A Convex Optimization-Based Coupled Nonnegative Matrix Factorization Algorithm for Hyperspectral and Multispectral Data Fusion

Fusing a low-spatial-resolution hyperspectral data with a high-spatial-resolution (HSR) multispectral data has been recognized as an economical approach for obtaining HSR hyperspectral data, which is important to accurate identification and classification of the underlying materials. A natural and p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 56; no. 3; pp. 1652 - 1667
Main Authors Lin, Chia-Hsiang, Ma, Fei, Chi, Chong-Yung, Hsieh, Chih-Hsiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2017.2766080

Cover

Abstract Fusing a low-spatial-resolution hyperspectral data with a high-spatial-resolution (HSR) multispectral data has been recognized as an economical approach for obtaining HSR hyperspectral data, which is important to accurate identification and classification of the underlying materials. A natural and promising fusion criterion, called coupled nonnegative matrix factorization (CNMF), has been reported that can yield high-quality fused data. However, the CNMF criterion amounts to an ill-posed inverse problem, and hence, advisable regularization can be considered for further upgrading its fusion performance. Besides the commonly used sparsity-promoting regularization, we also incorporate the well-known sum-of-squared-distances regularizer, which serves as a convex surrogate of the volume of the simplex of materials' spectral signature vectors (i.e., endmembers), into the CNMF criterion, thereby leading to a convex formulation of the fusion problem. Then, thanks to the biconvexity of the problem nature, we decouple it into two convex subproblems, which are then, respectively, solved by two carefully designed alternating direction method of multipliers (ADMM) algorithms. Closed-form expressions for all the ADMM iterates are derived via convex optimization theories (e.g., Karush-Kuhn-Tucker conditions), and furthermore, some matrix structures are employed to obtain alternative expressions with much lower computational complexities, thus suitable for practical applications. Some experimental results are provided to demonstrate the superior fusion performance of the proposed algorithm over state-of-the-art methods.
AbstractList Fusing a low-spatial-resolution hyperspectral data with a high-spatial-resolution (HSR) multispectral data has been recognized as an economical approach for obtaining HSR hyperspectral data, which is important to accurate identification and classification of the underlying materials. A natural and promising fusion criterion, called coupled nonnegative matrix factorization (CNMF), has been reported that can yield high-quality fused data. However, the CNMF criterion amounts to an ill-posed inverse problem, and hence, advisable regularization can be considered for further upgrading its fusion performance. Besides the commonly used sparsity-promoting regularization, we also incorporate the well-known sum-of-squared-distances regularizer, which serves as a convex surrogate of the volume of the simplex of materials' spectral signature vectors (i.e., endmembers), into the CNMF criterion, thereby leading to a convex formulation of the fusion problem. Then, thanks to the biconvexity of the problem nature, we decouple it into two convex subproblems, which are then, respectively, solved by two carefully designed alternating direction method of multipliers (ADMM) algorithms. Closed-form expressions for all the ADMM iterates are derived via convex optimization theories (e.g., Karush-Kuhn-Tucker conditions), and furthermore, some matrix structures are employed to obtain alternative expressions with much lower computational complexities, thus suitable for practical applications. Some experimental results are provided to demonstrate the superior fusion performance of the proposed algorithm over state-of-the-art methods.
Author Ma, Fei
Lin, Chia-Hsiang
Hsieh, Chih-Hsiang
Chi, Chong-Yung
Author_xml – sequence: 1
  givenname: Chia-Hsiang
  orcidid: 0000-0002-4865-2329
  surname: Lin
  fullname: Lin, Chia-Hsiang
  email: chiahsiang.steven.lin@gmail.com
  organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 2
  givenname: Fei
  surname: Ma
  fullname: Ma, Fei
  email: femircom@gmail.com
  organization: School of Electronic and Information Engineering, Liaoning Technical University, Huludao, China
– sequence: 3
  givenname: Chong-Yung
  orcidid: 0000-0001-5004-7155
  surname: Chi
  fullname: Chi, Chong-Yung
  email: cychi@ee.nthu.edu.tw
  organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 4
  givenname: Chih-Hsiang
  orcidid: 0000-0002-7645-4637
  surname: Hsieh
  fullname: Hsieh, Chih-Hsiang
  email: s104064515@m104.nthu.edu.tw
  organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan
BookMark eNp9kE1PwyAYx4nRxE39AMYLiedOHlpgPc7p1MSXxJdzQymdLF2pQI168LPL3LKDBy88gef_e4DfEO22ttUIHQMZAZD87Pnq8WlECYgRFZyTMdlBA2BsnBCeZbtoQCDnCR3ndB8NvV8QAhkDMUDfEzy17bv-wA9dMEvzJYOxbXIuva5ip--aWO9t2-p57LxrfCeDMx94JlWwbhPHk2YeN-F1iWvr8PVnp53vtApONli2Fb7rm2C2JxcySDzrfSQP0V4tG6-PNvUAvcwun6fXye3D1c10cpsomqchKZWgUkNaZlkNlFUlETXLS6oo51wyKKHiZc1oCpxVQgGvcs1FSlIlcyZklh6g0_Xcztm3XvtQLGzv2nhlQUFEFXEhMSXWKeWs907XhTLh94fx3aYpgBQr2cVKdrGSXWxkRxL-kJ0zS-k-_2VO1ozRWm_zYyBCAEl_AGuqjnk
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_ACCESS_2018_2890278
crossref_primary_10_1016_j_sigpro_2021_108428
crossref_primary_10_1109_ACCESS_2022_3163266
crossref_primary_10_1109_TGRS_2024_3384808
crossref_primary_10_1109_TGRS_2023_3329736
crossref_primary_10_1109_TMM_2022_3216746
crossref_primary_10_1007_s11263_024_02203_7
crossref_primary_10_1109_JSTARS_2022_3189551
crossref_primary_10_1109_LGRS_2022_3149166
crossref_primary_10_1109_TGRS_2024_3378849
crossref_primary_10_3390_rs13071260
crossref_primary_10_1109_JSTARS_2023_3242048
crossref_primary_10_1016_j_optlaseng_2025_108926
crossref_primary_10_1109_LGRS_2023_3287037
crossref_primary_10_1109_TGRS_2023_3314088
crossref_primary_10_1109_JSTARS_2020_3012566
crossref_primary_10_1364_JOSAA_491595
crossref_primary_10_1007_s40314_022_01950_y
crossref_primary_10_1109_TGRS_2022_3173936
crossref_primary_10_1080_10106049_2020_1818855
crossref_primary_10_1109_TNNLS_2023_3243808
crossref_primary_10_1186_s13673_020_00215_z
crossref_primary_10_1109_TGRS_2021_3114197
crossref_primary_10_1109_ACCESS_2020_3009263
crossref_primary_10_1016_j_infrared_2024_105347
crossref_primary_10_1109_TGRS_2021_3062725
crossref_primary_10_1109_TGRS_2024_3349479
crossref_primary_10_1109_JSTARS_2022_3199207
crossref_primary_10_1109_TIP_2020_2968773
crossref_primary_10_1109_MGRS_2021_3075491
crossref_primary_10_1109_TGRS_2024_3407967
crossref_primary_10_1109_TNNLS_2023_3278928
crossref_primary_10_1109_TGRS_2023_3275135
crossref_primary_10_1109_TIP_2020_3009830
crossref_primary_10_1016_j_sigpro_2020_107569
crossref_primary_10_1109_TGRS_2021_3104476
crossref_primary_10_1109_TGRS_2022_3146296
crossref_primary_10_1109_TIP_2019_2916734
crossref_primary_10_1109_TIP_2024_3390582
crossref_primary_10_1109_TGRS_2019_2929776
crossref_primary_10_1109_TGRS_2024_3451551
crossref_primary_10_1109_TGRS_2020_2973370
crossref_primary_10_1109_TIP_2021_3058590
crossref_primary_10_1109_LSP_2019_2897230
crossref_primary_10_3390_rs11202416
crossref_primary_10_1109_TGRS_2019_2953808
crossref_primary_10_1109_ACCESS_2019_2961240
crossref_primary_10_1109_JSTARS_2021_3130719
crossref_primary_10_1109_JSTARS_2023_3314085
crossref_primary_10_1109_TGRS_2023_3274355
crossref_primary_10_1109_JSTARS_2021_3123466
crossref_primary_10_1109_JSTARS_2022_3200693
crossref_primary_10_1109_JSTARS_2024_3469184
crossref_primary_10_1109_ACCESS_2018_2879943
crossref_primary_10_1109_TGRS_2022_3176266
crossref_primary_10_3390_app10010237
crossref_primary_10_1109_TGRS_2021_3111007
crossref_primary_10_1016_j_cam_2023_115708
crossref_primary_10_1109_TGRS_2020_3034414
crossref_primary_10_1109_TGRS_2023_3244992
crossref_primary_10_1109_TGRS_2020_2964777
crossref_primary_10_1007_s10092_023_00514_8
crossref_primary_10_1109_TGRS_2022_3143156
crossref_primary_10_3390_rs14205199
crossref_primary_10_1038_s41467_023_42381_5
crossref_primary_10_1109_TIP_2018_2881911
crossref_primary_10_12677_mos_2024_133300
crossref_primary_10_1080_01431161_2021_1941388
crossref_primary_10_1109_TNNLS_2018_2885616
crossref_primary_10_1109_TGRS_2020_3018732
crossref_primary_10_1109_TGRS_2023_3260030
crossref_primary_10_1109_LGRS_2021_3079961
Cites_doi 10.1364/JOSAA.30.000160
10.1109/TIP.2010.2076294
10.1007/s00186-007-0161-1
10.3934/ipi.2008.2.455
10.1109/TGRS.2007.901007
10.1109/JSTARS.2015.2440092
10.1109/ICASSP.2013.6637883
10.1109/JSTSP.2011.2149497
10.1109/TGRS.2003.819189
10.1109/TGRS.2012.2184122
10.1109/TGRS.2016.2598784
10.1080/014311600750037499
10.1109/TGRS.2011.2161320
10.5194/isprsarchives-XL-3-W3-451-2015
10.1109/TSP.2015.2486746
10.1109/ICCV.2015.409
10.1201/b15702
10.1109/MGRS.2013.2244672
10.1109/TGRS.2007.912448
10.1007/978-1-4614-7470-8
10.1109/JPROC.2015.2462751
10.1109/CVPR.2011.5995457
10.1109/TNN.2007.895831
10.1109/TGRS.2009.2017737
10.1109/MGRS.2015.2440094
10.1109/JSTARS.2012.2194696
10.1109/LGRS.2013.2281996
10.1201/9781315366920
10.1109/TNNLS.2017.2749279
10.1109/TGRS.2015.2424719
10.1109/JSTARS.2016.2528339
10.1109/TIP.2004.834669
10.1109/TGRS.2005.846874
10.1109/ICASSP.2014.6854186
10.1561/2200000016
10.1109/IGARSS.2013.6723731
10.1109/IGARSS.2015.7326172
10.1109/TSP.2015.2508778
10.1109/TIP.2004.829779
10.2307/2685208
10.1109/TGRS.2014.2298056
10.1109/TGRS.2014.2381272
10.1109/TGRS.2004.835299
10.1145/146370.146374
10.1109/MSP.2013.2279274
10.1002/0470124628
10.1109/JSTSP.2015.2407855
10.1109/TIP.2014.2362056
10.1109/TGRS.2013.2264392
10.1109/TIP.2014.2333661
10.1109/MGRS.2016.2637824
10.1109/TGRS.2014.2375320
10.1109/TGRS.2006.888466
10.1117/12.210881
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2017.2766080
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1667
ExternalDocumentID 10_1109_TGRS_2017_2766080
8107710
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Techonlogy, R.O.C.
  grantid: MOST 104-2221-E-007-069-MY3
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c293t-bc72ae13b44f125db07f59b2c2666a51b1d6bf523165d7c16d9e67303ca957a43
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:24:21 EDT 2025
Wed Oct 01 02:19:47 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Wed Aug 27 02:52:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-bc72ae13b44f125db07f59b2c2666a51b1d6bf523165d7c16d9e67303ca957a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5004-7155
0000-0002-7645-4637
0000-0002-4865-2329
PQID 2174511740
PQPubID 85465
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2017_2766080
proquest_journals_2174511740
ieee_primary_8107710
crossref_primary_10_1109_TGRS_2017_2766080
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref14
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
(ref56) 2016
lin (ref35) 2017
zhang (ref65) 2017
ref51
ref50
ref45
ref48
ref44
(ref53) 2016
ref43
wald (ref42) 1997; 63
ref49
gonzalez (ref59) 2006
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
lin (ref33) 2015; 53
chi (ref38) 2017
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
aiazzi (ref15) 2012
lin (ref34) 2013
wheeden (ref66) 1977
grant (ref46) 2011
ref24
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref21
ref28
ref27
stathaki (ref58) 2008
ref29
ref60
lin (ref41) 2007; 18
ref62
ref61
(ref52) 2016
bertsekas (ref47) 1989
References_xml – ident: ref49
  doi: 10.1364/JOSAA.30.000160
– ident: ref28
  doi: 10.1109/TIP.2010.2076294
– volume: 63
  start-page: 691
  year: 1997
  ident: ref42
  article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images
  publication-title: Photogramm Eng Remote Sens
– ident: ref45
  doi: 10.1007/s00186-007-0161-1
– ident: ref27
  doi: 10.3934/ipi.2008.2.455
– ident: ref13
  doi: 10.1109/TGRS.2007.901007
– ident: ref18
  doi: 10.1109/JSTARS.2015.2440092
– ident: ref31
  doi: 10.1109/ICASSP.2013.6637883
– ident: ref29
  doi: 10.1109/JSTSP.2011.2149497
– ident: ref63
  doi: 10.1109/TGRS.2003.819189
– ident: ref23
  doi: 10.1109/TGRS.2012.2184122
– ident: ref57
  doi: 10.1109/TGRS.2016.2598784
– ident: ref17
  doi: 10.1080/014311600750037499
– ident: ref30
  doi: 10.1109/TGRS.2011.2161320
– year: 2016
  ident: ref56
  publication-title: AVIRIS Free Standard Data Products
– ident: ref9
  doi: 10.5194/isprsarchives-XL-3-W3-451-2015
– ident: ref40
  doi: 10.1109/TSP.2015.2486746
– ident: ref60
  doi: 10.1109/ICCV.2015.409
– year: 1977
  ident: ref66
  publication-title: Measure and Integral an Introduction to Real Analysis
  doi: 10.1201/b15702
– ident: ref1
  doi: 10.1109/MGRS.2013.2244672
– ident: ref14
  doi: 10.1109/TGRS.2007.912448
– ident: ref3
  doi: 10.1007/978-1-4614-7470-8
– ident: ref6
  doi: 10.1109/JPROC.2015.2462751
– ident: ref7
  doi: 10.1109/CVPR.2011.5995457
– year: 2012
  ident: ref15
  article-title: 25 years of pansharpening: A critical review and new developments
  publication-title: Signal and Image Processing for Remote sensing
– year: 2016
  ident: ref52
  publication-title: ROSIS Free Pavia University Data
– volume: 18
  start-page: 1589
  year: 2007
  ident: ref41
  article-title: On the convergence of multiplicative update algorithms for nonnegative matrix factorization
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.895831
– ident: ref22
  doi: 10.1109/TGRS.2009.2017737
– year: 1989
  ident: ref47
  publication-title: Parallel and Distributed Computation Numerical Methods
– ident: ref5
  doi: 10.1109/MGRS.2015.2440094
– ident: ref2
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref16
  doi: 10.1109/LGRS.2013.2281996
– year: 2017
  ident: ref38
  publication-title: Convex Optimization for Signal Processing and Communications From Fundamentals to Applications
  doi: 10.1201/9781315366920
– ident: ref62
  doi: 10.1109/TNNLS.2017.2749279
– volume: 53
  start-page: 5530
  year: 2015
  ident: ref33
  article-title: Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing: The no-pure-pixel case
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2015.2424719
– ident: ref51
  doi: 10.1109/JSTARS.2016.2528339
– ident: ref50
  doi: 10.1109/TIP.2004.834669
– year: 2016
  ident: ref53
  publication-title: IKONOS Satellite Imagery
– ident: ref12
  doi: 10.1109/TGRS.2005.846874
– ident: ref20
  doi: 10.1109/ICASSP.2014.6854186
– ident: ref39
  doi: 10.1561/2200000016
– ident: ref8
  doi: 10.1109/IGARSS.2013.6723731
– ident: ref37
  doi: 10.1109/IGARSS.2015.7326172
– year: 2006
  ident: ref59
  publication-title: Digital Image Processing
– ident: ref43
  doi: 10.1109/TSP.2015.2508778
– ident: ref21
  doi: 10.1109/TIP.2004.829779
– ident: ref24
  doi: 10.2307/2685208
– ident: ref54
  doi: 10.1109/TGRS.2014.2298056
– year: 2017
  ident: ref65
  publication-title: Sparse representation based multi-sensor image fusion A review
– ident: ref19
  doi: 10.1109/TGRS.2014.2381272
– start-page: 2139
  year: 2013
  ident: ref34
  article-title: On the endmember identifiability of Craig's criterion for hyperspectral unmixing: A statistical analysis for three-source case
  publication-title: Proc IEEE ICASSP
– year: 2017
  ident: ref35
  publication-title: Maximum volume inscribed ellipsoid A new simplex-structured matrix factorization framework via facet enumeration and convex optimization
– year: 2008
  ident: ref58
  publication-title: Image Fusion
– year: 2011
  ident: ref46
  publication-title: CVX Matlab Software for Disciplined Convex Programming Version 1 21
– ident: ref36
  doi: 10.1109/TGRS.2004.835299
– ident: ref64
  doi: 10.1145/146370.146374
– ident: ref61
  doi: 10.1109/MSP.2013.2279274
– ident: ref4
  doi: 10.1002/0470124628
– ident: ref25
  doi: 10.1109/JSTSP.2015.2407855
– ident: ref48
  doi: 10.1109/TIP.2014.2362056
– ident: ref44
  doi: 10.1109/TGRS.2013.2264392
– ident: ref11
  doi: 10.1109/TIP.2014.2333661
– ident: ref10
  doi: 10.1109/MGRS.2016.2637824
– ident: ref26
  doi: 10.1109/TGRS.2014.2375320
– ident: ref32
  doi: 10.1109/TGRS.2006.888466
– ident: ref55
  doi: 10.1117/12.210881
SSID ssj0014517
Score 2.55389
Snippet Fusing a low-spatial-resolution hyperspectral data with a high-spatial-resolution (HSR) multispectral data has been recognized as an economical approach for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1652
SubjectTerms Algorithms
Alternating direction method of multipliers (ADMM)
Computational geometry
Computer applications
Convex analysis
Convex functions
convex optimization
Convexity
coupled nonnegative matrix factorization (CNMF)
Criteria
Data
data fusion
Data integration
Data models
Factorization
hyperspectral data
Hyperspectral imaging
Ill posed problems
Inverse problems
Kuhn-Tucker method
Multisensor fusion
Optimization
Regularization
Resolution
Satellites
Spatial data
Spatial discrimination
Spatial resolution
State of the art
Vectors
Title A Convex Optimization-Based Coupled Nonnegative Matrix Factorization Algorithm for Hyperspectral and Multispectral Data Fusion
URI https://ieeexplore.ieee.org/document/8107710
https://www.proquest.com/docview/2174511740
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB3SQKE9tPlo6aZJ0aGnUm8sW5bs4ybpZilsCm0CuRlpJKfQzSYkNoQc8tszkrUmtKX05C_ZCEYevZHmvQH4WAg0ZaYb8n6YJ8JJm5RYYZK6PG-8QFVpPTl5fiJnZ-LreXG-Bp8HLoxzLiSfubE_DXv59go7v1S2X1Ksojyf6pkqZc_VGnYMRMEjNVomFERkcQeTp9X-6fH3Hz6JS40zJWVQgHwyB4WiKn944jC9TF_DfNWxPqvk17hrzRjvf9Ns_N-eb8CriDPZpB8Ym7Dmllvw8on64BY8D9mfeLsNDxN26LPP79g38iCXkZqZHNAMZ-lJd72g44lPibkIOuFs7oX979g0FOuJzdlkcUEX7c9LRkCYzSjA7XmcN9QPvbQscH2HO0e61Wza-cW6N3A2_XJ6OEtiYYYECR20iUGVacdzI0RDAMmaVDVFZTKk2V7qghtupWkoxOWysAq5tJWT5Epy1FWhtMjfwvryauneAcsJ75icZ8i1FhmiF4uxsuBom8wRtBpBujJVjVG13BfPWNQhekmr2lu39tato3VH8Gl45bqX7PhX421vraFhNNQIdlfjoY4_9W3tozfCp0qkO39_6z28oG-XfYraLqy3N53bI8zSmg9hsD4CndPpJQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1VRQg48NGCWCjgAydEtnFiO8lxKSwLdBcJtlJvkT12isR2W7WJVHHgtzN2vFEFCHHKl6NYGmf8xp73BuClFGjKTDfk_TBPhFM2KbHCJHV53niBqtJ6cvJ8oWZH4uOxPN6C1wMXxjkXks_c2J-GvXx7hp1fKtsvKVYpPJ_qhhRCyJ6tNewZCMkjOVolFEZkcQ-Tp9X-8v2Xrz6NqxhnhVJBA_LaLBTKqvzhi8MEM70H803X-ryS7-OuNWP88Ztq4__2_T7cjUiTTfqh8QC23HoH7lzTH9yBmyH_Ey934eeEHfj88yv2mXzIaSRnJm9ojrP0pDtf0XHhk2JOglI4m3tp_ys2DeV6YnM2WZ3QRfvtlBEUZjMKcXsm5wX1Q68tC2zf4c5b3Wo27fxy3UM4mr5bHsySWJohQcIHbWKwyLTjuRGiIYhkTVo0sjIZ0nyvtOSGW2UaCnK5krZArmzlFDmTHHUlCy3yR7C9Plu7x8ByQjwm5xlyrUWG6OVirJIcbZM5AlcjSDemqjHqlvvyGas6xC9pVXvr1t66dbTuCF4Nr5z3oh3_arzrrTU0jIYawd5mPNTxt76sffxGCLUQ6ZO_v_UCbs2W88P68MPi01O4Td8p-4S1PdhuLzr3jBBMa56HgfsL9yPscg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convex+Optimization-Based+Coupled+Nonnegative+Matrix+Factorization+Algorithm+for+Hyperspectral+and+Multispectral+Data+Fusion&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Lin%2C+Chia-Hsiang&rft.au=Ma%2C+Fei&rft.au=Chi%2C+Chong-Yung&rft.au=Hsieh%2C+Chih-Hsiang&rft.date=2018-03-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=56&rft.issue=3&rft.spage=1652&rft.epage=1667&rft_id=info:doi/10.1109%2FTGRS.2017.2766080&rft.externalDocID=8107710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon