How to select tag SNPs in genetic association studies? The CLONTagger method with parameter optimization

Selection of genetic variants is a crucial first step in the rational design of studies aimed at explaining individual differences in susceptibility to complex human diseases or health intervention outcomes; for example, in the emerging fields of pharmacogenomics, nutrigenomics, and vaccinomics. Whi...

Full description

Saved in:
Bibliographic Details
Published inOmics (Larchmont, N.Y.) Vol. 17; no. 7; p. 368
Main Authors Ilhan, Ilhan, Tezel, Gülay
Format Journal Article
LanguageEnglish
Published United States 01.07.2013
Subjects
Online AccessGet more information
ISSN1557-8100
DOI10.1089/omi.2012.0100

Cover

Abstract Selection of genetic variants is a crucial first step in the rational design of studies aimed at explaining individual differences in susceptibility to complex human diseases or health intervention outcomes; for example, in the emerging fields of pharmacogenomics, nutrigenomics, and vaccinomics. While single nucleotide polymorphisms (SNPs) are frequently employed in these studies, the cost of genotyping a huge number of SNPs remains a limiting factor, particularly in low and middle income countries. Therefore, it is important to detect a subset of SNPs to represent the rest of SNPs with maximum possible accuracy. The present study introduces a new method, CLONTagger with parameter optimization, which uses Support Vector Machine (SVM) to predict the rest of SNPs and Clonal Selection Algorithm (CLONALG) to select tag SNPs. Furthermore, the Particle Swarm Optimization algorithm is preferred for the optimization of C and γ parameters of the Support Vector Machine. Additionally, using many datasets, we compared the proposed new method with the tag SNP selection algorithms present in literature. Our results suggest that the CLONTagger with parameter optimization can identify tag SNPs with better prediction accuracy than other methods. Application-oriented studies are warranted to evaluate the utility of this method in future research in human genetics and study of the genetic components of variable responses to drugs, nutrition, and vaccines.
AbstractList Selection of genetic variants is a crucial first step in the rational design of studies aimed at explaining individual differences in susceptibility to complex human diseases or health intervention outcomes; for example, in the emerging fields of pharmacogenomics, nutrigenomics, and vaccinomics. While single nucleotide polymorphisms (SNPs) are frequently employed in these studies, the cost of genotyping a huge number of SNPs remains a limiting factor, particularly in low and middle income countries. Therefore, it is important to detect a subset of SNPs to represent the rest of SNPs with maximum possible accuracy. The present study introduces a new method, CLONTagger with parameter optimization, which uses Support Vector Machine (SVM) to predict the rest of SNPs and Clonal Selection Algorithm (CLONALG) to select tag SNPs. Furthermore, the Particle Swarm Optimization algorithm is preferred for the optimization of C and γ parameters of the Support Vector Machine. Additionally, using many datasets, we compared the proposed new method with the tag SNP selection algorithms present in literature. Our results suggest that the CLONTagger with parameter optimization can identify tag SNPs with better prediction accuracy than other methods. Application-oriented studies are warranted to evaluate the utility of this method in future research in human genetics and study of the genetic components of variable responses to drugs, nutrition, and vaccines.
Author Ilhan, Ilhan
Tezel, Gülay
Author_xml – sequence: 1
  givenname: Ilhan
  surname: Ilhan
  fullname: Ilhan, Ilhan
  email: ilhan@selcuk.edu.tr
  organization: Akören Vocational School, Department of Computer Engineering, Faculty of Engineering and Architecture, Selçuk University, Konya, Turkey. ilhan@selcuk.edu.tr
– sequence: 2
  givenname: Gülay
  surname: Tezel
  fullname: Tezel, Gülay
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23758474$$D View this record in MEDLINE/PubMed
BookMark eNo1T1tLwzAYDaK4iz76Kt8f6MylaZonkaFOKJvgfB5J-62NrE1pMob-eouXp3PjHDgzct75Dgm5YXTBaK7vfOsWnDK-oIzSMzJlUqokH_mEzEL4oJSzjItLMuFCyTxV6ZQ0K3-C6CHgAcsI0dTwtn4N4DqoscPoSjAh-NKZ6HwHIR4rh-Eetg3Cstist6aucYAWY-MrOLnYQG8GM-rR9X10rfv6qV6Ri705BLz-wzl5f3rcLldJsXl-WT4UScm1iInN9lmVG81kbtFiaZFbXVJhMmNSIThSvdcyFVQxW6EYM50LiZVGppRkis_J7e9uf7QtVrt-cK0ZPnf_l_k3johZjA
CitedBy_id crossref_primary_10_1002_hup_2398
crossref_primary_10_1007_s12041_016_0707_1
crossref_primary_10_1080_09723757_2017_1385916
crossref_primary_10_1186_s12863_016_0331_3
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1089/omi.2012.0100
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1557-8100
ExternalDocumentID 23758474
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
123
29N
34G
39C
4.4
53G
ABBKN
ABJNI
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CAG
CGR
COF
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
IAO
IER
IGS
IHR
IM4
ITC
MV1
NPM
NQHIM
O9-
P2P
RIG
RML
RNS
UE5
~KM
ID FETCH-LOGICAL-c293t-b6f6d8a9158bebecbe2b9c03a6aa4332e09f9543071bde3b9c9835ed9e1775172
IngestDate Thu Apr 03 07:05:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c293t-b6f6d8a9158bebecbe2b9c03a6aa4332e09f9543071bde3b9c9835ed9e1775172
PMID 23758474
ParticipantIDs pubmed_primary_23758474
PublicationCentury 2000
PublicationDate 2013-Jul
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-Jul
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Omics (Larchmont, N.Y.)
PublicationTitleAlternate OMICS
PublicationYear 2013
SSID ssj0021623
Score 2.003684
Snippet Selection of genetic variants is a crucial first step in the rational design of studies aimed at explaining individual differences in susceptibility to complex...
SourceID pubmed
SourceType Index Database
StartPage 368
SubjectTerms Algorithms
Computer Simulation
Genetic Association Studies - methods
Genetic Testing - methods
Genotype
Humans
Models, Genetic
Models, Statistical
Polymorphism, Single Nucleotide
Support Vector Machine
Title How to select tag SNPs in genetic association studies? The CLONTagger method with parameter optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/23758474
Volume 17
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9OEXwRv78lD76NznZdm-ZJdDiH6Ca4wd5G06Y6WNeBfXF_vXdJtnVT8eMllIaUNvfL5XK9-x0hF9IP3ThKEkvEdmShyWDxiDML67wIFHMQob_jseU3u7X7ntebB2Sq7JJcVKLJl3kl_5Eq3AO5YpbsHyQ7eyjcgGuQL7QgYWh_JWNVDy4rv6laNuU8fCk_t55UgCsMkYqKdT77ikl2gCFwDRVnUX9otzrhC2b96jLS2ieLXOApxsiUM9AmqUnTLNqw7RSZnbEUCC4S-Nh8IWXLQG34ql2r6mLmH5ATHRVwhz_ob-pDE8Jj3A5YAoJN3Q7SqEoP9jfHthd0KStghhUUo6uL53xS2HaAfKdZOsAou2rFNs8rCG-cKulVXYZ_dGs_9y7xZ0-7SqTEGBb3aKE_xxzJHbD-DPMqvMnlwnsgT7QZu3TmULZHZ4tsmkMDvdYI2CYrcrRD1nUZ0fdd8go4oHlGNQ4o4IAiDuhgRA0OaAEH1ODgigIK6BwFVKOAIgroDAW0iII90m3cdupNy1TQsCIw43JL-IkfByF3vEDgahWyKnhku6EfhkhcJ22ecK8Get4RsXShj4NFLmMuHcY8sG33yeooG8lDQh0_ZHbEYTcUQS1wEw4bgeRxIsDCdqrCOyIHeor6Y02T0p9O3vG3PSdkYw6tU7KWwLqUZ2Dk5eJcyekDWjxQ6w
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+select+tag+SNPs+in+genetic+association+studies%3F+The+CLONTagger+method+with+parameter+optimization&rft.jtitle=Omics+%28Larchmont%2C+N.Y.%29&rft.au=Ilhan%2C+Ilhan&rft.au=Tezel%2C+G%C3%BClay&rft.date=2013-07-01&rft.eissn=1557-8100&rft.volume=17&rft.issue=7&rft.spage=368&rft_id=info:doi/10.1089%2Fomi.2012.0100&rft_id=info%3Apmid%2F23758474&rft_id=info%3Apmid%2F23758474&rft.externalDocID=23758474