Yu email: shihyu.chang@sjsu.edu organization: Department of Applied Data Science, San Jose State University, San Jose, CA, USA – sequence: 2 givenname: Hsiao-Chun orcidid: 0000-0002-0178-1246 surname: Wu fullname: Wu, Hsiao-Chun email: wu@ece.lsu.edu organization: School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA, USA |
BookMark | eNp9kD1PwzAQhi1UJNrCD0AskZgYEu78EdtjVVqoWomlzJbrOFKqNAl2OvDvSWnFwMB0N9xz790zIaOmbTwh9wgZIujn7fplkVGgNGOYa6T6ioxRCJVS1DgaeuCYcsblDZnEuAcAJRWOydPWN7ENydrWB9sky6rufUhsUySrPiazrqsrZ_uqbeItuS5tHf3dpU7Jx3Kxnb-lm_fX1Xy2SR3VrE-dRMiFKHxRFsI6p3MpdUFVkQNQzjkrC7pTQ7iTardzVjihPQwXuzwvtUM2JY_nvV1oP48-9mbfHkMzRBqqQCkGAvgwhecpF9oYgy9NF6qDDV8GwZyMmJMRczJiLkYGRv5hXNX_PNcHW9X_kg9nsvLe_yZpmaNknH0DJ39t9g |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1109_TBC_2023_3278111 crossref_primary_10_1109_TBC_2024_3417342 crossref_primary_10_1109_TITS_2023_3299557 crossref_primary_10_1109_JSYST_2023_3327911 crossref_primary_10_1088_1361_6501_ace9ef crossref_primary_10_1109_JSEN_2024_3493893 crossref_primary_10_1155_2024_6614609 crossref_primary_10_1109_TSP_2024_3495552 crossref_primary_10_1109_TCSI_2022_3217980 crossref_primary_10_1109_ACCESS_2024_3479093 |
Cites_doi | 10.1109/TKDE.2019.2915231 10.1109/ACCESS.2017.2725301 10.1109/TIP.2017.2762588 10.1109/TKDE.2021.3053389 10.1109/TNSRE.2013.2282153 10.1137/19M1306889 10.1109/TKDE.2019.2941716 10.1017/CBO9781107049994 10.1109/ACCESS.2018.2814981 10.1016/j.automatica.2018.06.015 10.3390/rs9050452 10.1109/TIE.2019.2947852 10.1109/TBME.2019.2945579 10.1109/KCIC.2017.8228451 10.1109/TIE.2011.2178209 10.1109/TBME.2019.2953743 10.1109/TCBB.2017.2778715 10.1109/ISKE.2017.8258840 10.1109/TKDE.2019.2940950 10.1109/JBHI.2014.2358640 10.1109/TIE.2019.2946557 10.4337/9780857931023.00012 10.1109/TKDE.2018.2837745 10.1016/j.apenergy.2017.08.008 10.1103/PhysRevE.64.061907 10.1109/TKDE.2005.202 10.1016/j.ymssp.2018.03.053 10.1515/9783110365917 10.3390/s18061724 10.1109/ACCESS.2019.2949814 10.1109/TKDE.2021.3077056 10.13189/ms.2021.090322 10.1016/j.advwatres.2008.01.001 10.1109/TBDATA.2021.3079265 10.1093/bioinformatics/bty513 10.1109/TKDE.2021.3087671 10.1080/03081087.2016.1253662 10.1016/j.automatica.2017.06.019 10.1109/CVPR.2018.00977 10.1109/TKDE.2016.2610420 10.1109/ICINIS.2015.35 10.1109/TII.2012.2221469 10.1109/TIE.2020.2967671 10.1016/j.biosystems.2017.02.004 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TKDE.2022.3169129 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 6448 |
ExternalDocumentID | 10_1109_TKDE_2022_3169129 9761734 |
Genre | orig-research |
GrantInformation_xml | – fundername: Louisiana Board of Regents Research Competitiveness Subprogram grantid: LEQSF(2021-22)-RD-A-34 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB 1OL 5VS 9M8 AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L H~9 ICLAB IFJZH RNI RZB TAF VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-c710655dedfd5acc96779d28d60024443fd2b8878c78bbca5c59e0912c66f9c13 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Sun Jun 29 15:58:05 EDT 2025 Wed Oct 01 02:06:27 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Wed Aug 27 02:18:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-c710655dedfd5acc96779d28d60024443fd2b8878c78bbca5c59e0912c66f9c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0178-1246 0000-0002-3576-0021 |
PQID | 2808830504 |
PQPubID | 85438 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TKDE_2022_3169129 crossref_citationtrail_10_1109_TKDE_2022_3169129 ieee_primary_9761734 proquest_journals_2808830504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 Putri (ref24) ref38 ref19 ref18 ref46 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 B. G. (ref45) 2019 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref10 doi: 10.1109/TKDE.2019.2915231 – ident: ref21 doi: 10.1109/ACCESS.2017.2725301 – ident: ref5 doi: 10.1109/TIP.2017.2762588 – ident: ref28 doi: 10.1109/TKDE.2021.3053389 – ident: ref38 doi: 10.1109/TNSRE.2013.2282153 – ident: ref42 doi: 10.1137/19M1306889 – ident: ref9 doi: 10.1109/TKDE.2019.2941716 – ident: ref13 doi: 10.1017/CBO9781107049994 – ident: ref22 doi: 10.1109/ACCESS.2018.2814981 – ident: ref34 doi: 10.1016/j.automatica.2018.06.015 – ident: ref4 doi: 10.3390/rs9050452 – ident: ref17 doi: 10.1109/TIE.2019.2947852 – ident: ref19 doi: 10.1109/TBME.2019.2945579 – ident: ref31 doi: 10.1109/KCIC.2017.8228451 – ident: ref15 doi: 10.1109/TIE.2011.2178209 – ident: ref16 doi: 10.1109/TBME.2019.2953743 – ident: ref40 doi: 10.1109/TCBB.2017.2778715 – ident: ref32 doi: 10.1109/ISKE.2017.8258840 – ident: ref29 doi: 10.1109/TKDE.2019.2940950 – ident: ref39 doi: 10.1109/JBHI.2014.2358640 – year: 2019 ident: ref45 article-title: Canine epilepsy dataset (version 1) [data set] – ident: ref18 doi: 10.1109/TIE.2019.2946557 – ident: ref43 doi: 10.4337/9780857931023.00012 – ident: ref7 doi: 10.1109/TKDE.2018.2837745 – ident: ref20 doi: 10.1016/j.apenergy.2017.08.008 – ident: ref44 doi: 10.1103/PhysRevE.64.061907 – ident: ref30 doi: 10.1109/TKDE.2005.202 – ident: ref23 doi: 10.1016/j.ymssp.2018.03.053 – ident: ref2 doi: 10.1515/9783110365917 – ident: ref26 doi: 10.3390/s18061724 – ident: ref1 doi: 10.1109/ACCESS.2019.2949814 – ident: ref27 doi: 10.1109/TKDE.2021.3077056 – ident: ref41 doi: 10.13189/ms.2021.090322 – ident: ref12 doi: 10.1016/j.advwatres.2008.01.001 – ident: ref37 doi: 10.1109/TBDATA.2021.3079265 – ident: ref3 doi: 10.1093/bioinformatics/bty513 – ident: ref36 doi: 10.1109/TKDE.2021.3087671 – ident: ref46 doi: 10.1080/03081087.2016.1253662 – start-page: 36 volume-title: Proc. 15th Int. Conf. Control Automat. Robot. Vis. ident: ref24 article-title: Gait controllers on humanoid robot using kalman filter and PD controller – ident: ref33 doi: 10.1016/j.automatica.2017.06.019 – ident: ref6 doi: 10.1109/CVPR.2018.00977 – ident: ref8 doi: 10.1109/TKDE.2016.2610420 – ident: ref11 doi: 10.1109/ICINIS.2015.35 – ident: ref14 doi: 10.1109/TII.2012.2221469 – ident: ref25 doi: 10.1109/TIE.2020.2967671 – ident: ref35 doi: 10.1016/j.biosystems.2017.02.004 |
SSID | ssj0008781 |
Score | 2.4744687 |
Snippet | Kalman filter is one of the most important estimation algorithms, which estimates certain unknown variables given the measurements observed over time subject... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6435 |
SubjectTerms | Algorithms Big Data Biomedical data Covariance matrices Covariance matrix Data mining Decomposition EEG (electroencephalogram) Electroencephalography expectation–maximization (EM) algorithm Heuristic algorithms Kalman filters Mathematical models multi-relational data Robotics State space models Tensor tensor Kalman filter (TKF) tensor Kalman smoother (TKS) Tensors Time series analysis |
Title | Tensor Kalman Filter and Its Applications |
URI | https://ieeexplore.ieee.org/document/9761734 https://www.proquest.com/docview/2808830504 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHrwodk3btEmPoi4-0NMK3koySUDUrmj34q93knZXURFvPSQQZjKPr5OZD2BfMVJyLlicKFnG3ChJNqez2CDHREtMTeiQu7ktLu741X1-PwNH014Ya214fGb7_jPU8s0Ix_5X2TGFzkRkfBZmhSjbXq2p15UiEJISuiBMlHHRVTATVh4Pr8_OCQmmKQHUokxCNvkZgwKpyg9PHMLLYAluJgdrX5U89seN7uP7t5mN_z35Mix2eWZ00l6MFZix9SosTTgcos6kV2Hhy0DCNTgYEqodvUbX6ulZ1dHgwdfSI1Wb6LJ5i06-FLvX4W5wPjy9iDsyhRgpojcxUipR5LmxxplcIZYFydCk0vjCHOc8cybV5HEkCqk1qhzz0lIykWJRuBKTbAPm6lFtNyHC3DnphEuYE1xbwtdGaemk0rxIkbEesIl4K-wmjXvCi6cqIA5WVl4jlddI1WmkB4fTLS_tmI2_Fq95CU8XdsLtwc5Eh1VniG9VKsmNkk9jfOv3Xdsw7xnk29dfOzDXvI7tLuUZjd4LF-wD6lLMkQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROBQOQKEVyzOHXlo1u45jx84RFVZLl-W0SNwie2xLqJBFkL3w67Gd7ILaCvWWgy1ZM57Hl_HMB_BVEa9kLkiaKVmmzCjpbU7nqUGGmZZITeyQm1wVo2v264bfrMCPZS-MtTY-PrP98Blr-WaG8_CrbOBDZyZy9gHWOGOCtt1aS78rRaQk9fjCo6Kcia6GmZFyMB2fnXssSKmHqEWZxXzyNQpFWpW_fHEMMMMtmCyO1r4r-d2fN7qPz39Mbfzfs2_DZpdpJqft1fgEK7bega0Fi0PSGfUObLwZSbgL36Ye184ek7G6u1d1MrwN1fRE1Sa5aJ6S0zfl7s9wPTyf_hylHZ1Cij6mNyn6ZKLg3FjjDFeIZSFEaag0oTTHGMudodr7HIlCao2KIy-tTycoFoUrMcu_wGo9q-0eJMidk064jDjBtPUI2ygtnVSaFRQJ6QFZiLfCbtZ4oLy4qyLmIGUVNFIFjVSdRnrwfbnloR208d7i3SDh5cJOuD04XOiw6kzxqaLSO1Lv1Qjb__euE_g4mk4uq8uLq_EBrAc--fYt2CGsNo9ze-SzjkYfx8v2AsnHz9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+Kalman+Filter+and+Its+Applications&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Shih+Yu+Chang&rft.au=Hsiao-Chun%2C+Wu&rft.date=2023-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=6&rft.spage=6435&rft_id=info:doi/10.1109%2FTKDE.2022.3169129&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |