Tensor Kalman Filter and Its Applications

Kalman filter is one of the most important estimation algorithms, which estimates certain unknown variables given the measurements observed over time subject to a dynamic system, for many applications in science and engineering including environmental science, ecometrics, robotics, financial analysi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 35; no. 6; pp. 6435 - 6448
Main Authors Chang, Shih Yu, Wu, Hsiao-Chun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2022.3169129

Cover

Abstract Kalman filter is one of the most important estimation algorithms, which estimates certain unknown variables given the measurements observed over time subject to a dynamic system, for many applications in science and engineering including environmental science, ecometrics, robotics, financial analysis, data mining, etc. With the recent emergence of the Big Data era, it is often necessary to characterize multiple relationships among various kinds of signals/data in tensor form. The conventional Kalman filter paradigm is based on the low-dimensional state-space representation, which is restricted by the state-transition, observation-model, process-noise covariance, and observation-noise covariance matrices. However, we often need to express some or all of them in terms of tensors in practice. Very lately, the aforementioned Kalman filter in tensor form was tackled using tensor decomposition but the exact estimator has never been established so far. In this work, we propose a new generalized Kalman filter framework consisting of state, state-transition model, observation-model, process-noise covariance, and observation-noise covariance tensors of arbitrary orders by applying the Sherman-Morrison-Woodbury identity and block tensor inverse, which we call "Tensor Kalman Filter" (TKF). Our proposed new approach can produce the exact Kalman filter estimator without any need of tensor decomposition (approximation). The pertinent computational- and memory-complexity studies are also provided in this paper. Finally, numerical experiments are conducted to evaluate the prediction performance of the proposed new TKF over biomedical signal data in comparison with other existing high-dimensional prediction methods.
AbstractList Kalman filter is one of the most important estimation algorithms, which estimates certain unknown variables given the measurements observed over time subject to a dynamic system, for many applications in science and engineering including environmental science, ecometrics, robotics, financial analysis, data mining, etc. With the recent emergence of the Big Data era, it is often necessary to characterize multiple relationships among various kinds of signals/data in tensor form. The conventional Kalman filter paradigm is based on the low-dimensional state-space representation, which is restricted by the state-transition, observation-model, process-noise covariance, and observation-noise covariance matrices. However, we often need to express some or all of them in terms of tensors in practice. Very lately, the aforementioned Kalman filter in tensor form was tackled using tensor decomposition but the exact estimator has never been established so far. In this work, we propose a new generalized Kalman filter framework consisting of state, state-transition model, observation-model, process-noise covariance, and observation-noise covariance tensors of arbitrary orders by applying the Sherman-Morrison-Woodbury identity and block tensor inverse, which we call "Tensor Kalman Filter" (TKF). Our proposed new approach can produce the exact Kalman filter estimator without any need of tensor decomposition (approximation). The pertinent computational- and memory-complexity studies are also provided in this paper. Finally, numerical experiments are conducted to evaluate the prediction performance of the proposed new TKF over biomedical signal data in comparison with other existing high-dimensional prediction methods.
Author Wu, Hsiao-Chun
Chang, Shih Yu
Author_xml – sequence: 1
  givenname: Shih Yu
  orcidid: 0000-0002-3576-0021
  surname: Chang
  fullname: Chang, Shih Yu
  email: shihyu.chang@sjsu.edu
  organization: Department of Applied Data Science, San Jose State University, San Jose, CA, USA
– sequence: 2
  givenname: Hsiao-Chun
  orcidid: 0000-0002-0178-1246
  surname: Wu
  fullname: Wu, Hsiao-Chun
  email: wu@ece.lsu.edu
  organization: School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA, USA
BookMark eNp9kD1PwzAQhi1UJNrCD0AskZgYEu78EdtjVVqoWomlzJbrOFKqNAl2OvDvSWnFwMB0N9xz790zIaOmbTwh9wgZIujn7fplkVGgNGOYa6T6ioxRCJVS1DgaeuCYcsblDZnEuAcAJRWOydPWN7ENydrWB9sky6rufUhsUySrPiazrqsrZ_uqbeItuS5tHf3dpU7Jx3Kxnb-lm_fX1Xy2SR3VrE-dRMiFKHxRFsI6p3MpdUFVkQNQzjkrC7pTQ7iTardzVjihPQwXuzwvtUM2JY_nvV1oP48-9mbfHkMzRBqqQCkGAvgwhecpF9oYgy9NF6qDDV8GwZyMmJMRczJiLkYGRv5hXNX_PNcHW9X_kg9nsvLe_yZpmaNknH0DJ39t9g
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_TBC_2023_3278111
crossref_primary_10_1109_TBC_2024_3417342
crossref_primary_10_1109_TITS_2023_3299557
crossref_primary_10_1109_JSYST_2023_3327911
crossref_primary_10_1088_1361_6501_ace9ef
crossref_primary_10_1109_JSEN_2024_3493893
crossref_primary_10_1155_2024_6614609
crossref_primary_10_1109_TSP_2024_3495552
crossref_primary_10_1109_TCSI_2022_3217980
crossref_primary_10_1109_ACCESS_2024_3479093
Cites_doi 10.1109/TKDE.2019.2915231
10.1109/ACCESS.2017.2725301
10.1109/TIP.2017.2762588
10.1109/TKDE.2021.3053389
10.1109/TNSRE.2013.2282153
10.1137/19M1306889
10.1109/TKDE.2019.2941716
10.1017/CBO9781107049994
10.1109/ACCESS.2018.2814981
10.1016/j.automatica.2018.06.015
10.3390/rs9050452
10.1109/TIE.2019.2947852
10.1109/TBME.2019.2945579
10.1109/KCIC.2017.8228451
10.1109/TIE.2011.2178209
10.1109/TBME.2019.2953743
10.1109/TCBB.2017.2778715
10.1109/ISKE.2017.8258840
10.1109/TKDE.2019.2940950
10.1109/JBHI.2014.2358640
10.1109/TIE.2019.2946557
10.4337/9780857931023.00012
10.1109/TKDE.2018.2837745
10.1016/j.apenergy.2017.08.008
10.1103/PhysRevE.64.061907
10.1109/TKDE.2005.202
10.1016/j.ymssp.2018.03.053
10.1515/9783110365917
10.3390/s18061724
10.1109/ACCESS.2019.2949814
10.1109/TKDE.2021.3077056
10.13189/ms.2021.090322
10.1016/j.advwatres.2008.01.001
10.1109/TBDATA.2021.3079265
10.1093/bioinformatics/bty513
10.1109/TKDE.2021.3087671
10.1080/03081087.2016.1253662
10.1016/j.automatica.2017.06.019
10.1109/CVPR.2018.00977
10.1109/TKDE.2016.2610420
10.1109/ICINIS.2015.35
10.1109/TII.2012.2221469
10.1109/TIE.2020.2967671
10.1016/j.biosystems.2017.02.004
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2022.3169129
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 6448
ExternalDocumentID 10_1109_TKDE_2022_3169129
9761734
Genre orig-research
GrantInformation_xml – fundername: Louisiana Board of Regents Research Competitiveness Subprogram
  grantid: LEQSF(2021-22)-RD-A-34
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
1OL
5VS
9M8
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-c710655dedfd5acc96779d28d60024443fd2b8878c78bbca5c59e0912c66f9c13
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Sun Jun 29 15:58:05 EDT 2025
Wed Oct 01 02:06:27 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Wed Aug 27 02:18:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-c710655dedfd5acc96779d28d60024443fd2b8878c78bbca5c59e0912c66f9c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0178-1246
0000-0002-3576-0021
PQID 2808830504
PQPubID 85438
PageCount 14
ParticipantIDs crossref_primary_10_1109_TKDE_2022_3169129
crossref_citationtrail_10_1109_TKDE_2022_3169129
ieee_primary_9761734
proquest_journals_2808830504
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
Putri (ref24)
ref38
ref19
ref18
ref46
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
B. G. (ref45) 2019
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref10
  doi: 10.1109/TKDE.2019.2915231
– ident: ref21
  doi: 10.1109/ACCESS.2017.2725301
– ident: ref5
  doi: 10.1109/TIP.2017.2762588
– ident: ref28
  doi: 10.1109/TKDE.2021.3053389
– ident: ref38
  doi: 10.1109/TNSRE.2013.2282153
– ident: ref42
  doi: 10.1137/19M1306889
– ident: ref9
  doi: 10.1109/TKDE.2019.2941716
– ident: ref13
  doi: 10.1017/CBO9781107049994
– ident: ref22
  doi: 10.1109/ACCESS.2018.2814981
– ident: ref34
  doi: 10.1016/j.automatica.2018.06.015
– ident: ref4
  doi: 10.3390/rs9050452
– ident: ref17
  doi: 10.1109/TIE.2019.2947852
– ident: ref19
  doi: 10.1109/TBME.2019.2945579
– ident: ref31
  doi: 10.1109/KCIC.2017.8228451
– ident: ref15
  doi: 10.1109/TIE.2011.2178209
– ident: ref16
  doi: 10.1109/TBME.2019.2953743
– ident: ref40
  doi: 10.1109/TCBB.2017.2778715
– ident: ref32
  doi: 10.1109/ISKE.2017.8258840
– ident: ref29
  doi: 10.1109/TKDE.2019.2940950
– ident: ref39
  doi: 10.1109/JBHI.2014.2358640
– year: 2019
  ident: ref45
  article-title: Canine epilepsy dataset (version 1) [data set]
– ident: ref18
  doi: 10.1109/TIE.2019.2946557
– ident: ref43
  doi: 10.4337/9780857931023.00012
– ident: ref7
  doi: 10.1109/TKDE.2018.2837745
– ident: ref20
  doi: 10.1016/j.apenergy.2017.08.008
– ident: ref44
  doi: 10.1103/PhysRevE.64.061907
– ident: ref30
  doi: 10.1109/TKDE.2005.202
– ident: ref23
  doi: 10.1016/j.ymssp.2018.03.053
– ident: ref2
  doi: 10.1515/9783110365917
– ident: ref26
  doi: 10.3390/s18061724
– ident: ref1
  doi: 10.1109/ACCESS.2019.2949814
– ident: ref27
  doi: 10.1109/TKDE.2021.3077056
– ident: ref41
  doi: 10.13189/ms.2021.090322
– ident: ref12
  doi: 10.1016/j.advwatres.2008.01.001
– ident: ref37
  doi: 10.1109/TBDATA.2021.3079265
– ident: ref3
  doi: 10.1093/bioinformatics/bty513
– ident: ref36
  doi: 10.1109/TKDE.2021.3087671
– ident: ref46
  doi: 10.1080/03081087.2016.1253662
– start-page: 36
  volume-title: Proc. 15th Int. Conf. Control Automat. Robot. Vis.
  ident: ref24
  article-title: Gait controllers on humanoid robot using kalman filter and PD controller
– ident: ref33
  doi: 10.1016/j.automatica.2017.06.019
– ident: ref6
  doi: 10.1109/CVPR.2018.00977
– ident: ref8
  doi: 10.1109/TKDE.2016.2610420
– ident: ref11
  doi: 10.1109/ICINIS.2015.35
– ident: ref14
  doi: 10.1109/TII.2012.2221469
– ident: ref25
  doi: 10.1109/TIE.2020.2967671
– ident: ref35
  doi: 10.1016/j.biosystems.2017.02.004
SSID ssj0008781
Score 2.4744687
Snippet Kalman filter is one of the most important estimation algorithms, which estimates certain unknown variables given the measurements observed over time subject...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6435
SubjectTerms Algorithms
Big Data
Biomedical data
Covariance matrices
Covariance matrix
Data mining
Decomposition
EEG (electroencephalogram)
Electroencephalography
expectation–maximization (EM) algorithm
Heuristic algorithms
Kalman filters
Mathematical models
multi-relational data
Robotics
State space models
Tensor
tensor Kalman filter (TKF)
tensor Kalman smoother (TKS)
Tensors
Time series analysis
Title Tensor Kalman Filter and Its Applications
URI https://ieeexplore.ieee.org/document/9761734
https://www.proquest.com/docview/2808830504
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHrwodk3btEmPoi4-0NMK3koySUDUrmj34q93knZXURFvPSQQZjKPr5OZD2BfMVJyLlicKFnG3ChJNqez2CDHREtMTeiQu7ktLu741X1-PwNH014Ya214fGb7_jPU8s0Ix_5X2TGFzkRkfBZmhSjbXq2p15UiEJISuiBMlHHRVTATVh4Pr8_OCQmmKQHUokxCNvkZgwKpyg9PHMLLYAluJgdrX5U89seN7uP7t5mN_z35Mix2eWZ00l6MFZix9SosTTgcos6kV2Hhy0DCNTgYEqodvUbX6ulZ1dHgwdfSI1Wb6LJ5i06-FLvX4W5wPjy9iDsyhRgpojcxUipR5LmxxplcIZYFydCk0vjCHOc8cybV5HEkCqk1qhzz0lIykWJRuBKTbAPm6lFtNyHC3DnphEuYE1xbwtdGaemk0rxIkbEesIl4K-wmjXvCi6cqIA5WVl4jlddI1WmkB4fTLS_tmI2_Fq95CU8XdsLtwc5Eh1VniG9VKsmNkk9jfOv3Xdsw7xnk29dfOzDXvI7tLuUZjd4LF-wD6lLMkQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROBQOQKEVyzOHXlo1u45jx84RFVZLl-W0SNwie2xLqJBFkL3w67Gd7ILaCvWWgy1ZM57Hl_HMB_BVEa9kLkiaKVmmzCjpbU7nqUGGmZZITeyQm1wVo2v264bfrMCPZS-MtTY-PrP98Blr-WaG8_CrbOBDZyZy9gHWOGOCtt1aS78rRaQk9fjCo6Kcia6GmZFyMB2fnXssSKmHqEWZxXzyNQpFWpW_fHEMMMMtmCyO1r4r-d2fN7qPz39Mbfzfs2_DZpdpJqft1fgEK7bega0Fi0PSGfUObLwZSbgL36Ye184ek7G6u1d1MrwN1fRE1Sa5aJ6S0zfl7s9wPTyf_hylHZ1Cij6mNyn6ZKLg3FjjDFeIZSFEaag0oTTHGMudodr7HIlCao2KIy-tTycoFoUrMcu_wGo9q-0eJMidk064jDjBtPUI2ygtnVSaFRQJ6QFZiLfCbtZ4oLy4qyLmIGUVNFIFjVSdRnrwfbnloR208d7i3SDh5cJOuD04XOiw6kzxqaLSO1Lv1Qjb__euE_g4mk4uq8uLq_EBrAc--fYt2CGsNo9ze-SzjkYfx8v2AsnHz9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+Kalman+Filter+and+Its+Applications&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Shih+Yu+Chang&rft.au=Hsiao-Chun%2C+Wu&rft.date=2023-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=6&rft.spage=6435&rft_id=info:doi/10.1109%2FTKDE.2022.3169129&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon