A Convex Optimization-Based Coupled Nonnegative Matrix Factorization Algorithm for Hyperspectral and Multispectral Data Fusion
Fusing a low-spatial-resolution hyperspectral data with a high-spatial-resolution (HSR) multispectral data has been recognized as an economical approach for obtaining HSR hyperspectral data, which is important to accurate identification and classification of the underlying materials. A natural and p...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 56; no. 3; pp. 1652 - 1667 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2017.2766080 |
Cover
| Abstract | Fusing a low-spatial-resolution hyperspectral data with a high-spatial-resolution (HSR) multispectral data has been recognized as an economical approach for obtaining HSR hyperspectral data, which is important to accurate identification and classification of the underlying materials. A natural and promising fusion criterion, called coupled nonnegative matrix factorization (CNMF), has been reported that can yield high-quality fused data. However, the CNMF criterion amounts to an ill-posed inverse problem, and hence, advisable regularization can be considered for further upgrading its fusion performance. Besides the commonly used sparsity-promoting regularization, we also incorporate the well-known sum-of-squared-distances regularizer, which serves as a convex surrogate of the volume of the simplex of materials' spectral signature vectors (i.e., endmembers), into the CNMF criterion, thereby leading to a convex formulation of the fusion problem. Then, thanks to the biconvexity of the problem nature, we decouple it into two convex subproblems, which are then, respectively, solved by two carefully designed alternating direction method of multipliers (ADMM) algorithms. Closed-form expressions for all the ADMM iterates are derived via convex optimization theories (e.g., Karush-Kuhn-Tucker conditions), and furthermore, some matrix structures are employed to obtain alternative expressions with much lower computational complexities, thus suitable for practical applications. Some experimental results are provided to demonstrate the superior fusion performance of the proposed algorithm over state-of-the-art methods. |
|---|---|
| AbstractList | Fusing a low-spatial-resolution hyperspectral data with a high-spatial-resolution (HSR) multispectral data has been recognized as an economical approach for obtaining HSR hyperspectral data, which is important to accurate identification and classification of the underlying materials. A natural and promising fusion criterion, called coupled nonnegative matrix factorization (CNMF), has been reported that can yield high-quality fused data. However, the CNMF criterion amounts to an ill-posed inverse problem, and hence, advisable regularization can be considered for further upgrading its fusion performance. Besides the commonly used sparsity-promoting regularization, we also incorporate the well-known sum-of-squared-distances regularizer, which serves as a convex surrogate of the volume of the simplex of materials' spectral signature vectors (i.e., endmembers), into the CNMF criterion, thereby leading to a convex formulation of the fusion problem. Then, thanks to the biconvexity of the problem nature, we decouple it into two convex subproblems, which are then, respectively, solved by two carefully designed alternating direction method of multipliers (ADMM) algorithms. Closed-form expressions for all the ADMM iterates are derived via convex optimization theories (e.g., Karush-Kuhn-Tucker conditions), and furthermore, some matrix structures are employed to obtain alternative expressions with much lower computational complexities, thus suitable for practical applications. Some experimental results are provided to demonstrate the superior fusion performance of the proposed algorithm over state-of-the-art methods. |
| Author | Ma, Fei Lin, Chia-Hsiang Hsieh, Chih-Hsiang Chi, Chong-Yung |
| Author_xml | – sequence: 1 givenname: Chia-Hsiang orcidid: 0000-0002-4865-2329 surname: Lin fullname: Lin, Chia-Hsiang email: chiahsiang.steven.lin@gmail.com organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan – sequence: 2 givenname: Fei surname: Ma fullname: Ma, Fei email: femircom@gmail.com organization: School of Electronic and Information Engineering, Liaoning Technical University, Huludao, China – sequence: 3 givenname: Chong-Yung orcidid: 0000-0001-5004-7155 surname: Chi fullname: Chi, Chong-Yung email: cychi@ee.nthu.edu.tw organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan – sequence: 4 givenname: Chih-Hsiang orcidid: 0000-0002-7645-4637 surname: Hsieh fullname: Hsieh, Chih-Hsiang email: s104064515@m104.nthu.edu.tw organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan |
| BookMark | eNp9kE1PwyAYx4nRxE39AMYLiedOHlpgPc7p1MSXxJdzQymdLF2pQI168LPL3LKDBy88gef_e4DfEO22ttUIHQMZAZD87Pnq8WlECYgRFZyTMdlBA2BsnBCeZbtoQCDnCR3ndB8NvV8QAhkDMUDfEzy17bv-wA9dMEvzJYOxbXIuva5ip--aWO9t2-p57LxrfCeDMx94JlWwbhPHk2YeN-F1iWvr8PVnp53vtApONli2Fb7rm2C2JxcySDzrfSQP0V4tG6-PNvUAvcwun6fXye3D1c10cpsomqchKZWgUkNaZlkNlFUlETXLS6oo51wyKKHiZc1oCpxVQgGvcs1FSlIlcyZklh6g0_Xcztm3XvtQLGzv2nhlQUFEFXEhMSXWKeWs907XhTLh94fx3aYpgBQr2cVKdrGSXWxkRxL-kJ0zS-k-_2VO1ozRWm_zYyBCAEl_AGuqjnk |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2018_2890278 crossref_primary_10_1016_j_sigpro_2021_108428 crossref_primary_10_1109_ACCESS_2022_3163266 crossref_primary_10_1109_TGRS_2024_3384808 crossref_primary_10_1109_TGRS_2023_3329736 crossref_primary_10_1109_TMM_2022_3216746 crossref_primary_10_1007_s11263_024_02203_7 crossref_primary_10_1109_JSTARS_2022_3189551 crossref_primary_10_1109_LGRS_2022_3149166 crossref_primary_10_1109_TGRS_2024_3378849 crossref_primary_10_3390_rs13071260 crossref_primary_10_1109_JSTARS_2023_3242048 crossref_primary_10_1016_j_optlaseng_2025_108926 crossref_primary_10_1109_LGRS_2023_3287037 crossref_primary_10_1109_TGRS_2023_3314088 crossref_primary_10_1109_JSTARS_2020_3012566 crossref_primary_10_1364_JOSAA_491595 crossref_primary_10_1007_s40314_022_01950_y crossref_primary_10_1109_TGRS_2022_3173936 crossref_primary_10_1080_10106049_2020_1818855 crossref_primary_10_1109_TNNLS_2023_3243808 crossref_primary_10_1186_s13673_020_00215_z crossref_primary_10_1109_TGRS_2021_3114197 crossref_primary_10_1109_ACCESS_2020_3009263 crossref_primary_10_1016_j_infrared_2024_105347 crossref_primary_10_1109_TGRS_2021_3062725 crossref_primary_10_1109_TGRS_2024_3349479 crossref_primary_10_1109_JSTARS_2022_3199207 crossref_primary_10_1109_TIP_2020_2968773 crossref_primary_10_1109_MGRS_2021_3075491 crossref_primary_10_1109_TGRS_2024_3407967 crossref_primary_10_1109_TNNLS_2023_3278928 crossref_primary_10_1109_TGRS_2023_3275135 crossref_primary_10_1109_TIP_2020_3009830 crossref_primary_10_1016_j_sigpro_2020_107569 crossref_primary_10_1109_TGRS_2021_3104476 crossref_primary_10_1109_TGRS_2022_3146296 crossref_primary_10_1109_TIP_2019_2916734 crossref_primary_10_1109_TIP_2024_3390582 crossref_primary_10_1109_TGRS_2019_2929776 crossref_primary_10_1109_TGRS_2024_3451551 crossref_primary_10_1109_TGRS_2020_2973370 crossref_primary_10_1109_TIP_2021_3058590 crossref_primary_10_1109_LSP_2019_2897230 crossref_primary_10_3390_rs11202416 crossref_primary_10_1109_TGRS_2019_2953808 crossref_primary_10_1109_ACCESS_2019_2961240 crossref_primary_10_1109_JSTARS_2021_3130719 crossref_primary_10_1109_JSTARS_2023_3314085 crossref_primary_10_1109_TGRS_2023_3274355 crossref_primary_10_1109_JSTARS_2021_3123466 crossref_primary_10_1109_JSTARS_2022_3200693 crossref_primary_10_1109_JSTARS_2024_3469184 crossref_primary_10_1109_ACCESS_2018_2879943 crossref_primary_10_1109_TGRS_2022_3176266 crossref_primary_10_3390_app10010237 crossref_primary_10_1109_TGRS_2021_3111007 crossref_primary_10_1016_j_cam_2023_115708 crossref_primary_10_1109_TGRS_2020_3034414 crossref_primary_10_1109_TGRS_2023_3244992 crossref_primary_10_1109_TGRS_2020_2964777 crossref_primary_10_1007_s10092_023_00514_8 crossref_primary_10_1109_TGRS_2022_3143156 crossref_primary_10_3390_rs14205199 crossref_primary_10_1038_s41467_023_42381_5 crossref_primary_10_1109_TIP_2018_2881911 crossref_primary_10_12677_mos_2024_133300 crossref_primary_10_1080_01431161_2021_1941388 crossref_primary_10_1109_TNNLS_2018_2885616 crossref_primary_10_1109_TGRS_2020_3018732 crossref_primary_10_1109_TGRS_2023_3260030 crossref_primary_10_1109_LGRS_2021_3079961 |
| Cites_doi | 10.1364/JOSAA.30.000160 10.1109/TIP.2010.2076294 10.1007/s00186-007-0161-1 10.3934/ipi.2008.2.455 10.1109/TGRS.2007.901007 10.1109/JSTARS.2015.2440092 10.1109/ICASSP.2013.6637883 10.1109/JSTSP.2011.2149497 10.1109/TGRS.2003.819189 10.1109/TGRS.2012.2184122 10.1109/TGRS.2016.2598784 10.1080/014311600750037499 10.1109/TGRS.2011.2161320 10.5194/isprsarchives-XL-3-W3-451-2015 10.1109/TSP.2015.2486746 10.1109/ICCV.2015.409 10.1201/b15702 10.1109/MGRS.2013.2244672 10.1109/TGRS.2007.912448 10.1007/978-1-4614-7470-8 10.1109/JPROC.2015.2462751 10.1109/CVPR.2011.5995457 10.1109/TNN.2007.895831 10.1109/TGRS.2009.2017737 10.1109/MGRS.2015.2440094 10.1109/JSTARS.2012.2194696 10.1109/LGRS.2013.2281996 10.1201/9781315366920 10.1109/TNNLS.2017.2749279 10.1109/TGRS.2015.2424719 10.1109/JSTARS.2016.2528339 10.1109/TIP.2004.834669 10.1109/TGRS.2005.846874 10.1109/ICASSP.2014.6854186 10.1561/2200000016 10.1109/IGARSS.2013.6723731 10.1109/IGARSS.2015.7326172 10.1109/TSP.2015.2508778 10.1109/TIP.2004.829779 10.2307/2685208 10.1109/TGRS.2014.2298056 10.1109/TGRS.2014.2381272 10.1109/TGRS.2004.835299 10.1145/146370.146374 10.1109/MSP.2013.2279274 10.1002/0470124628 10.1109/JSTSP.2015.2407855 10.1109/TIP.2014.2362056 10.1109/TGRS.2013.2264392 10.1109/TIP.2014.2333661 10.1109/MGRS.2016.2637824 10.1109/TGRS.2014.2375320 10.1109/TGRS.2006.888466 10.1117/12.210881 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2017.2766080 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 1667 |
| ExternalDocumentID | 10_1109_TGRS_2017_2766080 8107710 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and Techonlogy, R.O.C. grantid: MOST 104-2221-E-007-069-MY3 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG |
| ID | FETCH-LOGICAL-c293t-bc72ae13b44f125db07f59b2c2666a51b1d6bf523165d7c16d9e67303ca957a43 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:24:21 EDT 2025 Wed Oct 01 02:19:47 EDT 2025 Thu Apr 24 23:07:12 EDT 2025 Wed Aug 27 02:52:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-bc72ae13b44f125db07f59b2c2666a51b1d6bf523165d7c16d9e67303ca957a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5004-7155 0000-0002-7645-4637 0000-0002-4865-2329 |
| PQID | 2174511740 |
| PQPubID | 85465 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2017_2766080 proquest_journals_2174511740 ieee_primary_8107710 crossref_primary_10_1109_TGRS_2017_2766080 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-01 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref12 ref14 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 (ref56) 2016 lin (ref35) 2017 zhang (ref65) 2017 ref51 ref50 ref45 ref48 ref44 (ref53) 2016 ref43 wald (ref42) 1997; 63 ref49 gonzalez (ref59) 2006 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 lin (ref33) 2015; 53 chi (ref38) 2017 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 aiazzi (ref15) 2012 lin (ref34) 2013 wheeden (ref66) 1977 grant (ref46) 2011 ref24 ref23 ref26 ref25 ref64 ref20 ref63 ref22 ref21 ref28 ref27 stathaki (ref58) 2008 ref29 ref60 lin (ref41) 2007; 18 ref62 ref61 (ref52) 2016 bertsekas (ref47) 1989 |
| References_xml | – ident: ref49 doi: 10.1364/JOSAA.30.000160 – ident: ref28 doi: 10.1109/TIP.2010.2076294 – volume: 63 start-page: 691 year: 1997 ident: ref42 article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images publication-title: Photogramm Eng Remote Sens – ident: ref45 doi: 10.1007/s00186-007-0161-1 – ident: ref27 doi: 10.3934/ipi.2008.2.455 – ident: ref13 doi: 10.1109/TGRS.2007.901007 – ident: ref18 doi: 10.1109/JSTARS.2015.2440092 – ident: ref31 doi: 10.1109/ICASSP.2013.6637883 – ident: ref29 doi: 10.1109/JSTSP.2011.2149497 – ident: ref63 doi: 10.1109/TGRS.2003.819189 – ident: ref23 doi: 10.1109/TGRS.2012.2184122 – ident: ref57 doi: 10.1109/TGRS.2016.2598784 – ident: ref17 doi: 10.1080/014311600750037499 – ident: ref30 doi: 10.1109/TGRS.2011.2161320 – year: 2016 ident: ref56 publication-title: AVIRIS Free Standard Data Products – ident: ref9 doi: 10.5194/isprsarchives-XL-3-W3-451-2015 – ident: ref40 doi: 10.1109/TSP.2015.2486746 – ident: ref60 doi: 10.1109/ICCV.2015.409 – year: 1977 ident: ref66 publication-title: Measure and Integral an Introduction to Real Analysis doi: 10.1201/b15702 – ident: ref1 doi: 10.1109/MGRS.2013.2244672 – ident: ref14 doi: 10.1109/TGRS.2007.912448 – ident: ref3 doi: 10.1007/978-1-4614-7470-8 – ident: ref6 doi: 10.1109/JPROC.2015.2462751 – ident: ref7 doi: 10.1109/CVPR.2011.5995457 – year: 2012 ident: ref15 article-title: 25 years of pansharpening: A critical review and new developments publication-title: Signal and Image Processing for Remote sensing – year: 2016 ident: ref52 publication-title: ROSIS Free Pavia University Data – volume: 18 start-page: 1589 year: 2007 ident: ref41 article-title: On the convergence of multiplicative update algorithms for nonnegative matrix factorization publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.895831 – ident: ref22 doi: 10.1109/TGRS.2009.2017737 – year: 1989 ident: ref47 publication-title: Parallel and Distributed Computation Numerical Methods – ident: ref5 doi: 10.1109/MGRS.2015.2440094 – ident: ref2 doi: 10.1109/JSTARS.2012.2194696 – ident: ref16 doi: 10.1109/LGRS.2013.2281996 – year: 2017 ident: ref38 publication-title: Convex Optimization for Signal Processing and Communications From Fundamentals to Applications doi: 10.1201/9781315366920 – ident: ref62 doi: 10.1109/TNNLS.2017.2749279 – volume: 53 start-page: 5530 year: 2015 ident: ref33 article-title: Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing: The no-pure-pixel case publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2015.2424719 – ident: ref51 doi: 10.1109/JSTARS.2016.2528339 – ident: ref50 doi: 10.1109/TIP.2004.834669 – year: 2016 ident: ref53 publication-title: IKONOS Satellite Imagery – ident: ref12 doi: 10.1109/TGRS.2005.846874 – ident: ref20 doi: 10.1109/ICASSP.2014.6854186 – ident: ref39 doi: 10.1561/2200000016 – ident: ref8 doi: 10.1109/IGARSS.2013.6723731 – ident: ref37 doi: 10.1109/IGARSS.2015.7326172 – year: 2006 ident: ref59 publication-title: Digital Image Processing – ident: ref43 doi: 10.1109/TSP.2015.2508778 – ident: ref21 doi: 10.1109/TIP.2004.829779 – ident: ref24 doi: 10.2307/2685208 – ident: ref54 doi: 10.1109/TGRS.2014.2298056 – year: 2017 ident: ref65 publication-title: Sparse representation based multi-sensor image fusion A review – ident: ref19 doi: 10.1109/TGRS.2014.2381272 – start-page: 2139 year: 2013 ident: ref34 article-title: On the endmember identifiability of Craig's criterion for hyperspectral unmixing: A statistical analysis for three-source case publication-title: Proc IEEE ICASSP – year: 2017 ident: ref35 publication-title: Maximum volume inscribed ellipsoid A new simplex-structured matrix factorization framework via facet enumeration and convex optimization – year: 2008 ident: ref58 publication-title: Image Fusion – year: 2011 ident: ref46 publication-title: CVX Matlab Software for Disciplined Convex Programming Version 1 21 – ident: ref36 doi: 10.1109/TGRS.2004.835299 – ident: ref64 doi: 10.1145/146370.146374 – ident: ref61 doi: 10.1109/MSP.2013.2279274 – ident: ref4 doi: 10.1002/0470124628 – ident: ref25 doi: 10.1109/JSTSP.2015.2407855 – ident: ref48 doi: 10.1109/TIP.2014.2362056 – ident: ref44 doi: 10.1109/TGRS.2013.2264392 – ident: ref11 doi: 10.1109/TIP.2014.2333661 – ident: ref10 doi: 10.1109/MGRS.2016.2637824 – ident: ref26 doi: 10.1109/TGRS.2014.2375320 – ident: ref32 doi: 10.1109/TGRS.2006.888466 – ident: ref55 doi: 10.1117/12.210881 |
| SSID | ssj0014517 |
| Score | 2.55389 |
| Snippet | Fusing a low-spatial-resolution hyperspectral data with a high-spatial-resolution (HSR) multispectral data has been recognized as an economical approach for... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1652 |
| SubjectTerms | Algorithms Alternating direction method of multipliers (ADMM) Computational geometry Computer applications Convex analysis Convex functions convex optimization Convexity coupled nonnegative matrix factorization (CNMF) Criteria Data data fusion Data integration Data models Factorization hyperspectral data Hyperspectral imaging Ill posed problems Inverse problems Kuhn-Tucker method Multisensor fusion Optimization Regularization Resolution Satellites Spatial data Spatial discrimination Spatial resolution State of the art Vectors |
| Title | A Convex Optimization-Based Coupled Nonnegative Matrix Factorization Algorithm for Hyperspectral and Multispectral Data Fusion |
| URI | https://ieeexplore.ieee.org/document/8107710 https://www.proquest.com/docview/2174511740 |
| Volume | 56 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB3SQKE9tPlo6aZJ0aGnUm8sW5bs4ybpZilsCm0CuRlpJKfQzSYkNoQc8tszkrUmtKX05C_ZCEYevZHmvQH4WAg0ZaYb8n6YJ8JJm5RYYZK6PG-8QFVpPTl5fiJnZ-LreXG-Bp8HLoxzLiSfubE_DXv59go7v1S2X1Ksojyf6pkqZc_VGnYMRMEjNVomFERkcQeTp9X-6fH3Hz6JS40zJWVQgHwyB4WiKn944jC9TF_DfNWxPqvk17hrzRjvf9Ns_N-eb8CriDPZpB8Ym7Dmllvw8on64BY8D9mfeLsNDxN26LPP79g38iCXkZqZHNAMZ-lJd72g44lPibkIOuFs7oX979g0FOuJzdlkcUEX7c9LRkCYzSjA7XmcN9QPvbQscH2HO0e61Wza-cW6N3A2_XJ6OEtiYYYECR20iUGVacdzI0RDAMmaVDVFZTKk2V7qghtupWkoxOWysAq5tJWT5Epy1FWhtMjfwvryauneAcsJ75icZ8i1FhmiF4uxsuBom8wRtBpBujJVjVG13BfPWNQhekmr2lu39tato3VH8Gl45bqX7PhX421vraFhNNQIdlfjoY4_9W3tozfCp0qkO39_6z28oG-XfYraLqy3N53bI8zSmg9hsD4CndPpJQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1VRQg48NGCWCjgAydEtnFiO8lxKSwLdBcJtlJvkT12isR2W7WJVHHgtzN2vFEFCHHKl6NYGmf8xp73BuClFGjKTDfk_TBPhFM2KbHCJHV53niBqtJ6cvJ8oWZH4uOxPN6C1wMXxjkXks_c2J-GvXx7hp1fKtsvKVYpPJ_qhhRCyJ6tNewZCMkjOVolFEZkcQ-Tp9X-8v2Xrz6NqxhnhVJBA_LaLBTKqvzhi8MEM70H803X-ryS7-OuNWP88Ztq4__2_T7cjUiTTfqh8QC23HoH7lzTH9yBmyH_Ey934eeEHfj88yv2mXzIaSRnJm9ojrP0pDtf0XHhk2JOglI4m3tp_ys2DeV6YnM2WZ3QRfvtlBEUZjMKcXsm5wX1Q68tC2zf4c5b3Wo27fxy3UM4mr5bHsySWJohQcIHbWKwyLTjuRGiIYhkTVo0sjIZ0nyvtOSGW2UaCnK5krZArmzlFDmTHHUlCy3yR7C9Plu7x8ByQjwm5xlyrUWG6OVirJIcbZM5AlcjSDemqjHqlvvyGas6xC9pVXvr1t66dbTuCF4Nr5z3oh3_arzrrTU0jIYawd5mPNTxt76sffxGCLUQ6ZO_v_UCbs2W88P68MPi01O4Td8p-4S1PdhuLzr3jBBMa56HgfsL9yPscg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convex+Optimization-Based+Coupled+Nonnegative+Matrix+Factorization+Algorithm+for+Hyperspectral+and+Multispectral+Data+Fusion&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Lin%2C+Chia-Hsiang&rft.au=Ma%2C+Fei&rft.au=Chi%2C+Chong-Yung&rft.au=Hsieh%2C+Chih-Hsiang&rft.date=2018-03-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=56&rft.issue=3&rft.spage=1652&rft.epage=1667&rft_id=info:doi/10.1109%2FTGRS.2017.2766080&rft.externalDocID=8107710 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |