Non-Linear Regression with Repeated Data—A New Approach to Bark Thickness Modelling

Broader use of multioperational machines in forestry requires efficient methods for determining various timber parameters. Here, we present a novel approach to model the bark thickness (BT) as a function of stem diameter. Stem diameter (D) is any diameter measured along the bole, not a specific one....

Full description

Saved in:
Bibliographic Details
Published inForests Vol. 16; no. 7; p. 1160
Main Authors Ukalski, Krzysztof, Bijak, Szymon
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 14.07.2025
Subjects
Online AccessGet full text
ISSN1999-4907
1999-4907
DOI10.3390/f16071160

Cover

Abstract Broader use of multioperational machines in forestry requires efficient methods for determining various timber parameters. Here, we present a novel approach to model the bark thickness (BT) as a function of stem diameter. Stem diameter (D) is any diameter measured along the bole, not a specific one. The following four regression models were tested: marginal model (MM; reference), classical nonlinear regression with independent residuals (M1), nonlinear regression with residuals correlated within a single tree (M2), and nonlinear regression with the correlation of residuals and random components, taking into account random changes between the trees (M3). Empirical data consisted of larch (Larix sp. Mill.) BT measurements carried out at two sites in northern Poland. Relative root square mean error (RMSE%) and adjusted R-squared (R2adj) served to compare the fitted models. Model fit was tested for each tree separately, and all trees were combined. Of the analysed models, M3 turned out to be the best fit for both the individual tree and all tree levels. The fit of the regression function M3 for SITE1 (50-year-old, pure stand located in northern Poland) was 87.44% (R2adj), and for SITE2 (63-year-old, pure stand situated in the north of Poland) it was 80.6%. Taking into account the values of RMSE%, at the individual tree level the M3 model fit at location SITE1 was closest to the MM, while at SITE2 it was better than the MM. For the most comprehensive regression model, M3, it was checked how the error of the bark thickness estimate varied with stem diameter at different heights (from the base of the trees to the top). In general, the model’s accuracy increased with greater tree height.
AbstractList Broader use of multioperational machines in forestry requires efficient methods for determining various timber parameters. Here, we present a novel approach to model the bark thickness (BT) as a function of stem diameter. Stem diameter (D) is any diameter measured along the bole, not a specific one. The following four regression models were tested: marginal model (MM; reference), classical nonlinear regression with independent residuals (M1), nonlinear regression with residuals correlated within a single tree (M2), and nonlinear regression with the correlation of residuals and random components, taking into account random changes between the trees (M3). Empirical data consisted of larch (Larix sp. Mill.) BT measurements carried out at two sites in northern Poland. Relative root square mean error (RMSE%) and adjusted R-squared (R2adj) served to compare the fitted models. Model fit was tested for each tree separately, and all trees were combined. Of the analysed models, M3 turned out to be the best fit for both the individual tree and all tree levels. The fit of the regression function M3 for SITE1 (50-year-old, pure stand located in northern Poland) was 87.44% (R2adj), and for SITE2 (63-year-old, pure stand situated in the north of Poland) it was 80.6%. Taking into account the values of RMSE%, at the individual tree level the M3 model fit at location SITE1 was closest to the MM, while at SITE2 it was better than the MM. For the most comprehensive regression model, M3, it was checked how the error of the bark thickness estimate varied with stem diameter at different heights (from the base of the trees to the top). In general, the model’s accuracy increased with greater tree height.
Audience Academic
Author Ukalski, Krzysztof
Bijak, Szymon
Author_xml – sequence: 1
  givenname: Krzysztof
  orcidid: 0000-0003-1415-6316
  surname: Ukalski
  fullname: Ukalski, Krzysztof
– sequence: 2
  givenname: Szymon
  orcidid: 0000-0001-5298-6105
  surname: Bijak
  fullname: Bijak, Szymon
BookMark eNp9UMtKAzEUDaJgrV34BwFXClOTeeSxrPUJtYK06yGTSdq002TMTCnd-RF-oV9iyoi48l64L865HM4ZOLbOKgAuMBomCUc3GhNEcShHoIc551HKET3-M5-CQdOsUIiMMh6nPTCfOhtNjFXCwze18KppjLNwZ9pl2GslWlXCO9GKr4_PEZyqHRzVtXdCLmHr4K3wazhbGrm2gQhfXKmqytjFOTjRomrU4Kf3wfzhfjZ-iiavj8_j0SSSMU_aSDCpCM4ILTKVJkxyzSijRVlwkhVCU6RLqlPJCCoowzoTcVFQQXHKqEREZUkfXHd_t7YW-52oqrz2ZiP8PscoP3iS_3oSwJcdOOh_36qmzVdu623QlydxksSYYxIH1LBDLUSlcmO1a72QIUu1MTL4rU24j1iGEOYkPmi46gjSu6bxSv8j4RvixH6w
Cites_doi 10.1016/0304-3800(93)90105-2
10.2307/2532896
10.1111/jvs.12171
10.1080/00049158.2000.10674811
10.1139/x88-199
10.2307/2532087
10.1093/forestry/cpx047
10.1007/978-1-4419-0318-1
10.3390/plants11091148
10.1186/1471-2105-7-123
10.1139/x94-092
10.1111/nph.13889
10.1007/s13595-016-0601-2
10.1080/10618600.1995.10474663
10.1201/9781482293272
10.1111/j.1365-2435.2010.01736.x
10.1111/j.0006-341X.2004.00163.x
10.1007/978-1-4612-2294-1
10.1186/1471-2210-10-6
10.1007/s13595-021-01096-7
10.1002/9780470316757
10.1016/S0378-1127(00)00632-0
10.1214/aos/1176344136
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
M0K
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
ADTOC
UNPAY
DOI 10.3390/f16071160
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Agricultural Science Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1999-4907
ExternalDocumentID 10.3390/f16071160
A850019625
10_3390_f16071160
GeographicLocations New York
United States
GeographicLocations_xml – name: New York
– name: United States
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AENEX
AEUYN
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
ECGQY
EDH
HCIFZ
IAG
IAO
IEP
ITC
ITG
ITH
KQ8
LK5
M0K
M7R
MODMG
M~E
OK1
OZF
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
TR2
3V.
7SN
7SS
8FK
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c293t-a8ce61567b5e438c9f8787bdb965baf70fd7f4c860b781f5a2bb7a71487c06e53
IEDL.DBID BENPR
ISSN 1999-4907
IngestDate Tue Aug 19 23:21:44 EDT 2025
Fri Jul 25 19:11:26 EDT 2025
Tue Aug 05 03:51:19 EDT 2025
Thu Oct 16 04:35:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a8ce61567b5e438c9f8787bdb965baf70fd7f4c860b781f5a2bb7a71487c06e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5298-6105
0000-0003-1415-6316
OpenAccessLink https://www.proquest.com/docview/3233219162?pq-origsite=%requestingapplication%&accountid=15518
PQID 3233219162
PQPubID 2032398
ParticipantIDs unpaywall_primary_10_3390_f16071160
proquest_journals_3233219162
gale_infotracacademiconefile_A850019625
crossref_primary_10_3390_f16071160
PublicationCentury 2000
PublicationDate 2025-07-14
PublicationDateYYYYMMDD 2025-07-14
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-14
  day: 14
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Forests
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Schwarz (ref_26) 1978; 6
Bronisz (ref_6) 2019; 163
Sauter (ref_14) 2017; 74
Vonesh (ref_31) 1996; 52
Dormann (ref_15) 2018; 91
Wolfinger (ref_43) 1997; 16
ref_32
Bauer (ref_12) 2021; 78
ref_19
ref_18
ref_17
ref_39
ref_38
Bronisz (ref_7) 2019; 163
Hengst (ref_5) 1994; 24
Pinheiro (ref_23) 1995; 4
Charles (ref_35) 2000; 63
Hempson (ref_37) 2014; 25
Mayer (ref_30) 1993; 68
Hall (ref_11) 2004; 60
Gordon (ref_34) 1983; 13
ref_25
ref_24
Paine (ref_36) 2010; 24
ref_22
ref_21
Biging (ref_2) 1984; 30
Ryan (ref_4) 1988; 18
ref_20
ref_42
ref_40
ref_1
Fox (ref_10) 2001; 154
Jenkins (ref_13) 2003; 49
ref_29
Lindstrom (ref_41) 1990; 46
ref_28
ref_27
Tyburski (ref_16) 2024; 66
Amidon (ref_3) 1984; 30
ref_9
ref_8
Rosell (ref_33) 2016; 211
References_xml – ident: ref_9
– volume: 68
  start-page: 21
  year: 1993
  ident: ref_30
  article-title: Statistical validation
  publication-title: Ecol. Modell.
  doi: 10.1016/0304-3800(93)90105-2
– volume: 66
  start-page: 215
  year: 2024
  ident: ref_16
  article-title: Long-term analysis of sap flow conditions in the trunk of Scots pine (Pinus sylvestris L.) in the old-growth phase in relation to air temperature
  publication-title: Folia For. Pol. Ser. A-For.
– volume: 52
  start-page: 572
  year: 1996
  ident: ref_31
  article-title: Goodness-of-Fit in Generalized Nonlinear Mixed-Effects Models
  publication-title: Biometrics
  doi: 10.2307/2532896
– volume: 16
  start-page: 1258
  year: 1997
  ident: ref_43
  article-title: Comment: Experience with the SAS macro NLINMIX
  publication-title: Stat. Med.
– volume: 25
  start-page: 1247
  year: 2014
  ident: ref_37
  article-title: Comparing bark thickness: Testing methods with bark–stem data from two South African fire-prone biomes
  publication-title: J. Veg. Sci.
  doi: 10.1111/jvs.12171
– volume: 63
  start-page: 34
  year: 2000
  ident: ref_35
  article-title: Bark thickness equations for five commercial tree species in regrowth forests of Northern New South Wales
  publication-title: Aust. For.
  doi: 10.1080/00049158.2000.10674811
– ident: ref_39
– ident: ref_40
– volume: 18
  start-page: 1291
  year: 1988
  ident: ref_4
  article-title: Predicting postfire mortality of seven western conifers
  publication-title: Can. J. For. Res.
  doi: 10.1139/x88-199
– ident: ref_18
– volume: 30
  start-page: 1103
  year: 1984
  ident: ref_2
  article-title: Taper equations for second-growth mixed conifers of Northern California
  publication-title: For. Sci.
– volume: 46
  start-page: 673
  year: 1990
  ident: ref_41
  article-title: Nonlinear mixed effects models for repeated measures data
  publication-title: Biometrics
  doi: 10.2307/2532087
– ident: ref_21
– volume: 163
  start-page: 469
  year: 2019
  ident: ref_7
  article-title: Modelling the bark thickness along the trunk with taper models
  publication-title: Sylwan
– volume: 91
  start-page: 283
  year: 2018
  ident: ref_15
  article-title: Modelling the variation of bark thickness within and between European silver fir (Abies alba Mill.) trees in Southwest Germany
  publication-title: Forestry
  doi: 10.1093/forestry/cpx047
– ident: ref_42
  doi: 10.1007/978-1-4419-0318-1
– ident: ref_8
– ident: ref_1
  doi: 10.3390/plants11091148
– ident: ref_25
– ident: ref_32
  doi: 10.1186/1471-2105-7-123
– volume: 24
  start-page: 688
  year: 1994
  ident: ref_5
  article-title: Bark properties and fire resistance of selected tree species from the central hardwood region of North America
  publication-title: Can. J. For. Res.
  doi: 10.1139/x94-092
– volume: 211
  start-page: 90
  year: 2016
  ident: ref_33
  article-title: Bark thickness across the angiosperms: More than just fire
  publication-title: New Phytol.
  doi: 10.1111/nph.13889
– volume: 30
  start-page: 166
  year: 1984
  ident: ref_3
  article-title: A general taper functional form to predict bole volume for five mixed-conifer species in California
  publication-title: For. Sci.
– ident: ref_27
– volume: 74
  start-page: 16
  year: 2017
  ident: ref_14
  article-title: Comparison of models for estimating bark thickness of Picea abies in southwest Germany: The role of tree, stand, and environmental factors
  publication-title: Ann. For. Sci.
  doi: 10.1007/s13595-016-0601-2
– volume: 4
  start-page: 12
  year: 1995
  ident: ref_23
  article-title: Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.1995.10474663
– ident: ref_28
  doi: 10.1201/9781482293272
– volume: 49
  start-page: 12
  year: 2003
  ident: ref_13
  article-title: National scale biomass estimators for United States tree species
  publication-title: For. Sci.
– volume: 24
  start-page: 1202
  year: 2010
  ident: ref_36
  article-title: Functional explanations for variation in bark thickness in tropical rain forest trees
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2010.01736.x
– volume: 60
  start-page: 16
  year: 2004
  ident: ref_11
  article-title: Multivariate Multilevel Nonlinear Mixed Effects Models for Timber Yield Predictions
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00163.x
– ident: ref_38
– ident: ref_17
– ident: ref_20
  doi: 10.1007/978-1-4612-2294-1
– ident: ref_19
– volume: 13
  start-page: 340
  year: 1983
  ident: ref_34
  article-title: Estimating bark thickness of Pinus radiata
  publication-title: N. Z. J. For. Sci.
– ident: ref_22
– ident: ref_29
  doi: 10.1186/1471-2210-10-6
– volume: 78
  start-page: 104
  year: 2021
  ident: ref_12
  article-title: Modelling bark volume for six commercially important tree species in France: Assessment of models and application at regional scale
  publication-title: Ann. For. Sci.
  doi: 10.1007/s13595-021-01096-7
– ident: ref_24
  doi: 10.1002/9780470316757
– volume: 154
  start-page: 261
  year: 2001
  ident: ref_10
  article-title: Stochastic structure and individual-tree growth models
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(00)00632-0
– volume: 163
  start-page: 564
  year: 2019
  ident: ref_6
  article-title: Modeling of the tree and stand parameters using mixed-effects models
  publication-title: Sylwan
– volume: 6
  start-page: 461
  year: 1978
  ident: ref_26
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
SSID ssj0000578924
Score 2.3483956
Snippet Broader use of multioperational machines in forestry requires efficient methods for determining various timber parameters. Here, we present a novel approach to...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1160
SubjectTerms Analysis
Bark
Diameters
Methods
Regression analysis
Regression models
Root-mean-square errors
Software
Stems
Thickness
Timber
Trees
Variables
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD7UFao-2NYqbrUytIU-xc1lbvsk6UWk0KUUF-xTOjOZ0WUlu6xZRZ_6I_yF_SU9k8zaIghCXwKBhEk4c875vpkz3wF4Z5lKmDM6YtLJiBqbRNqUKnKI5hIEACZtRH2-DvjRkH45YSehz-lFKKtEKj5qgnRzRJ4ifeslvIeXhMe9aekOLsNSEqY-zNh-J2kJljlDMN6B5eHgW_6j2UsOL7d6QhmS-55r5NSSRo_ybxa6H4vXYGVeTdX1lTo__yfZHD6Dn4vPbGtMxvvzWu-bm3sKjv_xH89hPQBRkrcz5wU8sdUGPPWdOn37t5cwHEyqCJkqegL5bk_bctmK-HVbvJ9iCLcl-aRq9fvXbU4wVpI8yJOTekI-qNmYHJ-NzNiHUuI7rjXi35swPPx8_PEoCj0YIoNAoI6UNBZBDxeaWZpJ03cSXVyXus-ZVk7ErhSOGsljLWTimEq1FkogyRIm5pZlW9CpJpXdBqIN7RtkM6kRlArB-kaV2iFhUZKlVMVdeLOwSTFtpTYKpCjecMWd4brw3lur8O5Xz5RR4RQBDuGFrIpcskbyJ2Vd2F0YtAh-eVFkaZZhjE542oW3d0Z-eLhXj3pqB1ZT3xbY623SXejUs7l9jVil1nthPv4BNGTi9A
  priority: 102
  providerName: Unpaywall
Title Non-Linear Regression with Repeated Data—A New Approach to Bark Thickness Modelling
URI https://www.proquest.com/docview/3233219162
https://www.mdpi.com/1999-4907/16/7/1160/pdf?version=1752566842
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1daxQxFL20W9D6UPzE1VqCCj6F7mSSSfZBylS3FKFDKV2oT8NNJqnSMrtdp4gv4o_wF_aX9GZ2ZiuCPuYlgXtzP86dzDkAb73CRAVnuTLBcOl8wq2rkAfq5hJqAJxoSX2OiuxwKj-dqbM1KPp_YeKzyj4ntom6mrk4I99NRZpSdCWZ2Jtf8agaFb-u9hIa2EkrVO9birF12BCRGWsAG_uT4vhkNXWh7sQQ4lhSDKWE93dDy7CWtBSVd4Xp7_T8AO5f13P88R0vL_-oPwcPYatrHFm-9PQjWPP1Y7gXlTWjXNsTmBazmhOypJvLTvz58nlrzeKcldZzSrm-Yh-xwZtfv3NGuY3lHZ04a2ZsHxcX7PTLV3cRUx-LCmktWfdTmB5MTj8c8k4zgTsq3A1H4zw1KZm2ysvUuHEwFJK2suNMWQx6FCodpDPZyGqTBIXCWo2aQJF2o8yr9BkM6lntnwOzTo4doQ_htJRaq7HDygYCGGiUkDgawuveYOV8SY1REqSIVi1XVh3Cu2jKMoZLs0CH3at_OiIST5W5US1Fj1BD2O6tXXZx9K288_oQ3qw88O_jXvx_k5ewKaJ-byTGlNswaBbX_hU1FY3d6W7KDqwf_ZzQaloc559vAYBXzv4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFL1CIJV2UdGXGAqt1Ye6skgcO3YWCA0FNBQYVWhGYpfajg0VKDMMQYhdP6Lfw8fwJVxnkqGq1O5YZmNLx9f33uPY5wB8ckLHwltDhfKKcutiamyhqcduLsYGwLJa1Oewn_aG_NuxOJ6D2_YtTLhW2ebEOlEXIxvOyNcTliS4u-KUbY4vaHCNCn9XWwsN3VgrFBu1xFjzsGPf3Vwjhbvc2NvG9f7M2O7O4GuPNi4D1GKpq6hW1mFZT6URjifKZl5hEJvCZKkw2svIF9Jzq9LISBV7oZkxUkukEdJGqQuuEVgCFnjCMyR_C1s7_e9Hs1Me7IYUMpyppFGSZNG6rxXd4loS86EQ_l0OnsHiVTnWN9f6_PyPere7BM-bRpV0p5H1AuZc-RKeBCfPYA_3Cob9UUmRySIE5MidTK_TliSc6-L3GFO8K8i2rvTdr99dgrmUdBv5clKNyJaenJHB6U97FlItCY5stTj4axg-CnpvYL4clW4ZiLE8s8h2mJWcSykyqwvjkdBoJRjXUQc-tIDl46kUR44UJqCaz1DtwJcAZR62ZzXRVjevDHCKIHSVd5WoJYGY6MBqi3be7NvL_CHKOvBxtgL_nm7l_4O8h8Xe4PAgP9jr77-Fpyx4BwdRTr4K89Xkyq1hQ1OZd03UEPjx2IF6D4SgCZI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL2qWqnAAvEUUwpYPMTKmsSxY2dRoSnTUUthVFUdqbtgOzZUrTLDNFXVHR_BV_EZfAnXGWeKkGDXZTaxdHx97z1-nAPw2gmdCm8NFcoryq1LqbGVph67uRQbAMtaUZ9P43x3wj8ci-MV-Nm9hQnXKruc2CbqamrDHnk_Y1mGqyvNWd_HaxEHw9G72TcaHKTCSWtnp6GjzUK11cqNxUce--7qEunc-dbeEOf-DWOjnaP3uzQ6DlCLZa-hWlmHJT6XRjieKVt4hQFtKlPkwmgvE19Jz63KEyNV6oVmxkgtkVJIm-QuOEhgOVgLh1-YJNa2d8YHh8sdH-yMFLKdhbxRlhVJ37fqbmkrj3ldFP8uDXfg1kU901eX-uzsj9o3ugd3Y9NKBosouw8rrn4A68HVM1jFPYTJeFpTZLUIATl0XxZXa2sS9njxe4bp3lVkqBv96_uPAcG8SgZRypw0U7Kt56fk6OuJPQ1plwR3tlYo_BFMbgS9x7BaT2v3BIixvLDIfJiVnEspCqsr45HcaCUY10kPXnaAlbOFLEeJdCagWi5R7cHbAGUZlmoz11bHFwc4RBC9KgdKtPJATPRgs0O7jGv4vLyOuB68Ws7Av4fb-P9PXsA6Bmz5cW-8_xRus2AjHPQ5-SasNvML9wx7m8Y8j0FD4PNNx-lvjh8NwQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD7UFao-2NYqbrUytIU-xc1lbvsk6UWk0KUUF-xTOjOZ0WUlu6xZRZ_6I_yF_SU9k8zaIghCXwKBhEk4c875vpkz3wF4Z5lKmDM6YtLJiBqbRNqUKnKI5hIEACZtRH2-DvjRkH45YSehz-lFKKtEKj5qgnRzRJ4ifeslvIeXhMe9aekOLsNSEqY-zNh-J2kJljlDMN6B5eHgW_6j2UsOL7d6QhmS-55r5NSSRo_ybxa6H4vXYGVeTdX1lTo__yfZHD6Dn4vPbGtMxvvzWu-bm3sKjv_xH89hPQBRkrcz5wU8sdUGPPWdOn37t5cwHEyqCJkqegL5bk_bctmK-HVbvJ9iCLcl-aRq9fvXbU4wVpI8yJOTekI-qNmYHJ-NzNiHUuI7rjXi35swPPx8_PEoCj0YIoNAoI6UNBZBDxeaWZpJ03cSXVyXus-ZVk7ErhSOGsljLWTimEq1FkogyRIm5pZlW9CpJpXdBqIN7RtkM6kRlArB-kaV2iFhUZKlVMVdeLOwSTFtpTYKpCjecMWd4brw3lur8O5Xz5RR4RQBDuGFrIpcskbyJ2Vd2F0YtAh-eVFkaZZhjE542oW3d0Z-eLhXj3pqB1ZT3xbY623SXejUs7l9jVil1nthPv4BNGTi9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Linear+Regression+with+Repeated+Data%E2%80%94A+New+Approach+to+Bark+Thickness+Modelling&rft.jtitle=Forests&rft.au=Ukalski+Krzysztof&rft.au=Bijak+Szymon&rft.date=2025-07-14&rft.pub=MDPI+AG&rft.eissn=1999-4907&rft.volume=16&rft.issue=7&rft.spage=1160&rft_id=info:doi/10.3390%2Ff16071160&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon