AI-Based Resource Provisioning of IoE Services in 6G: A Deep Reinforcement Learning Approach

Currently, researchers have motivated a vision of 6G for empowering the new generation of the Internet of Everything (IoE) services that are not supported by 5G. In the context of 6G, more computing resources are required, a problem that is dealt with by Mobile Edge Computing (MEC). However, due to...

Full description

Saved in:
Bibliographic Details
Published inIEEE eTransactions on network and service management Vol. 18; no. 3; pp. 3527 - 3540
Main Authors Sami, Hani, Otrok, Hadi, Bentahar, Jamal, Mourad, Azzam
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4537
1932-4537
DOI10.1109/TNSM.2021.3066625

Cover

Abstract Currently, researchers have motivated a vision of 6G for empowering the new generation of the Internet of Everything (IoE) services that are not supported by 5G. In the context of 6G, more computing resources are required, a problem that is dealt with by Mobile Edge Computing (MEC). However, due to the dynamic change of service demands from various locations, the limitation of available computing resources of MEC, and the increase in the number and complexity of IoE services, intelligent resource provisioning for multiple applications is vital. To address this challenging issue, we propose in this paper IScaler, a novel intelligent and proactive IoE resource scaling and service placement solution. IScaler is tailored for MEC and benefits from the new advancements in Deep Reinforcement Learning (DRL). Multiple requirements are considered in the design of IScaler's Markov Decision Process. These requirements include the prediction of the resource usage of scaled applications, the prediction of available resources by hosting servers, performing combined horizontal and vertical scaling, as well as making service placement decisions. The use of DRL to solve this problem raises several challenges that prevent the realization of IScaler's full potential, including exploration errors and long learning time. These challenges are tackled by proposing an architecture that embeds an Intelligent Scaling and Placement module (ISP). ISP utilizes IScaler and an optimizer based on heuristics as a bootstrapper and backup. Finally, we use the Google Cluster Usage Trace dataset to perform real-life simulations and illustrate the effectiveness of IScaler's multi-application autonomous resource provisioning.
AbstractList Currently, researchers have motivated a vision of 6G for empowering the new generation of the Internet of Everything (IoE) services that are not supported by 5G. In the context of 6G, more computing resources are required, a problem that is dealt with by Mobile Edge Computing (MEC). However, due to the dynamic change of service demands from various locations, the limitation of available computing resources of MEC, and the increase in the number and complexity of IoE services, intelligent resource provisioning for multiple applications is vital. To address this challenging issue, we propose in this paper IScaler, a novel intelligent and proactive IoE resource scaling and service placement solution. IScaler is tailored for MEC and benefits from the new advancements in Deep Reinforcement Learning (DRL). Multiple requirements are considered in the design of IScaler's Markov Decision Process. These requirements include the prediction of the resource usage of scaled applications, the prediction of available resources by hosting servers, performing combined horizontal and vertical scaling, as well as making service placement decisions. The use of DRL to solve this problem raises several challenges that prevent the realization of IScaler's full potential, including exploration errors and long learning time. These challenges are tackled by proposing an architecture that embeds an Intelligent Scaling and Placement module (ISP). ISP utilizes IScaler and an optimizer based on heuristics as a bootstrapper and backup. Finally, we use the Google Cluster Usage Trace dataset to perform real-life simulations and illustrate the effectiveness of IScaler's multi-application autonomous resource provisioning.
Author Otrok, Hadi
Mourad, Azzam
Bentahar, Jamal
Sami, Hani
Author_xml – sequence: 1
  givenname: Hani
  orcidid: 0000-0002-6925-1006
  surname: Sami
  fullname: Sami, Hani
  email: hani.sami@mail.concordia.ca
  organization: Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, Canada
– sequence: 2
  givenname: Hadi
  orcidid: 0000-0002-9574-5384
  surname: Otrok
  fullname: Otrok, Hadi
  email: hadi.otrok@ku.ac.ae
  organization: Department of EECS, Center of Cyber-Physical Systems, Khalifa University, Abu Dhabi, UAE
– sequence: 3
  givenname: Jamal
  orcidid: 0000-0002-3136-4849
  surname: Bentahar
  fullname: Bentahar, Jamal
  email: bentahar@ciise.concordia.ca
  organization: Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, Canada
– sequence: 4
  givenname: Azzam
  orcidid: 0000-0001-9434-5322
  surname: Mourad
  fullname: Mourad, Azzam
  email: azzam.mourad@lau.edu.lb
  organization: Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
BookMark eNp9kMtOwzAQRS1UJErhAxAbS6xT_EjshF0opVQqD9GyQ4ocdwKu2jjYaSX-HpdWCLFgNbO4Z67mHKNObWtA6IySPqUku5w9TO_7jDDa50QIwZID1KUZZ1GccNn5tR-hY-8XhCQpzVgXvebj6Fp5mONn8HbtNOAnZzfGG1ub-g3bCo_tEE_BbYwGj02NxegK5_gGoAmMqSsboBXULZ6Act9Q3jTOKv1-gg4rtfRwup899HI7nA3uosnjaDzIJ5FmGW-jMpGqlKlOhIrLSlBOQelYpyJjtEy5BqkFZIwTXcZqLpViXGWKxSKVjAFjvIcudndD7ccafFsswit1qCxYIoMUGidJSMldSjvrvYOq0KZVbXi0dcosC0qKrcpiq7LYqiz2KgNJ_5CNMyvlPv9lzneMAYCffMZTIqTkX1_ff9c
CODEN ITNSC4
CitedBy_id crossref_primary_10_1109_TNSM_2023_3348138
crossref_primary_10_1016_j_future_2024_04_014
crossref_primary_10_1109_JIOT_2022_3219202
crossref_primary_10_1109_JSYST_2022_3208145
crossref_primary_10_2139_ssrn_4108996
crossref_primary_10_1016_j_jnca_2023_103648
crossref_primary_10_1016_j_comcom_2025_108145
crossref_primary_10_3390_fi14040117
crossref_primary_10_1177_21582440241237050
crossref_primary_10_1109_ACCESS_2023_3240775
crossref_primary_10_1109_MCOM_001_2200529
crossref_primary_10_1109_TNSM_2023_3239847
crossref_primary_10_1109_JIOT_2023_3265564
crossref_primary_10_1016_j_ins_2022_06_050
crossref_primary_10_1016_j_ins_2023_119481
crossref_primary_10_1109_TMC_2023_3303017
crossref_primary_10_3390_fi16090316
crossref_primary_10_1002_ett_4791
crossref_primary_10_1007_s42979_024_02831_3
crossref_primary_10_3390_su16177253
crossref_primary_10_1109_COMST_2024_3392642
crossref_primary_10_1007_s10922_022_09703_2
crossref_primary_10_1109_TNSM_2023_3298220
crossref_primary_10_7717_peerj_cs_755
crossref_primary_10_1109_TNSM_2022_3208522
crossref_primary_10_1109_TNSM_2021_3119531
crossref_primary_10_1016_j_comnet_2024_111008
crossref_primary_10_1002_dac_5410
crossref_primary_10_3390_app12031483
crossref_primary_10_1109_MWC_004_00320
crossref_primary_10_1109_TNSM_2023_3242205
crossref_primary_10_1109_TETCI_2023_3251404
crossref_primary_10_1109_TNSM_2023_3266779
crossref_primary_10_4018_IJSWIS_328526
crossref_primary_10_1016_j_rser_2022_112722
crossref_primary_10_1109_TSC_2024_3399650
crossref_primary_10_1016_j_future_2023_09_012
crossref_primary_10_1109_JIOT_2021_3116928
crossref_primary_10_1109_JIOT_2022_3205051
crossref_primary_10_2478_jee_2024_0013
crossref_primary_10_1016_j_cosrev_2024_100617
crossref_primary_10_1109_OJCOMS_2024_3386872
crossref_primary_10_1016_j_iot_2022_100674
crossref_primary_10_1007_s10462_023_10684_0
crossref_primary_10_1109_TNSM_2024_3462408
crossref_primary_10_1016_j_adhoc_2022_103080
crossref_primary_10_1016_j_eswa_2022_119160
crossref_primary_10_1002_ett_70027
crossref_primary_10_1109_TMLCN_2024_3386647
crossref_primary_10_1016_j_compeleceng_2022_107901
crossref_primary_10_1109_TNSM_2023_3273396
crossref_primary_10_1016_j_vehcom_2023_100571
crossref_primary_10_1109_ACCESS_2022_3183647
crossref_primary_10_1016_j_sysarc_2021_102180
crossref_primary_10_1109_COMST_2024_3352910
crossref_primary_10_1109_TNSM_2022_3228697
crossref_primary_10_1002_ett_5016
Cites_doi 10.1016/j.future.2019.05.026
10.1613/jair.301
10.1109/TCC.2020.2998017
10.1016/j.ins.2020.07.012
10.1109/COMST.2018.2815638
10.1109/TNET.2020.2973800
10.1109/MNET.011.2000195
10.1109/PLANS.2018.8373508
10.1007/s11277-013-1419-y
10.1109/TNSM.2019.2894955
10.1109/CloudCom2018.2018.00020
10.1016/j.vehcom.2018.01.005
10.1109/MCOM.001.1900411
10.1109/JIOT.2020.3023933
10.1145/3005745.3005750
10.1109/JSTSP.2017.2787979
10.1016/j.comcom.2020.04.061
10.1109/COMST.2019.2916583
10.1007/s11036-018-0996-0
10.1109/TNNLS.2019.2920930
10.1109/TNSM.2019.2963643
10.1007/s10586-016-0682-6
10.1007/978-1-4842-1907-2
10.1109/COMST.2017.2745201
10.1007/s11227-018-2244-6
10.1109/MCOM.2019.1900271
10.1007/s11227-019-03032-z
10.1109/IWCMC48107.2020.9148401
10.1109/WCNCW.2018.8369027
10.1109/MNET.001.1900287
10.1109/ACCESS.2018.2881964
10.1109/GLOCOMW.2018.8644205
10.1016/j.ins.2013.08.037
10.1145/203330.203343
10.1109/ACCESS.2017.2765498
10.1109/JSAC.2019.2894306
10.1109/CCGRID.2017.15
10.1145/2741948.2741964
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TNSM.2021.3066625
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-4537
EndPage 3540
ExternalDocumentID 10_1109_TNSM_2021_3066625
9380677
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c293t-b57ab78c56a4bf6131eac4c86921b83ce7c6e9230cb4ad7aa23a9a2468722e223
IEDL.DBID RIE
ISSN 1932-4537
IngestDate Mon Jun 30 02:16:41 EDT 2025
Wed Oct 01 02:39:32 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
Wed Aug 27 02:27:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b57ab78c56a4bf6131eac4c86921b83ce7c6e9230cb4ad7aa23a9a2468722e223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6925-1006
0000-0002-3136-4849
0000-0002-9574-5384
0000-0001-9434-5322
PQID 2570211455
PQPubID 85504
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TNSM_2021_3066625
proquest_journals_2570211455
crossref_primary_10_1109_TNSM_2021_3066625
ieee_primary_9380677
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Sept.
2021-9-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-Sept.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE eTransactions on network and service management
PublicationTitleAbbrev T-NSM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
abadi (ref42) 2016
ref31
rahman (ref11) 2018; 12
ref30
ref33
vannithamby (ref1) 2017
ref32
ref10
ref2
ref39
ref17
ref38
helin yang (ref34) 2020
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref30
  doi: 10.1016/j.future.2019.05.026
– ident: ref37
  doi: 10.1613/jair.301
– ident: ref28
  doi: 10.1109/TCC.2020.2998017
– ident: ref27
  doi: 10.1016/j.ins.2020.07.012
– ident: ref10
  doi: 10.1109/COMST.2018.2815638
– ident: ref41
  doi: 10.1109/TNET.2020.2973800
– ident: ref3
  doi: 10.1109/MNET.011.2000195
– ident: ref13
  doi: 10.1109/PLANS.2018.8373508
– ident: ref12
  doi: 10.1007/s11277-013-1419-y
– ident: ref20
  doi: 10.1109/TNSM.2019.2894955
– ident: ref23
  doi: 10.1109/CloudCom2018.2018.00020
– ident: ref15
  doi: 10.1016/j.vehcom.2018.01.005
– ident: ref8
  doi: 10.1109/MCOM.001.1900411
– ident: ref5
  doi: 10.1109/JIOT.2020.3023933
– ident: ref21
  doi: 10.1145/3005745.3005750
– ident: ref35
  doi: 10.1109/JSTSP.2017.2787979
– ident: ref18
  doi: 10.1016/j.comcom.2020.04.061
– ident: ref32
  doi: 10.1109/COMST.2019.2916583
– ident: ref19
  doi: 10.1007/s11036-018-0996-0
– year: 2017
  ident: ref1
  publication-title: Towards 5G Applications Requirements and Candidate Technologies
– ident: ref39
  doi: 10.1109/TNNLS.2019.2920930
– ident: ref6
  doi: 10.1109/TNSM.2019.2963643
– ident: ref29
  doi: 10.1007/s10586-016-0682-6
– ident: ref16
  doi: 10.1007/978-1-4842-1907-2
– ident: ref4
  doi: 10.1109/COMST.2017.2745201
– ident: ref31
  doi: 10.1007/s11227-018-2244-6
– ident: ref22
  doi: 10.1109/MCOM.2019.1900271
– ident: ref36
  doi: 10.1007/s11227-019-03032-z
– start-page: 1
  year: 2020
  ident: ref34
  article-title: Deep reinforcement learning based intelligent reflecting surface for secure wireless communications
  publication-title: Proc Globecom
– ident: ref25
  doi: 10.1109/IWCMC48107.2020.9148401
– ident: ref17
  doi: 10.1109/WCNCW.2018.8369027
– ident: ref2
  doi: 10.1109/MNET.001.1900287
– ident: ref33
  doi: 10.1109/ACCESS.2018.2881964
– ident: ref7
  doi: 10.1109/GLOCOMW.2018.8644205
– ident: ref38
  doi: 10.1016/j.ins.2013.08.037
– ident: ref40
  doi: 10.1145/203330.203343
– ident: ref14
  doi: 10.1109/ACCESS.2017.2765498
– ident: ref9
  doi: 10.1109/JSAC.2019.2894306
– ident: ref24
  doi: 10.1109/CCGRID.2017.15
– ident: ref26
  doi: 10.1145/2741948.2741964
– start-page: 265
  year: 2016
  ident: ref42
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc 12th USENIX Symp Oper Syst Design Implement
– volume: 12
  start-page: 165
  year: 2018
  ident: ref11
  article-title: A novel on-demand vehicular sensing framework for traffic condition monitoring
  publication-title: Veh Commun
SSID ssj0058192
Score 2.49748
Snippet Currently, researchers have motivated a vision of 6G for empowering the new generation of the Internet of Everything (IoE) services that are not supported by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3527
SubjectTerms 5G mobile communication
6G mobile communication
Artificial intelligence
Clustering algorithms
Deep learning
deep reinforcement learning (DRL)
Dynamic scheduling
Edge computing
Internet of Everything (IoE)
Internet of Things
Markov processes
Mobile computing
Placement
Provisioning
Resource allocation
Resource provisioning
resource scaling
Scaling
Servers
service placement
Title AI-Based Resource Provisioning of IoE Services in 6G: A Deep Reinforcement Learning Approach
URI https://ieeexplore.ieee.org/document/9380677
https://www.proquest.com/docview/2570211455
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1932-4537
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0058192
  issn: 1932-4537
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9sO-nBrylOp-TgSWzXdk3aeJu6uQkbghvsIJQkTUWUdrju4l9v0qZjqIi3HvJKyHt5X3nv9wAunER5bIIIi4lAByiCWlxibDk8USLEKeaebk4eT8hw5j_M8bwGV-teGCllUXwmbf1ZvOXHmVjpVFmHdkMNeFaHehCSsler0rpYA3uZV0vXoZ3p5Gmsoj_PtbvaQ9eTsDfsTjFI5Yf2LUzKYBfG1WbKSpI3e5VzW3x-w2n87273YMf4lqhXCsM-1GR6ANsbiINNeO6NrBtluGJU5e3Ro04qLMu0LMoSNMr6qNIg6DVF5P4a9dCdlAtFU-CsiiKliAw06wvqGVzyQ5gN-tPboWUGLFhCWfnc4jhgPAgFJszniTLsrlLDvggJ9VwedoUMBJHKA3QE91kcMOZ1GWWeT8LA86RyLI6gkWapPAakn2OxTITjMxUD-TRMghgr4-jQhMQCey1wquOPhEEf10Mw3qMiCnFopDkWaY5FhmMtuFyTLErojb8WNzUH1gvN4begXfE4MpdzGenBfSru9TE--Z3qFLb0v8tSsjY08o-VPFO-R87PC6H7Amig1X0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPKgHv9CIovbgybixjXZbvc0PBAViIiQcTJa264zRABG4-Nfbbh0haoy3Hfqypu_1ffW93wM4c1LlsQlfWEwEOkAR1OKSEMvhqRIhTgn3dHNyt-e3Bvh-SIYluFj0wkgps-IzaevP7C0_GYu5TpXVaSPUgGcrsEowxiTv1ir0LtHQXubd0nVovd976qr4z3PthvbR9SzsJcuTjVL5oX8zo9Lcgm6xnbyW5M2ez7gtPr8hNf53v9uwabxLFOXisAMlOdqFjSXMwQo8R23rSpmuBBWZe_So0wrTPDGLxilqj29RoUPQ6wj5d5coQjdSThRNhrQqsqQiMuCsLygyyOR7MGje9q9blhmxYAll52cWJwHjQSiIzzBPlWl3lSLGIvSp5_KwIWQgfKl8QEdwzJKAMa_BKPOwHwaeJ5VrsQ_l0XgkDwDpB1kiU-FgpqIgTMM0SIgyjw5N_UQQrwpOcfyxMPjjegzGe5zFIQ6NNcdizbHYcKwK5wuSSQ6-8dfiiubAYqE5_CrUCh7H5npOYz26T0W-mJDD36lOYa3V73biTrv3cATr-j95YVkNyrOPuTxWnsiMn2QC-AXATdjK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Based+Resource+Provisioning+of+IoE+Services+in+6G%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Sami%2C+Hani&rft.au=Otrok%2C+Hadi&rft.au=Bentahar%2C+Jamal&rft.au=Mourad%2C+Azzam&rft.date=2021-09-01&rft.issn=1932-4537&rft.eissn=1932-4537&rft.volume=18&rft.issue=3&rft.spage=3527&rft.epage=3540&rft_id=info:doi/10.1109%2FTNSM.2021.3066625&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSM_2021_3066625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon