Non-Linear Regression with Repeated Data—A New Approach to Bark Thickness Modelling
Broader use of multioperational machines in forestry requires efficient methods for determining various timber parameters. Here, we present a novel approach to model the bark thickness (BT) as a function of stem diameter. Stem diameter (D) is any diameter measured along the bole, not a specific one....
Saved in:
| Published in | Forests Vol. 16; no. 7; p. 1160 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
14.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1999-4907 1999-4907 |
| DOI | 10.3390/f16071160 |
Cover
| Abstract | Broader use of multioperational machines in forestry requires efficient methods for determining various timber parameters. Here, we present a novel approach to model the bark thickness (BT) as a function of stem diameter. Stem diameter (D) is any diameter measured along the bole, not a specific one. The following four regression models were tested: marginal model (MM; reference), classical nonlinear regression with independent residuals (M1), nonlinear regression with residuals correlated within a single tree (M2), and nonlinear regression with the correlation of residuals and random components, taking into account random changes between the trees (M3). Empirical data consisted of larch (Larix sp. Mill.) BT measurements carried out at two sites in northern Poland. Relative root square mean error (RMSE%) and adjusted R-squared (R2adj) served to compare the fitted models. Model fit was tested for each tree separately, and all trees were combined. Of the analysed models, M3 turned out to be the best fit for both the individual tree and all tree levels. The fit of the regression function M3 for SITE1 (50-year-old, pure stand located in northern Poland) was 87.44% (R2adj), and for SITE2 (63-year-old, pure stand situated in the north of Poland) it was 80.6%. Taking into account the values of RMSE%, at the individual tree level the M3 model fit at location SITE1 was closest to the MM, while at SITE2 it was better than the MM. For the most comprehensive regression model, M3, it was checked how the error of the bark thickness estimate varied with stem diameter at different heights (from the base of the trees to the top). In general, the model’s accuracy increased with greater tree height. |
|---|---|
| AbstractList | Broader use of multioperational machines in forestry requires efficient methods for determining various timber parameters. Here, we present a novel approach to model the bark thickness (BT) as a function of stem diameter. Stem diameter (D) is any diameter measured along the bole, not a specific one. The following four regression models were tested: marginal model (MM; reference), classical nonlinear regression with independent residuals (M1), nonlinear regression with residuals correlated within a single tree (M2), and nonlinear regression with the correlation of residuals and random components, taking into account random changes between the trees (M3). Empirical data consisted of larch (Larix sp. Mill.) BT measurements carried out at two sites in northern Poland. Relative root square mean error (RMSE%) and adjusted R-squared (R2adj) served to compare the fitted models. Model fit was tested for each tree separately, and all trees were combined. Of the analysed models, M3 turned out to be the best fit for both the individual tree and all tree levels. The fit of the regression function M3 for SITE1 (50-year-old, pure stand located in northern Poland) was 87.44% (R2adj), and for SITE2 (63-year-old, pure stand situated in the north of Poland) it was 80.6%. Taking into account the values of RMSE%, at the individual tree level the M3 model fit at location SITE1 was closest to the MM, while at SITE2 it was better than the MM. For the most comprehensive regression model, M3, it was checked how the error of the bark thickness estimate varied with stem diameter at different heights (from the base of the trees to the top). In general, the model’s accuracy increased with greater tree height. |
| Audience | Academic |
| Author | Ukalski, Krzysztof Bijak, Szymon |
| Author_xml | – sequence: 1 givenname: Krzysztof orcidid: 0000-0003-1415-6316 surname: Ukalski fullname: Ukalski, Krzysztof – sequence: 2 givenname: Szymon orcidid: 0000-0001-5298-6105 surname: Bijak fullname: Bijak, Szymon |
| BookMark | eNp9UMtKAzEUDaJgrV34BwFXClOTeeSxrPUJtYK06yGTSdq002TMTCnd-RF-oV9iyoi48l64L865HM4ZOLbOKgAuMBomCUc3GhNEcShHoIc551HKET3-M5-CQdOsUIiMMh6nPTCfOhtNjFXCwze18KppjLNwZ9pl2GslWlXCO9GKr4_PEZyqHRzVtXdCLmHr4K3wazhbGrm2gQhfXKmqytjFOTjRomrU4Kf3wfzhfjZ-iiavj8_j0SSSMU_aSDCpCM4ILTKVJkxyzSijRVlwkhVCU6RLqlPJCCoowzoTcVFQQXHKqEREZUkfXHd_t7YW-52oqrz2ZiP8PscoP3iS_3oSwJcdOOh_36qmzVdu623QlydxksSYYxIH1LBDLUSlcmO1a72QIUu1MTL4rU24j1iGEOYkPmi46gjSu6bxSv8j4RvixH6w |
| Cites_doi | 10.1016/0304-3800(93)90105-2 10.2307/2532896 10.1111/jvs.12171 10.1080/00049158.2000.10674811 10.1139/x88-199 10.2307/2532087 10.1093/forestry/cpx047 10.1007/978-1-4419-0318-1 10.3390/plants11091148 10.1186/1471-2105-7-123 10.1139/x94-092 10.1111/nph.13889 10.1007/s13595-016-0601-2 10.1080/10618600.1995.10474663 10.1201/9781482293272 10.1111/j.1365-2435.2010.01736.x 10.1111/j.0006-341X.2004.00163.x 10.1007/978-1-4612-2294-1 10.1186/1471-2210-10-6 10.1007/s13595-021-01096-7 10.1002/9780470316757 10.1016/S0378-1127(00)00632-0 10.1214/aos/1176344136 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SN 7SS 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ M0K PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY ADTOC UNPAY |
| DOI | 10.3390/f16071160 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Agricultural Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Forestry |
| EISSN | 1999-4907 |
| ExternalDocumentID | 10.3390/f16071160 A850019625 10_3390_f16071160 |
| GeographicLocations | New York United States |
| GeographicLocations_xml | – name: New York – name: United States |
| GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AENEX AEUYN AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS BCNDV BENPR BHPHI BKSAR CCPQU CITATION ECGQY EDH HCIFZ IAG IAO IEP ITC ITG ITH KQ8 LK5 M0K M7R MODMG M~E OK1 OZF PATMY PCBAR PHGZM PHGZT PIMPY PROAC PYCSY TR2 3V. 7SN 7SS 8FK ABUWG AZQEC C1K DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c293t-a8ce61567b5e438c9f8787bdb965baf70fd7f4c860b781f5a2bb7a71487c06e53 |
| IEDL.DBID | BENPR |
| ISSN | 1999-4907 |
| IngestDate | Tue Aug 19 23:21:44 EDT 2025 Fri Jul 25 19:11:26 EDT 2025 Tue Aug 05 03:51:19 EDT 2025 Thu Oct 16 04:35:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-a8ce61567b5e438c9f8787bdb965baf70fd7f4c860b781f5a2bb7a71487c06e53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5298-6105 0000-0003-1415-6316 |
| OpenAccessLink | https://www.proquest.com/docview/3233219162?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3233219162 |
| PQPubID | 2032398 |
| ParticipantIDs | unpaywall_primary_10_3390_f16071160 proquest_journals_3233219162 gale_infotracacademiconefile_A850019625 crossref_primary_10_3390_f16071160 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-14 |
| PublicationDateYYYYMMDD | 2025-07-14 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Forests |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Schwarz (ref_26) 1978; 6 Bronisz (ref_6) 2019; 163 Sauter (ref_14) 2017; 74 Vonesh (ref_31) 1996; 52 Dormann (ref_15) 2018; 91 Wolfinger (ref_43) 1997; 16 ref_32 Bauer (ref_12) 2021; 78 ref_19 ref_18 ref_17 ref_39 ref_38 Bronisz (ref_7) 2019; 163 Hengst (ref_5) 1994; 24 Pinheiro (ref_23) 1995; 4 Charles (ref_35) 2000; 63 Hempson (ref_37) 2014; 25 Mayer (ref_30) 1993; 68 Hall (ref_11) 2004; 60 Gordon (ref_34) 1983; 13 ref_25 ref_24 Paine (ref_36) 2010; 24 ref_22 ref_21 Biging (ref_2) 1984; 30 Ryan (ref_4) 1988; 18 ref_20 ref_42 ref_40 ref_1 Fox (ref_10) 2001; 154 Jenkins (ref_13) 2003; 49 ref_29 Lindstrom (ref_41) 1990; 46 ref_28 ref_27 Tyburski (ref_16) 2024; 66 Amidon (ref_3) 1984; 30 ref_9 ref_8 Rosell (ref_33) 2016; 211 |
| References_xml | – ident: ref_9 – volume: 68 start-page: 21 year: 1993 ident: ref_30 article-title: Statistical validation publication-title: Ecol. Modell. doi: 10.1016/0304-3800(93)90105-2 – volume: 66 start-page: 215 year: 2024 ident: ref_16 article-title: Long-term analysis of sap flow conditions in the trunk of Scots pine (Pinus sylvestris L.) in the old-growth phase in relation to air temperature publication-title: Folia For. Pol. Ser. A-For. – volume: 52 start-page: 572 year: 1996 ident: ref_31 article-title: Goodness-of-Fit in Generalized Nonlinear Mixed-Effects Models publication-title: Biometrics doi: 10.2307/2532896 – volume: 16 start-page: 1258 year: 1997 ident: ref_43 article-title: Comment: Experience with the SAS macro NLINMIX publication-title: Stat. Med. – volume: 25 start-page: 1247 year: 2014 ident: ref_37 article-title: Comparing bark thickness: Testing methods with bark–stem data from two South African fire-prone biomes publication-title: J. Veg. Sci. doi: 10.1111/jvs.12171 – volume: 63 start-page: 34 year: 2000 ident: ref_35 article-title: Bark thickness equations for five commercial tree species in regrowth forests of Northern New South Wales publication-title: Aust. For. doi: 10.1080/00049158.2000.10674811 – ident: ref_39 – ident: ref_40 – volume: 18 start-page: 1291 year: 1988 ident: ref_4 article-title: Predicting postfire mortality of seven western conifers publication-title: Can. J. For. Res. doi: 10.1139/x88-199 – ident: ref_18 – volume: 30 start-page: 1103 year: 1984 ident: ref_2 article-title: Taper equations for second-growth mixed conifers of Northern California publication-title: For. Sci. – volume: 46 start-page: 673 year: 1990 ident: ref_41 article-title: Nonlinear mixed effects models for repeated measures data publication-title: Biometrics doi: 10.2307/2532087 – ident: ref_21 – volume: 163 start-page: 469 year: 2019 ident: ref_7 article-title: Modelling the bark thickness along the trunk with taper models publication-title: Sylwan – volume: 91 start-page: 283 year: 2018 ident: ref_15 article-title: Modelling the variation of bark thickness within and between European silver fir (Abies alba Mill.) trees in Southwest Germany publication-title: Forestry doi: 10.1093/forestry/cpx047 – ident: ref_42 doi: 10.1007/978-1-4419-0318-1 – ident: ref_8 – ident: ref_1 doi: 10.3390/plants11091148 – ident: ref_25 – ident: ref_32 doi: 10.1186/1471-2105-7-123 – volume: 24 start-page: 688 year: 1994 ident: ref_5 article-title: Bark properties and fire resistance of selected tree species from the central hardwood region of North America publication-title: Can. J. For. Res. doi: 10.1139/x94-092 – volume: 211 start-page: 90 year: 2016 ident: ref_33 article-title: Bark thickness across the angiosperms: More than just fire publication-title: New Phytol. doi: 10.1111/nph.13889 – volume: 30 start-page: 166 year: 1984 ident: ref_3 article-title: A general taper functional form to predict bole volume for five mixed-conifer species in California publication-title: For. Sci. – ident: ref_27 – volume: 74 start-page: 16 year: 2017 ident: ref_14 article-title: Comparison of models for estimating bark thickness of Picea abies in southwest Germany: The role of tree, stand, and environmental factors publication-title: Ann. For. Sci. doi: 10.1007/s13595-016-0601-2 – volume: 4 start-page: 12 year: 1995 ident: ref_23 article-title: Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.1995.10474663 – ident: ref_28 doi: 10.1201/9781482293272 – volume: 49 start-page: 12 year: 2003 ident: ref_13 article-title: National scale biomass estimators for United States tree species publication-title: For. Sci. – volume: 24 start-page: 1202 year: 2010 ident: ref_36 article-title: Functional explanations for variation in bark thickness in tropical rain forest trees publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2010.01736.x – volume: 60 start-page: 16 year: 2004 ident: ref_11 article-title: Multivariate Multilevel Nonlinear Mixed Effects Models for Timber Yield Predictions publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00163.x – ident: ref_38 – ident: ref_17 – ident: ref_20 doi: 10.1007/978-1-4612-2294-1 – ident: ref_19 – volume: 13 start-page: 340 year: 1983 ident: ref_34 article-title: Estimating bark thickness of Pinus radiata publication-title: N. Z. J. For. Sci. – ident: ref_22 – ident: ref_29 doi: 10.1186/1471-2210-10-6 – volume: 78 start-page: 104 year: 2021 ident: ref_12 article-title: Modelling bark volume for six commercially important tree species in France: Assessment of models and application at regional scale publication-title: Ann. For. Sci. doi: 10.1007/s13595-021-01096-7 – ident: ref_24 doi: 10.1002/9780470316757 – volume: 154 start-page: 261 year: 2001 ident: ref_10 article-title: Stochastic structure and individual-tree growth models publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(00)00632-0 – volume: 163 start-page: 564 year: 2019 ident: ref_6 article-title: Modeling of the tree and stand parameters using mixed-effects models publication-title: Sylwan – volume: 6 start-page: 461 year: 1978 ident: ref_26 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 |
| SSID | ssj0000578924 |
| Score | 2.3483956 |
| Snippet | Broader use of multioperational machines in forestry requires efficient methods for determining various timber parameters. Here, we present a novel approach to... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 1160 |
| SubjectTerms | Analysis Bark Diameters Methods Regression analysis Regression models Root-mean-square errors Software Stems Thickness Timber Trees Variables |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD7UFao-2NYqbrUytIU-xc1lbvsk6UWk0KUUF-xTOjOZ0WUlu6xZRZ_6I_yF_SU9k8zaIghCXwKBhEk4c875vpkz3wF4Z5lKmDM6YtLJiBqbRNqUKnKI5hIEACZtRH2-DvjRkH45YSehz-lFKKtEKj5qgnRzRJ4ifeslvIeXhMe9aekOLsNSEqY-zNh-J2kJljlDMN6B5eHgW_6j2UsOL7d6QhmS-55r5NSSRo_ybxa6H4vXYGVeTdX1lTo__yfZHD6Dn4vPbGtMxvvzWu-bm3sKjv_xH89hPQBRkrcz5wU8sdUGPPWdOn37t5cwHEyqCJkqegL5bk_bctmK-HVbvJ9iCLcl-aRq9fvXbU4wVpI8yJOTekI-qNmYHJ-NzNiHUuI7rjXi35swPPx8_PEoCj0YIoNAoI6UNBZBDxeaWZpJ03cSXVyXus-ZVk7ErhSOGsljLWTimEq1FkogyRIm5pZlW9CpJpXdBqIN7RtkM6kRlArB-kaV2iFhUZKlVMVdeLOwSTFtpTYKpCjecMWd4brw3lur8O5Xz5RR4RQBDuGFrIpcskbyJ2Vd2F0YtAh-eVFkaZZhjE542oW3d0Z-eLhXj3pqB1ZT3xbY623SXejUs7l9jVil1nthPv4BNGTi9A priority: 102 providerName: Unpaywall |
| Title | Non-Linear Regression with Repeated Data—A New Approach to Bark Thickness Modelling |
| URI | https://www.proquest.com/docview/3233219162 https://www.mdpi.com/1999-4907/16/7/1160/pdf?version=1752566842 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4907 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1daxQxFL20W9D6UPzE1VqCCj6F7mSSSfZBylS3FKFDKV2oT8NNJqnSMrtdp4gv4o_wF_aX9GZ2ZiuCPuYlgXtzP86dzDkAb73CRAVnuTLBcOl8wq2rkAfq5hJqAJxoSX2OiuxwKj-dqbM1KPp_YeKzyj4ntom6mrk4I99NRZpSdCWZ2Jtf8agaFb-u9hIa2EkrVO9birF12BCRGWsAG_uT4vhkNXWh7sQQ4lhSDKWE93dDy7CWtBSVd4Xp7_T8AO5f13P88R0vL_-oPwcPYatrHFm-9PQjWPP1Y7gXlTWjXNsTmBazmhOypJvLTvz58nlrzeKcldZzSrm-Yh-xwZtfv3NGuY3lHZ04a2ZsHxcX7PTLV3cRUx-LCmktWfdTmB5MTj8c8k4zgTsq3A1H4zw1KZm2ysvUuHEwFJK2suNMWQx6FCodpDPZyGqTBIXCWo2aQJF2o8yr9BkM6lntnwOzTo4doQ_htJRaq7HDygYCGGiUkDgawuveYOV8SY1REqSIVi1XVh3Cu2jKMoZLs0CH3at_OiIST5W5US1Fj1BD2O6tXXZx9K288_oQ3qw88O_jXvx_k5ewKaJ-byTGlNswaBbX_hU1FY3d6W7KDqwf_ZzQaloc559vAYBXzv4 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTtwwFL1CIJV2UdGXGAqt1Ye6skgcO3YWCA0FNBQYVWhGYpfajg0VKDMMQYhdP6Lfw8fwJVxnkqGq1O5YZmNLx9f33uPY5wB8ckLHwltDhfKKcutiamyhqcduLsYGwLJa1Oewn_aG_NuxOJ6D2_YtTLhW2ebEOlEXIxvOyNcTliS4u-KUbY4vaHCNCn9XWwsN3VgrFBu1xFjzsGPf3Vwjhbvc2NvG9f7M2O7O4GuPNi4D1GKpq6hW1mFZT6URjifKZl5hEJvCZKkw2svIF9Jzq9LISBV7oZkxUkukEdJGqQuuEVgCFnjCMyR_C1s7_e9Hs1Me7IYUMpyppFGSZNG6rxXd4loS86EQ_l0OnsHiVTnWN9f6_PyPere7BM-bRpV0p5H1AuZc-RKeBCfPYA_3Cob9UUmRySIE5MidTK_TliSc6-L3GFO8K8i2rvTdr99dgrmUdBv5clKNyJaenJHB6U97FlItCY5stTj4axg-CnpvYL4clW4ZiLE8s8h2mJWcSykyqwvjkdBoJRjXUQc-tIDl46kUR44UJqCaz1DtwJcAZR62ZzXRVjevDHCKIHSVd5WoJYGY6MBqi3be7NvL_CHKOvBxtgL_nm7l_4O8h8Xe4PAgP9jr77-Fpyx4BwdRTr4K89Xkyq1hQ1OZd03UEPjx2IF6D4SgCZI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL2qWqnAAvEUUwpYPMTKmsSxY2dRoSnTUUthVFUdqbtgOzZUrTLDNFXVHR_BV_EZfAnXGWeKkGDXZTaxdHx97z1-nAPw2gmdCm8NFcoryq1LqbGVph67uRQbAMtaUZ9P43x3wj8ci-MV-Nm9hQnXKruc2CbqamrDHnk_Y1mGqyvNWd_HaxEHw9G72TcaHKTCSWtnp6GjzUK11cqNxUce--7qEunc-dbeEOf-DWOjnaP3uzQ6DlCLZa-hWlmHJT6XRjieKVt4hQFtKlPkwmgvE19Jz63KEyNV6oVmxkgtkVJIm-QuOEhgOVgLh1-YJNa2d8YHh8sdH-yMFLKdhbxRlhVJ37fqbmkrj3ldFP8uDXfg1kU901eX-uzsj9o3ugd3Y9NKBosouw8rrn4A68HVM1jFPYTJeFpTZLUIATl0XxZXa2sS9njxe4bp3lVkqBv96_uPAcG8SgZRypw0U7Kt56fk6OuJPQ1plwR3tlYo_BFMbgS9x7BaT2v3BIixvLDIfJiVnEspCqsr45HcaCUY10kPXnaAlbOFLEeJdCagWi5R7cHbAGUZlmoz11bHFwc4RBC9KgdKtPJATPRgs0O7jGv4vLyOuB68Ws7Av4fb-P9PXsA6Bmz5cW-8_xRus2AjHPQ5-SasNvML9wx7m8Y8j0FD4PNNx-lvjh8NwQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD7UFao-2NYqbrUytIU-xc1lbvsk6UWk0KUUF-xTOjOZ0WUlu6xZRZ_6I_yF_SU9k8zaIghCXwKBhEk4c875vpkz3wF4Z5lKmDM6YtLJiBqbRNqUKnKI5hIEACZtRH2-DvjRkH45YSehz-lFKKtEKj5qgnRzRJ4ifeslvIeXhMe9aekOLsNSEqY-zNh-J2kJljlDMN6B5eHgW_6j2UsOL7d6QhmS-55r5NSSRo_ybxa6H4vXYGVeTdX1lTo__yfZHD6Dn4vPbGtMxvvzWu-bm3sKjv_xH89hPQBRkrcz5wU8sdUGPPWdOn37t5cwHEyqCJkqegL5bk_bctmK-HVbvJ9iCLcl-aRq9fvXbU4wVpI8yJOTekI-qNmYHJ-NzNiHUuI7rjXi35swPPx8_PEoCj0YIoNAoI6UNBZBDxeaWZpJ03cSXVyXus-ZVk7ErhSOGsljLWTimEq1FkogyRIm5pZlW9CpJpXdBqIN7RtkM6kRlArB-kaV2iFhUZKlVMVdeLOwSTFtpTYKpCjecMWd4brw3lur8O5Xz5RR4RQBDuGFrIpcskbyJ2Vd2F0YtAh-eVFkaZZhjE542oW3d0Z-eLhXj3pqB1ZT3xbY623SXejUs7l9jVil1nthPv4BNGTi9A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Linear+Regression+with+Repeated+Data%E2%80%94A+New+Approach+to+Bark+Thickness+Modelling&rft.jtitle=Forests&rft.au=Ukalski+Krzysztof&rft.au=Bijak+Szymon&rft.date=2025-07-14&rft.pub=MDPI+AG&rft.eissn=1999-4907&rft.volume=16&rft.issue=7&rft.spage=1160&rft_id=info:doi/10.3390%2Ff16071160&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon |