Fully Convolutional Encoder-Decoder With an Attention Mechanism for Practical Pedestrian Trajectory Prediction

Pedestrian trajectory prediction using video is essential for many practical traffic applications. Most existing pedestrian trajectory prediction methods are based on fully connected long short-term memory (LSTM) networks and perform well on public datasets. However, these methods still have three d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 11; pp. 20046 - 20060
Main Authors Chen, Kai, Song, Xiao, Yuan, Haitao, Ren, Xiaoxiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2022.3170874

Cover

Abstract Pedestrian trajectory prediction using video is essential for many practical traffic applications. Most existing pedestrian trajectory prediction methods are based on fully connected long short-term memory (LSTM) networks and perform well on public datasets. However, these methods still have three defects: a) Most of them rely on manual annotations to obtain information about the environment surrounding the subject pedestrian, which limits practical applications; b) The interaction among pedestrians and obstacles in a scene is little studied, which leads to greater prediction error; c) Traditional LSTM methods are based on the previous moment and ignore the correlation between the future and distant past states of the pedestrian, which generates unrealistic trajectories. To tackle these problems, first, in the stage of data processing, we use an image semantic segmentation algorithm to obtain multi-category obstacle information and design an end-to-end "Siamese Position Extraction" model to obtain more accurate pedestrian interaction data. Second, we design an end-to-end fully convolutional LSTM encoder-decoder with an attention mechanism (FLEAM) to overcome the shortcomings of LSTM. Third, we compare FLEAM with several state-of-the-art LSTM-based prediction methods on multiple video sequences in the datasets ETH, UCY and MOT20. The results show that our approach generates the same prediction error as the best results of the state-of-the-art method. However, FLEAM has more potential for practice application because it does not rely on manually annotated data. We further validate the effectiveness of FLEAM by employing manually annotated data, finding that it generates much less prediction error.
AbstractList Pedestrian trajectory prediction using video is essential for many practical traffic applications. Most existing pedestrian trajectory prediction methods are based on fully connected long short-term memory (LSTM) networks and perform well on public datasets. However, these methods still have three defects: a) Most of them rely on manual annotations to obtain information about the environment surrounding the subject pedestrian, which limits practical applications; b) The interaction among pedestrians and obstacles in a scene is little studied, which leads to greater prediction error; c) Traditional LSTM methods are based on the previous moment and ignore the correlation between the future and distant past states of the pedestrian, which generates unrealistic trajectories. To tackle these problems, first, in the stage of data processing, we use an image semantic segmentation algorithm to obtain multi-category obstacle information and design an end-to-end “Siamese Position Extraction” model to obtain more accurate pedestrian interaction data. Second, we design an end-to-end fully convolutional LSTM encoder-decoder with an attention mechanism (FLEAM) to overcome the shortcomings of LSTM. Third, we compare FLEAM with several state-of-the-art LSTM-based prediction methods on multiple video sequences in the datasets ETH, UCY and MOT20. The results show that our approach generates the same prediction error as the best results of the state-of-the-art method. However, FLEAM has more potential for practice application because it does not rely on manually annotated data. We further validate the effectiveness of FLEAM by employing manually annotated data, finding that it generates much less prediction error.
Author Chen, Kai
Song, Xiao
Ren, Xiaoxiang
Yuan, Haitao
Author_xml – sequence: 1
  givenname: Kai
  orcidid: 0000-0002-2436-1420
  surname: Chen
  fullname: Chen, Kai
  email: chen_kai@nuaa.edu.cn
  organization: College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Xiao
  orcidid: 0000-0003-4279-426X
  surname: Song
  fullname: Song, Xiao
  email: songxiao@buaa.edu.cn
  organization: School of Cyber Science and Technology, Beihang University, Beijing, China
– sequence: 3
  givenname: Haitao
  orcidid: 0000-0001-8475-419X
  surname: Yuan
  fullname: Yuan, Haitao
  email: haitao.yuan@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
– sequence: 4
  givenname: Xiaoxiang
  surname: Ren
  fullname: Ren, Xiaoxiang
  email: 370726684@qq.com
  organization: Wendong New District Middle School, Shanxi, China
BookMark eNp9kM9LwzAUx4NMcJv-AeKl4LkzP9omOY656WDiwIrHkqavLKNLZpoJ--9t3fDgwdN75H0-4b3vCA2ss4DQLcETQrB8yJf524RiSieMcCx4coGGJE1FjDHJBn1Pk1jiFF-hUdtuu9ckJWSI7OLQNMdo5uyXaw7BOKuaaG61q8DHj_BTow8TNpGy0TQEsD0TvYDeKGvaXVQ7H6290sHozlxDBW3wpoNzr7agg_PHbg6V0b14jS5r1bRwc65j9L6Y57PnePX6tJxNV7GmkoW4rEBkQjAJGRYUaqIp4ZUqq7qkXNYcSpEQxpkiJSc1r7BkWCQZU1nJpU6AjdH96d-9d5-HbqVi6w6-u60tKGcJEzyVrKP4idLeta2HutAmqH7P4JVpCoKLPtyiD7fowy3O4XYm-WPuvdkpf_zXuTs5BgB-eckzQTFh3yg6iLU
CODEN ITISFG
CitedBy_id crossref_primary_10_1007_s11042_023_17346_x
crossref_primary_10_1016_j_physa_2025_130435
crossref_primary_10_1109_OJITS_2023_3233952
crossref_primary_10_1016_j_apenergy_2024_124306
crossref_primary_10_3390_healthcare11091268
crossref_primary_10_1016_j_knosys_2024_111744
crossref_primary_10_1007_s00371_024_03368_5
crossref_primary_10_1016_j_eswa_2024_125706
crossref_primary_10_1177_14727978251321985
Cites_doi 10.1109/AIM.2017.8014190
10.1109/CVPR.2012.6248110
10.1109/CVPR.2016.90
10.1007/978-3-030-01240-3_7
10.1038/35035023
10.1109/TASE.2016.2543242
10.1109/CVPR.2016.110
10.1109/WACV.2018.00135
10.1109/TITS.2016.2515063
10.1109/TITS.2019.2892377
10.1109/ROBOT.2010.5509779
10.1109/CVPR.2018.00240
10.1109/CVPR.2017.789
10.18653/v1/D16-1171
10.1109/TPAMI.2011.64
10.1109/TRO.2016.2540623
10.1146/annurev-psych-122414-033400
10.1109/ICCVW.2015.84
10.5120/ijca2016910497
10.1109/JAS.2019.1911393
10.1109/TITS.2018.2873145
10.1109/CVPR.2017.106
10.1109/TITS.2016.2625324
10.1111/j.1467-8659.2007.01089.x
10.1007/978-3-642-33765-9_15
10.1109/LRA.2018.2852793
10.1016/j.physa.2018.06.045
10.1109/SMC.2016.7844676
10.1109/TITS.2018.2873118
10.1109/CVPR.2019.00441
10.1109/TITS.2020.2981118
10.1109/TCYB.2017.2705345
10.1109/CVPR.2016.91
10.1109/CVPR.2017.243
10.1109/CVPR.2015.7298935
10.1021/acscentsci.7b00512
10.1007/s11263-015-0816-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3170874
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 20060
ExternalDocumentID 10_1109_TITS_2022_3170874
9768201
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB1702703
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61473013; 61802015; 61703011
  funderid: 10.13039/501100001809
– fundername: Open Fund of China State Key Laboratory of Intelligent Manufacturing System Technology
  funderid: 10.13039/501100020732
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-bde868839e6082ef1c217dabdfb279f7eb841373a1b71f7d09308463a6b79c4e3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 07:05:39 EDT 2025
Wed Oct 01 05:03:14 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Wed Aug 27 02:18:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-bde868839e6082ef1c217dabdfb279f7eb841373a1b71f7d09308463a6b79c4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4279-426X
0000-0002-2436-1420
0000-0001-8475-419X
PQID 2734387593
PQPubID 75735
PageCount 15
ParticipantIDs proquest_journals_2734387593
crossref_primary_10_1109_TITS_2022_3170874
ieee_primary_9768201
crossref_citationtrail_10_1109_TITS_2022_3170874
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref17
chen (ref48) 2018
ref50
kingma (ref42) 2014
ref46
ref45
ref47
simonyan (ref37) 2015
ref44
ref43
gregor (ref16) 2015
ref49
ref8
ref7
ref9
ref4
ref3
ref6
manh (ref11) 2018
ref5
ref40
bartoli (ref18) 2017
ling (ref28) 2018; 38
milan (ref51) 2016
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ren (ref29) 2015
ref2
ref1
ref39
ref38
nikhil (ref23) 2018
(ref41) 2018
pellegrini (ref25) 2009
ref24
ref26
ref20
vemula (ref10) 2017
ref22
ref21
ref27
varshneya (ref19) 2017
References_xml – year: 2017
  ident: ref19
  article-title: Human trajectory prediction using spatially aware deep attention models
  publication-title: arXiv 1705 09436
– start-page: 1
  year: 2015
  ident: ref37
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– ident: ref2
  doi: 10.1109/AIM.2017.8014190
– ident: ref21
  doi: 10.1109/CVPR.2012.6248110
– ident: ref38
  doi: 10.1109/CVPR.2016.90
– ident: ref32
  doi: 10.1007/978-3-030-01240-3_7
– ident: ref4
  doi: 10.1038/35035023
– ident: ref8
  doi: 10.1109/TASE.2016.2543242
– ident: ref9
  doi: 10.1109/CVPR.2016.110
– ident: ref17
  doi: 10.1109/WACV.2018.00135
– ident: ref44
  doi: 10.1109/TITS.2016.2515063
– start-page: 91
  year: 2015
  ident: ref29
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref43
  doi: 10.1109/TITS.2019.2892377
– year: 2018
  ident: ref41
  publication-title: PyTorch
– ident: ref13
  doi: 10.1109/ROBOT.2010.5509779
– ident: ref7
  doi: 10.1109/CVPR.2018.00240
– ident: ref35
  doi: 10.1109/CVPR.2017.789
– ident: ref27
  doi: 10.18653/v1/D16-1171
– start-page: 1
  year: 2018
  ident: ref23
  article-title: Convolutional neural network for trajectory prediction
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref5
  doi: 10.1109/TPAMI.2011.64
– ident: ref3
  doi: 10.1109/TRO.2016.2540623
– year: 2016
  ident: ref51
  article-title: MOT16: A benchmark for multi-object tracking
  publication-title: arXiv 1603 00831 [cs]
– ident: ref26
  doi: 10.1146/annurev-psych-122414-033400
– year: 2018
  ident: ref11
  article-title: Scene-LSTM: A model for human trajectory prediction
  publication-title: arXiv 1808 04018
– ident: ref36
  doi: 10.1109/ICCVW.2015.84
– year: 2017
  ident: ref10
  article-title: Social attention: Modeling attention in human crowds
  publication-title: arXiv 1710 04689
– ident: ref14
  doi: 10.5120/ijca2016910497
– start-page: 3
  year: 2018
  ident: ref48
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proc ECCV
– ident: ref47
  doi: 10.1109/JAS.2019.1911393
– ident: ref46
  doi: 10.1109/TITS.2018.2873145
– year: 2015
  ident: ref16
  article-title: DRAW: A recurrent neural network for image generation
  publication-title: arXiv 1502 04623
– ident: ref30
  doi: 10.1109/CVPR.2017.106
– volume: 38
  start-page: 10
  year: 2018
  ident: ref28
  article-title: Long text classification combined with attention mechanism
  publication-title: J Comput Appl
– ident: ref45
  doi: 10.1109/TITS.2016.2625324
– ident: ref24
  doi: 10.1111/j.1467-8659.2007.01089.x
– year: 2017
  ident: ref18
  article-title: Context-aware trajectory prediction
  publication-title: arXiv 1705 02503
– ident: ref12
  doi: 10.1007/978-3-642-33765-9_15
– ident: ref1
  doi: 10.1109/LRA.2018.2852793
– ident: ref49
  doi: 10.1016/j.physa.2018.06.045
– ident: ref39
  doi: 10.1109/SMC.2016.7844676
– ident: ref50
  doi: 10.1109/TITS.2018.2873118
– start-page: 261
  year: 2009
  ident: ref25
  article-title: You'll never walk alone: Modeling social behavior for multi-target tracking
  publication-title: Proc IEEE 12th Int Conf Comput Vis (ICCV)
– year: 2014
  ident: ref42
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref33
  doi: 10.1109/CVPR.2019.00441
– ident: ref22
  doi: 10.1109/TITS.2020.2981118
– ident: ref6
  doi: 10.1109/TCYB.2017.2705345
– ident: ref31
  doi: 10.1109/CVPR.2016.91
– ident: ref20
  doi: 10.1109/CVPR.2017.243
– ident: ref40
  doi: 10.1109/CVPR.2015.7298935
– ident: ref15
  doi: 10.1021/acscentsci.7b00512
– ident: ref34
  doi: 10.1007/s11263-015-0816-y
SSID ssj0014511
Score 2.4328957
Snippet Pedestrian trajectory prediction using video is essential for many practical traffic applications. Most existing pedestrian trajectory prediction methods are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20046
SubjectTerms Algorithms
attention mechanism
Barriers
Coders
Convolution
Convolutional neural networks
Data processing
Datasets
Encoders-Decoders
Feature extraction
Force
Image annotation
Image segmentation
long short-term memory (LSTM)
Markov processes
Pedestrian behavior
Pedestrians
Predictive models
Trajectory
Title Fully Convolutional Encoder-Decoder With an Attention Mechanism for Practical Pedestrian Trajectory Prediction
URI https://ieeexplore.ieee.org/document/9768201
https://www.proquest.com/docview/2734387593
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3oor6Iuj8oHTqhe8rTjI-IhWmkREovKLYrtWUELWQRZpOXXM-NkV7RUVU-JEk9k6Ztkvsl4PgPsVcRhvXO5TH2eyYwipCQvUdJXsfZKVYmx3Jw8OFdnV9n36_x6Ab7Oe2EQMSw-wz6fhlq-H7sJ_yo7oNDJAWsRFnWh2l6tecWAdbaCNmqSSRPlswpmHJmD4bfhJWWCSUIJqo4Knf0Wg8KmKu--xCG8nK7AYDaxdlXJr_6ksX338odm4__OfBU-djxTHLaOsQYLWK_DhzfqgxtQc_o5FUfj-rnzPzI4qbnJ_VEeYziKH7fNjahqcdg07cJIMUBuFr59uhfEd0Wrd0RAiwv0GDYBqQUFwJ-hGjCl-1wJYsNPcHV6Mjw6k932C9IRB2ik9ViogggUKuIJOIodpS--sn5kE21GGm1BEVCnVWx1PNI-MmlEbCatlNXGZZhuwlI9rvEziIQ-DU7pBKM0z5TTllmCpWtGcWMv9iCaAVK6Tpuct8i4K0OOEpmSMSwZw7LDsAf7c5OHVpjjX4M3GJP5wA6OHuzMUC-7V_epZL2flLI4k2793WoblvnZbUPiDiw1jxPcJWbS2C_BJV8B_0Xfcw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQ9FFqKui2lPvRU1Usejr0-Ih5aKIsqdVG5RbE9K6BttoIsEvz6zjjZVR-o4pQo8SiWvknmm4znM8D7ijhs8L6QeSiUVBQhJXmJlqFKTdC6yqzj5uTRiR6eqqOz4mwJPi56YRAxLj7DPp_GWn6Y-hn_Ktum0MkB6xGsFEqpou3WWtQMWGkrqqNmStqkmNcw08Rujw_HXygXzDJKUU0yMOqPKBS3VfnnWxwDzMEqjOZTa9eVfOvPGtf3d3-pNj507mvwrGOaYqd1jeewhPULePqb_uA61JyA3ordaX3TeSAZ7Nfc5n4l9zAexdeL5lxUtdhpmnZppBghtwtfXP8QxHhFq3hEUIvPGDBuA1ILCoGXsR5wS_e5FsSGL-H0YH-8O5TdBgzSEwtopAs40AOiUKiJKeAk9ZTAhMqFicuMnRh0A4qBJq9SZ9KJCYnNE-IzeaWdsV5hvgHL9bTGVyAy-jh4bTJM8kJpbxzzBEfXrObWXuxBMgek9J06OW-S8b2MWUpiS8awZAzLDsMefFiY_GylOf43eJ0xWQzs4OjB5hz1snt5r0tW_Mkpj7P56_ut3sHj4Xh0XB4fnnx6A0_4OW174iYsN1czfEs8pXFb0T1_AdnJ4sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+Convolutional+Encoder-Decoder+With+an+Attention+Mechanism+for+Practical+Pedestrian+Trajectory+Prediction&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Chen%2C+Kai&rft.au=Song%2C+Xiao&rft.au=Yuan%2C+Haitao&rft.au=Ren%2C+Xiaoxiang&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=11&rft.spage=20046&rft_id=info:doi/10.1109%2FTITS.2022.3170874&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon