AI-Based Resource Provisioning of IoE Services in 6G: A Deep Reinforcement Learning Approach
Currently, researchers have motivated a vision of 6G for empowering the new generation of the Internet of Everything (IoE) services that are not supported by 5G. In the context of 6G, more computing resources are required, a problem that is dealt with by Mobile Edge Computing (MEC). However, due to...
Saved in:
| Published in | IEEE eTransactions on network and service management Vol. 18; no. 3; pp. 3527 - 3540 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-4537 1932-4537 |
| DOI | 10.1109/TNSM.2021.3066625 |
Cover
| Abstract | Currently, researchers have motivated a vision of 6G for empowering the new generation of the Internet of Everything (IoE) services that are not supported by 5G. In the context of 6G, more computing resources are required, a problem that is dealt with by Mobile Edge Computing (MEC). However, due to the dynamic change of service demands from various locations, the limitation of available computing resources of MEC, and the increase in the number and complexity of IoE services, intelligent resource provisioning for multiple applications is vital. To address this challenging issue, we propose in this paper IScaler, a novel intelligent and proactive IoE resource scaling and service placement solution. IScaler is tailored for MEC and benefits from the new advancements in Deep Reinforcement Learning (DRL). Multiple requirements are considered in the design of IScaler's Markov Decision Process. These requirements include the prediction of the resource usage of scaled applications, the prediction of available resources by hosting servers, performing combined horizontal and vertical scaling, as well as making service placement decisions. The use of DRL to solve this problem raises several challenges that prevent the realization of IScaler's full potential, including exploration errors and long learning time. These challenges are tackled by proposing an architecture that embeds an Intelligent Scaling and Placement module (ISP). ISP utilizes IScaler and an optimizer based on heuristics as a bootstrapper and backup. Finally, we use the Google Cluster Usage Trace dataset to perform real-life simulations and illustrate the effectiveness of IScaler's multi-application autonomous resource provisioning. |
|---|---|
| AbstractList | Currently, researchers have motivated a vision of 6G for empowering the new generation of the Internet of Everything (IoE) services that are not supported by 5G. In the context of 6G, more computing resources are required, a problem that is dealt with by Mobile Edge Computing (MEC). However, due to the dynamic change of service demands from various locations, the limitation of available computing resources of MEC, and the increase in the number and complexity of IoE services, intelligent resource provisioning for multiple applications is vital. To address this challenging issue, we propose in this paper IScaler, a novel intelligent and proactive IoE resource scaling and service placement solution. IScaler is tailored for MEC and benefits from the new advancements in Deep Reinforcement Learning (DRL). Multiple requirements are considered in the design of IScaler's Markov Decision Process. These requirements include the prediction of the resource usage of scaled applications, the prediction of available resources by hosting servers, performing combined horizontal and vertical scaling, as well as making service placement decisions. The use of DRL to solve this problem raises several challenges that prevent the realization of IScaler's full potential, including exploration errors and long learning time. These challenges are tackled by proposing an architecture that embeds an Intelligent Scaling and Placement module (ISP). ISP utilizes IScaler and an optimizer based on heuristics as a bootstrapper and backup. Finally, we use the Google Cluster Usage Trace dataset to perform real-life simulations and illustrate the effectiveness of IScaler's multi-application autonomous resource provisioning. |
| Author | Otrok, Hadi Mourad, Azzam Bentahar, Jamal Sami, Hani |
| Author_xml | – sequence: 1 givenname: Hani orcidid: 0000-0002-6925-1006 surname: Sami fullname: Sami, Hani email: hani.sami@mail.concordia.ca organization: Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, Canada – sequence: 2 givenname: Hadi orcidid: 0000-0002-9574-5384 surname: Otrok fullname: Otrok, Hadi email: hadi.otrok@ku.ac.ae organization: Department of EECS, Center of Cyber-Physical Systems, Khalifa University, Abu Dhabi, UAE – sequence: 3 givenname: Jamal orcidid: 0000-0002-3136-4849 surname: Bentahar fullname: Bentahar, Jamal email: bentahar@ciise.concordia.ca organization: Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, Canada – sequence: 4 givenname: Azzam orcidid: 0000-0001-9434-5322 surname: Mourad fullname: Mourad, Azzam email: azzam.mourad@lau.edu.lb organization: Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon |
| BookMark | eNp9kMtOwzAQRS1UJErhAxAbS6xT_EjshF0opVQqD9GyQ4ocdwKu2jjYaSX-HpdWCLFgNbO4Z67mHKNObWtA6IySPqUku5w9TO_7jDDa50QIwZID1KUZZ1GccNn5tR-hY-8XhCQpzVgXvebj6Fp5mONn8HbtNOAnZzfGG1ub-g3bCo_tEE_BbYwGj02NxegK5_gGoAmMqSsboBXULZ6Act9Q3jTOKv1-gg4rtfRwup899HI7nA3uosnjaDzIJ5FmGW-jMpGqlKlOhIrLSlBOQelYpyJjtEy5BqkFZIwTXcZqLpViXGWKxSKVjAFjvIcudndD7ccafFsswit1qCxYIoMUGidJSMldSjvrvYOq0KZVbXi0dcosC0qKrcpiq7LYqiz2KgNJ_5CNMyvlPv9lzneMAYCffMZTIqTkX1_ff9c |
| CODEN | ITNSC4 |
| CitedBy_id | crossref_primary_10_1109_TNSM_2023_3348138 crossref_primary_10_1016_j_future_2024_04_014 crossref_primary_10_1109_JIOT_2022_3219202 crossref_primary_10_1109_JSYST_2022_3208145 crossref_primary_10_2139_ssrn_4108996 crossref_primary_10_1016_j_jnca_2023_103648 crossref_primary_10_1016_j_comcom_2025_108145 crossref_primary_10_3390_fi14040117 crossref_primary_10_1177_21582440241237050 crossref_primary_10_1109_ACCESS_2023_3240775 crossref_primary_10_1109_MCOM_001_2200529 crossref_primary_10_1109_TNSM_2023_3239847 crossref_primary_10_1109_JIOT_2023_3265564 crossref_primary_10_1016_j_ins_2022_06_050 crossref_primary_10_1016_j_ins_2023_119481 crossref_primary_10_1109_TMC_2023_3303017 crossref_primary_10_3390_fi16090316 crossref_primary_10_1002_ett_4791 crossref_primary_10_1007_s42979_024_02831_3 crossref_primary_10_3390_su16177253 crossref_primary_10_1109_COMST_2024_3392642 crossref_primary_10_1007_s10922_022_09703_2 crossref_primary_10_1109_TNSM_2023_3298220 crossref_primary_10_7717_peerj_cs_755 crossref_primary_10_1109_TNSM_2022_3208522 crossref_primary_10_1109_TNSM_2021_3119531 crossref_primary_10_1016_j_comnet_2024_111008 crossref_primary_10_1002_dac_5410 crossref_primary_10_3390_app12031483 crossref_primary_10_1109_MWC_004_00320 crossref_primary_10_1109_TNSM_2023_3242205 crossref_primary_10_1109_TETCI_2023_3251404 crossref_primary_10_1109_TNSM_2023_3266779 crossref_primary_10_4018_IJSWIS_328526 crossref_primary_10_1016_j_rser_2022_112722 crossref_primary_10_1109_TSC_2024_3399650 crossref_primary_10_1016_j_future_2023_09_012 crossref_primary_10_1109_JIOT_2021_3116928 crossref_primary_10_1109_JIOT_2022_3205051 crossref_primary_10_2478_jee_2024_0013 crossref_primary_10_1016_j_cosrev_2024_100617 crossref_primary_10_1109_OJCOMS_2024_3386872 crossref_primary_10_1016_j_iot_2022_100674 crossref_primary_10_1007_s10462_023_10684_0 crossref_primary_10_1109_TNSM_2024_3462408 crossref_primary_10_1016_j_adhoc_2022_103080 crossref_primary_10_1016_j_eswa_2022_119160 crossref_primary_10_1002_ett_70027 crossref_primary_10_1109_TMLCN_2024_3386647 crossref_primary_10_1016_j_compeleceng_2022_107901 crossref_primary_10_1109_TNSM_2023_3273396 crossref_primary_10_1016_j_vehcom_2023_100571 crossref_primary_10_1109_ACCESS_2022_3183647 crossref_primary_10_1016_j_sysarc_2021_102180 crossref_primary_10_1109_COMST_2024_3352910 crossref_primary_10_1109_TNSM_2022_3228697 crossref_primary_10_1002_ett_5016 |
| Cites_doi | 10.1016/j.future.2019.05.026 10.1613/jair.301 10.1109/TCC.2020.2998017 10.1016/j.ins.2020.07.012 10.1109/COMST.2018.2815638 10.1109/TNET.2020.2973800 10.1109/MNET.011.2000195 10.1109/PLANS.2018.8373508 10.1007/s11277-013-1419-y 10.1109/TNSM.2019.2894955 10.1109/CloudCom2018.2018.00020 10.1016/j.vehcom.2018.01.005 10.1109/MCOM.001.1900411 10.1109/JIOT.2020.3023933 10.1145/3005745.3005750 10.1109/JSTSP.2017.2787979 10.1016/j.comcom.2020.04.061 10.1109/COMST.2019.2916583 10.1007/s11036-018-0996-0 10.1109/TNNLS.2019.2920930 10.1109/TNSM.2019.2963643 10.1007/s10586-016-0682-6 10.1007/978-1-4842-1907-2 10.1109/COMST.2017.2745201 10.1007/s11227-018-2244-6 10.1109/MCOM.2019.1900271 10.1007/s11227-019-03032-z 10.1109/IWCMC48107.2020.9148401 10.1109/WCNCW.2018.8369027 10.1109/MNET.001.1900287 10.1109/ACCESS.2018.2881964 10.1109/GLOCOMW.2018.8644205 10.1016/j.ins.2013.08.037 10.1145/203330.203343 10.1109/ACCESS.2017.2765498 10.1109/JSAC.2019.2894306 10.1109/CCGRID.2017.15 10.1145/2741948.2741964 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TNSM.2021.3066625 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1932-4537 |
| EndPage | 3540 |
| ExternalDocumentID | 10_1109_TNSM_2021_3066625 9380677 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c293t-b57ab78c56a4bf6131eac4c86921b83ce7c6e9230cb4ad7aa23a9a2468722e223 |
| IEDL.DBID | RIE |
| ISSN | 1932-4537 |
| IngestDate | Mon Jun 30 02:16:41 EDT 2025 Wed Oct 01 02:39:32 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 Wed Aug 27 02:27:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-b57ab78c56a4bf6131eac4c86921b83ce7c6e9230cb4ad7aa23a9a2468722e223 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6925-1006 0000-0002-3136-4849 0000-0002-9574-5384 0000-0001-9434-5322 |
| PQID | 2570211455 |
| PQPubID | 85504 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNSM_2021_3066625 proquest_journals_2570211455 crossref_primary_10_1109_TNSM_2021_3066625 ieee_primary_9380677 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Sept. 2021-9-00 20210901 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-Sept. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE eTransactions on network and service management |
| PublicationTitleAbbrev | T-NSM |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 abadi (ref42) 2016 ref31 rahman (ref11) 2018; 12 ref30 ref33 vannithamby (ref1) 2017 ref32 ref10 ref2 ref39 ref17 ref38 helin yang (ref34) 2020 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref30 doi: 10.1016/j.future.2019.05.026 – ident: ref37 doi: 10.1613/jair.301 – ident: ref28 doi: 10.1109/TCC.2020.2998017 – ident: ref27 doi: 10.1016/j.ins.2020.07.012 – ident: ref10 doi: 10.1109/COMST.2018.2815638 – ident: ref41 doi: 10.1109/TNET.2020.2973800 – ident: ref3 doi: 10.1109/MNET.011.2000195 – ident: ref13 doi: 10.1109/PLANS.2018.8373508 – ident: ref12 doi: 10.1007/s11277-013-1419-y – ident: ref20 doi: 10.1109/TNSM.2019.2894955 – ident: ref23 doi: 10.1109/CloudCom2018.2018.00020 – ident: ref15 doi: 10.1016/j.vehcom.2018.01.005 – ident: ref8 doi: 10.1109/MCOM.001.1900411 – ident: ref5 doi: 10.1109/JIOT.2020.3023933 – ident: ref21 doi: 10.1145/3005745.3005750 – ident: ref35 doi: 10.1109/JSTSP.2017.2787979 – ident: ref18 doi: 10.1016/j.comcom.2020.04.061 – ident: ref32 doi: 10.1109/COMST.2019.2916583 – ident: ref19 doi: 10.1007/s11036-018-0996-0 – year: 2017 ident: ref1 publication-title: Towards 5G Applications Requirements and Candidate Technologies – ident: ref39 doi: 10.1109/TNNLS.2019.2920930 – ident: ref6 doi: 10.1109/TNSM.2019.2963643 – ident: ref29 doi: 10.1007/s10586-016-0682-6 – ident: ref16 doi: 10.1007/978-1-4842-1907-2 – ident: ref4 doi: 10.1109/COMST.2017.2745201 – ident: ref31 doi: 10.1007/s11227-018-2244-6 – ident: ref22 doi: 10.1109/MCOM.2019.1900271 – ident: ref36 doi: 10.1007/s11227-019-03032-z – start-page: 1 year: 2020 ident: ref34 article-title: Deep reinforcement learning based intelligent reflecting surface for secure wireless communications publication-title: Proc Globecom – ident: ref25 doi: 10.1109/IWCMC48107.2020.9148401 – ident: ref17 doi: 10.1109/WCNCW.2018.8369027 – ident: ref2 doi: 10.1109/MNET.001.1900287 – ident: ref33 doi: 10.1109/ACCESS.2018.2881964 – ident: ref7 doi: 10.1109/GLOCOMW.2018.8644205 – ident: ref38 doi: 10.1016/j.ins.2013.08.037 – ident: ref40 doi: 10.1145/203330.203343 – ident: ref14 doi: 10.1109/ACCESS.2017.2765498 – ident: ref9 doi: 10.1109/JSAC.2019.2894306 – ident: ref24 doi: 10.1109/CCGRID.2017.15 – ident: ref26 doi: 10.1145/2741948.2741964 – start-page: 265 year: 2016 ident: ref42 article-title: TensorFlow: A system for large-scale machine learning publication-title: Proc 12th USENIX Symp Oper Syst Design Implement – volume: 12 start-page: 165 year: 2018 ident: ref11 article-title: A novel on-demand vehicular sensing framework for traffic condition monitoring publication-title: Veh Commun |
| SSID | ssj0058192 |
| Score | 2.49748 |
| Snippet | Currently, researchers have motivated a vision of 6G for empowering the new generation of the Internet of Everything (IoE) services that are not supported by... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3527 |
| SubjectTerms | 5G mobile communication 6G mobile communication Artificial intelligence Clustering algorithms Deep learning deep reinforcement learning (DRL) Dynamic scheduling Edge computing Internet of Everything (IoE) Internet of Things Markov processes Mobile computing Placement Provisioning Resource allocation Resource provisioning resource scaling Scaling Servers service placement |
| Title | AI-Based Resource Provisioning of IoE Services in 6G: A Deep Reinforcement Learning Approach |
| URI | https://ieeexplore.ieee.org/document/9380677 https://www.proquest.com/docview/2570211455 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1932-4537 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0058192 issn: 1932-4537 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9sO-nBrylOp-TgSWzXdk3aeJu6uQkbghvsIJQkTUWUdrju4l9v0qZjqIi3HvJKyHt5X3nv9wAunER5bIIIi4lAByiCWlxibDk8USLEKeaebk4eT8hw5j_M8bwGV-teGCllUXwmbf1ZvOXHmVjpVFmHdkMNeFaHehCSsler0rpYA3uZV0vXoZ3p5Gmsoj_PtbvaQ9eTsDfsTjFI5Yf2LUzKYBfG1WbKSpI3e5VzW3x-w2n87273YMf4lqhXCsM-1GR6ANsbiINNeO6NrBtluGJU5e3Ro04qLMu0LMoSNMr6qNIg6DVF5P4a9dCdlAtFU-CsiiKliAw06wvqGVzyQ5gN-tPboWUGLFhCWfnc4jhgPAgFJszniTLsrlLDvggJ9VwedoUMBJHKA3QE91kcMOZ1GWWeT8LA86RyLI6gkWapPAakn2OxTITjMxUD-TRMghgr4-jQhMQCey1wquOPhEEf10Mw3qMiCnFopDkWaY5FhmMtuFyTLErojb8WNzUH1gvN4begXfE4MpdzGenBfSru9TE--Z3qFLb0v8tSsjY08o-VPFO-R87PC6H7Amig1X0 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPKgHv9CIovbgybixjXZbvc0PBAViIiQcTJa264zRABG4-Nfbbh0haoy3Hfqypu_1ffW93wM4c1LlsQlfWEwEOkAR1OKSEMvhqRIhTgn3dHNyt-e3Bvh-SIYluFj0wkgps-IzaevP7C0_GYu5TpXVaSPUgGcrsEowxiTv1ir0LtHQXubd0nVovd976qr4z3PthvbR9SzsJcuTjVL5oX8zo9Lcgm6xnbyW5M2ez7gtPr8hNf53v9uwabxLFOXisAMlOdqFjSXMwQo8R23rSpmuBBWZe_So0wrTPDGLxilqj29RoUPQ6wj5d5coQjdSThRNhrQqsqQiMuCsLygyyOR7MGje9q9blhmxYAll52cWJwHjQSiIzzBPlWl3lSLGIvSp5_KwIWQgfKl8QEdwzJKAMa_BKPOwHwaeJ5VrsQ_l0XgkDwDpB1kiU-FgpqIgTMM0SIgyjw5N_UQQrwpOcfyxMPjjegzGe5zFIQ6NNcdizbHYcKwK5wuSSQ6-8dfiiubAYqE5_CrUCh7H5npOYz26T0W-mJDD36lOYa3V73biTrv3cATr-j95YVkNyrOPuTxWnsiMn2QC-AXATdjK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Based+Resource+Provisioning+of+IoE+Services+in+6G%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Sami%2C+Hani&rft.au=Otrok%2C+Hadi&rft.au=Bentahar%2C+Jamal&rft.au=Mourad%2C+Azzam&rft.date=2021-09-01&rft.issn=1932-4537&rft.eissn=1932-4537&rft.volume=18&rft.issue=3&rft.spage=3527&rft.epage=3540&rft_id=info:doi/10.1109%2FTNSM.2021.3066625&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSM_2021_3066625 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon |