Adaptive Target Detection with Polarimetric FDA-MIMO Radar

The problem of adaptive radar detection with a polarimetric Frequency Diverse Array Multiple-Input Multiple-Output (FDA-MIMO) radar is addressed in this paper. At the design stage, the target detection problem is formulated as a composite hypothesis test, with the unknowns given by the target angle,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on aerospace and electronic systems Vol. 59; no. 3; pp. 1 - 16
Main Authors Lan, Lan, Rosamilia, Massimo, Aubry, Augusto, Maio, Antonio De, Liao, Guisheng, Xu, Jingwei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9251
1557-9603
DOI10.1109/TAES.2022.3210887

Cover

More Information
Summary:The problem of adaptive radar detection with a polarimetric Frequency Diverse Array Multiple-Input Multiple-Output (FDA-MIMO) radar is addressed in this paper. At the design stage, the target detection problem is formulated as a composite hypothesis test, with the unknowns given by the target angle, incremental range (target displacement with respect to the center of the occupied range cell), and scattering matrix, as well as the interference covariance matrix. The formulated detection problem is handled by resorting to sub-optimal design strategies based on the Generalized Likelihood Ratio (GLR) criterion. The resulting detectors demand, under the <inline-formula><tex-math notation="LaTeX">H_\mathrm{{1}}</tex-math></inline-formula> hypothesis, the solution of a box-constrained optimization problem for which several iterative techniques, i.e., the Linearized Array Manifold (LAM), the Gradient Projection Method (GPM), and the Coordinate Descent (CD) algorithms, are exploited. At the analysis stage, the performance of the proposed architectures, which ensure the bounded CFAR property, is evaluated via Monte Carlo simulations and compared with the benchmarks in both white and colored disturbance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2022.3210887