A Wearable Sensor for Arterial Stiffness Monitoring Based on Machine Learning Algorithms

Arterial stiffness is strongly associated with cardiovascular events. Existing devices for evaluating arterial stiffness based on ultrasound or pulse wave velocity suffer a lot from complexity and inconvenience in home-care settings. This paper proposed a wearable sensor for arterial stiffness monit...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 19; no. 4; pp. 1426 - 1434
Main Authors Miao, Fen, Wang, Xurong, Yin, Liyan, Li, Ye
Format Journal Article
LanguageEnglish
Published New York IEEE 15.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2018.2880434

Cover

Abstract Arterial stiffness is strongly associated with cardiovascular events. Existing devices for evaluating arterial stiffness based on ultrasound or pulse wave velocity suffer a lot from complexity and inconvenience in home-care settings. This paper proposed a wearable sensor for arterial stiffness monitoring via machine learning techniques. The proposed sensor is comprised of one electrocardiogram (ECG) and one photoplethysmogram (PPG) module. The ECG and PPG signals were first simultaneously collected by the wearable sensor, and 21 features were extracted from two signals for arterial stiffness evaluation. A genetic algorithm-based feature selection method was then used to select the important indicators. Multivariate linear regression (MLR), decision tree, and back propagation (BP) neural network were employed to develop the model. Vascular age and 10-year cardiovascular disease risk from OMRON arteriosclerosis instrument were deemed as the gold standard to evaluate arterial stiffness. Experimental results based on 501 diverse subjects showed that the MLR approach exhibited the best accuracy in vascular age estimation (correlation coefficient, 0.89; mean of the residual, 0.2136; and standard deviation of the residual, 6.2432). While the BP neural networks-based approach was best in cardiovascular disease risk estimation (correlation coefficient, 0.9488; mean of the residual, - 0.3579%; and standard deviation of the residual, 3.7131%). The results indicate that the proposed learning-based sensor has great potential in arterial stiffness monitoring in home-care settings.
AbstractList Arterial stiffness is strongly associated with cardiovascular events. Existing devices for evaluating arterial stiffness based on ultrasound or pulse wave velocity suffer a lot from complexity and inconvenience in home-care settings. This paper proposed a wearable sensor for arterial stiffness monitoring via machine learning techniques. The proposed sensor is comprised of one electrocardiogram (ECG) and one photoplethysmogram (PPG) module. The ECG and PPG signals were first simultaneously collected by the wearable sensor, and 21 features were extracted from two signals for arterial stiffness evaluation. A genetic algorithm-based feature selection method was then used to select the important indicators. Multivariate linear regression (MLR), decision tree, and back propagation (BP) neural network were employed to develop the model. Vascular age and 10-year cardiovascular disease risk from OMRON arteriosclerosis instrument were deemed as the gold standard to evaluate arterial stiffness. Experimental results based on 501 diverse subjects showed that the MLR approach exhibited the best accuracy in vascular age estimation (correlation coefficient, 0.89; mean of the residual, 0.2136; and standard deviation of the residual, 6.2432). While the BP neural networks-based approach was best in cardiovascular disease risk estimation (correlation coefficient, 0.9488; mean of the residual, - 0.3579%; and standard deviation of the residual, 3.7131%). The results indicate that the proposed learning-based sensor has great potential in arterial stiffness monitoring in home-care settings.
Author Wang, Xurong
Li, Ye
Miao, Fen
Yin, Liyan
Author_xml – sequence: 1
  givenname: Fen
  orcidid: 0000-0003-3054-807X
  surname: Miao
  fullname: Miao, Fen
  organization: Key Laboratory for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 2
  givenname: Xurong
  surname: Wang
  fullname: Wang, Xurong
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 3
  givenname: Liyan
  orcidid: 0000-0003-0807-0356
  surname: Yin
  fullname: Yin, Liyan
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 4
  givenname: Ye
  orcidid: 0000-0002-5351-8546
  surname: Li
  fullname: Li, Ye
  email: ye.li@siat.ac.cn
  organization: Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
BookMark eNp9kE1LAzEQhoNU0FZ_gHgJeN6aj02TPVapX7R6qKK3JbuZaGSbaJIe_PfuUvHgwcMwA_M8M_CO0cgHDwidUDKllFTnd-vF_ZQRqqZMKVLycg8dUiFUQWWpRsPMSVFy-XKAxim9E0IrKeQhepnjZ9BRNx3gNfgUIrZ9zWOG6HSH19lZ6yElvAre5RCdf8UXOoHBweOVbt-cB7zsT_hhM-9eeyS_bdIR2re6S3D80yfo6WrxeHlTLB-uby_ny6JlFc-FZpUtOStnxDTUKGOFIgJYY1QjrK2YmhHBZsIY0GYGnJaskkaJSjekaoSwfILOdnc_YvjcQsr1e9hG37-sGZVEEloS1lNyR7UxpBTB1q3LOrvgc9SuqymphxjrIcZ6iLH-ibE36R_zI7qNjl__Oqc7xwHAL68Ep5Jz_g2qkH-N
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_RBME_2021_3092208
crossref_primary_10_1007_s12652_020_02706_4
crossref_primary_10_1145_3670854
crossref_primary_10_1016_j_bspc_2022_103781
crossref_primary_10_3390_biomimetics8020207
crossref_primary_10_32604_cmc_2021_015984
crossref_primary_10_1016_j_bspc_2019_101747
crossref_primary_10_1002_anse_202200062
crossref_primary_10_3390_bioengineering11090952
crossref_primary_10_3390_mi12050569
crossref_primary_10_1038_s41597_023_02762_3
crossref_primary_10_3390_s20072073
crossref_primary_10_1007_s13721_021_00290_x
crossref_primary_10_1016_j_compbiomed_2024_108235
crossref_primary_10_1016_j_measurement_2025_117028
crossref_primary_10_3390_healthcare11162240
crossref_primary_10_3390_s19163491
crossref_primary_10_1109_JSEN_2020_3030030
crossref_primary_10_1016_j_cmpb_2022_106842
crossref_primary_10_1039_D0MA00573H
crossref_primary_10_1109_JSEN_2022_3211981
crossref_primary_10_1097_CM9_0000000000002117
crossref_primary_10_3390_s23125606
crossref_primary_10_1002_adsr_202300118
crossref_primary_10_1109_TIM_2023_3346527
crossref_primary_10_1109_TUFFC_2021_3109117
crossref_primary_10_1007_s10389_023_01893_6
crossref_primary_10_1007_s13246_022_01206_3
crossref_primary_10_1109_JBHI_2024_3383234
Cites_doi 10.1097/MAJ.0b013e318242a354
10.4070/kcj.2013.43.2.73
10.1253/circj.72.304
10.1136/hrt.73.3.265
10.1109/TBME.2010.2084087
10.1016/S0753-3322(04)80015-5
10.5551/jat.12484
10.1155/2015/303250
10.1291/hypres.27.71
10.1088/0967-3334/35/10/2027
10.1109/JBHI.2017.2691715
10.1155/2013/169035
10.1007/978-3-642-34197-7_14
10.1161/CIRCULATIONAHA.105.555235
10.1088/0967-3334/37/2/227
10.1161/01.HYP.37.5.1236
10.1161/CIRCULATIONAHA.105.579342
10.1161/01.STR.25.1.11
10.1253/circj.69.259
10.1098/rspb.1922.0022
10.1177/0003319711410307
10.1016/j.acvd.2010.03.004
10.1161/01.HYP.32.2.365
10.1109/5254.671091
10.1253/circj.71.1710
10.3389/fimmu.2017.01058
10.1007/978-3-642-30223-7_87
10.1109/JSEN.2016.2582805
10.1088/1361-6579/aaa454
10.1016/j.atherosclerosis.2012.04.022
10.1117/12.889801
10.1097/01.hjh.0000500511.30771.79
10.1109/TBME.2012.2207384
10.1097/00126097-200112000-00012
10.1161/CIRCULATIONAHA.107.699579
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2018.2880434
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1434
ExternalDocumentID 10_1109_JSEN_2018_2880434
8531733
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Planning Project of Guangdong Province
  grantid: 2015B010129012
– fundername: Major Special Project of Guangdong Province
  grantid: 2017B030308007
– fundername: Shenzhen Science and Technology Projects
  grantid: JCYJ20150630114942270; JCYJ20170413161515911
– fundername: National Natural Science Foundation of China
  grantid: 61502472; 61771465
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
RIG
ID FETCH-LOGICAL-c293t-a29f432460db1d8df5805e2bd8b5ff928605265ddead6e314297d859ab09b55f3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:25:14 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Wed Oct 01 04:14:34 EDT 2025
Wed Aug 27 03:05:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a29f432460db1d8df5805e2bd8b5ff928605265ddead6e314297d859ab09b55f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0807-0356
0000-0002-5351-8546
0000-0003-3054-807X
PQID 2170701402
PQPubID 75733
PageCount 9
ParticipantIDs proquest_journals_2170701402
ieee_primary_8531733
crossref_citationtrail_10_1109_JSEN_2018_2880434
crossref_primary_10_1109_JSEN_2018_2880434
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-15
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
william-hansen (ref18) 2006; 113
ref30
ref11
ref32
ref10
li (ref31) 2012; 169
ref2
ref39
ref17
ref38
ref16
ref19
wu (ref20) 2011; 58
guyon (ref28) 2003; 3
(ref1) 2015
goldberg (ref29) 1989
ref23
ref26
ref25
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
yamamoto (ref24) 2015; 56
nichols (ref33) 1998
References_xml – ident: ref36
  doi: 10.1097/MAJ.0b013e318242a354
– ident: ref7
  doi: 10.4070/kcj.2013.43.2.73
– ident: ref15
  doi: 10.1253/circj.72.304
– ident: ref5
  doi: 10.1136/hrt.73.3.265
– volume: 58
  start-page: 243
  year: 2011
  ident: ref20
  article-title: Arterial stiffness using radial arterial waveforms measured at the wrist as an indicator of diabetic control in the elderly
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2084087
– ident: ref13
  doi: 10.1016/S0753-3322(04)80015-5
– ident: ref6
  doi: 10.5551/jat.12484
– ident: ref30
  doi: 10.1155/2015/303250
– ident: ref14
  doi: 10.1291/hypres.27.71
– ident: ref39
  doi: 10.1088/0967-3334/35/10/2027
– ident: ref27
  doi: 10.1109/JBHI.2017.2691715
– ident: ref21
  doi: 10.1155/2013/169035
– ident: ref22
  doi: 10.1007/978-3-642-34197-7_14
– ident: ref3
  doi: 10.1161/CIRCULATIONAHA.105.555235
– ident: ref25
  doi: 10.1088/0967-3334/37/2/227
– ident: ref2
  doi: 10.1161/01.HYP.37.5.1236
– volume: 113
  start-page: 664
  year: 2006
  ident: ref18
  article-title: Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.579342
– ident: ref4
  doi: 10.1161/01.STR.25.1.11
– ident: ref17
  doi: 10.1253/circj.69.259
– ident: ref34
  doi: 10.1098/rspb.1922.0022
– ident: ref12
  doi: 10.1177/0003319711410307
– ident: ref9
  doi: 10.1016/j.acvd.2010.03.004
– ident: ref38
  doi: 10.1161/01.HYP.32.2.365
– ident: ref26
  doi: 10.1109/5254.671091
– ident: ref16
  doi: 10.1253/circj.71.1710
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref28
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref32
  doi: 10.3389/fimmu.2017.01058
– volume: 56
  start-page: 1524
  year: 2015
  ident: ref24
  article-title: Stiffness of aorta is inversely related to the myocardial flow reserve as measured by NH3 myocardial perfusion PET in patients with hemodialysis
  publication-title: J Nucl Med
– volume: 169
  start-page: 553
  year: 2012
  ident: ref31
  article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement
  publication-title: Advances in Computer Science and Information Engineering
  doi: 10.1007/978-3-642-30223-7_87
– ident: ref19
  doi: 10.1109/JSEN.2016.2582805
– ident: ref37
  doi: 10.1088/1361-6579/aaa454
– ident: ref35
  doi: 10.1016/j.atherosclerosis.2012.04.022
– ident: ref40
  doi: 10.1117/12.889801
– ident: ref11
  doi: 10.1097/01.hjh.0000500511.30771.79
– start-page: 54
  year: 1998
  ident: ref33
  article-title: Vascular impedance
  publication-title: McDonald s Blood Flow in Arteries Theoretic Experimental and Clinical Principles
– ident: ref23
  doi: 10.1109/TBME.2012.2207384
– ident: ref10
  doi: 10.1097/00126097-200112000-00012
– year: 1989
  ident: ref29
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– year: 2015
  ident: ref1
  publication-title: Global status report on non-communicable disease 2014
– ident: ref8
  doi: 10.1161/CIRCULATIONAHA.107.699579
SSID ssj0019757
Score 2.405595
Snippet Arterial stiffness is strongly associated with cardiovascular events. Existing devices for evaluating arterial stiffness based on ultrasound or pulse wave...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1426
SubjectTerms Arterial stiffness
Arteriosclerosis
Artificial intelligence
Back propagation networks
Cardiovascular disease
Chronology
Correlation coefficients
Decision trees
Electrocardiography
Feature extraction
Genetic algorithms
Hardware
Hormone replacement therapy
Instruments
Machine learning
machine learning algorithms
Monitoring
Neural networks
pulse wave analysis
Sensors
Standard deviation
Stiffness
Wearable sensors
Wearable technology
Title A Wearable Sensor for Arterial Stiffness Monitoring Based on Machine Learning Algorithms
URI https://ieeexplore.ieee.org/document/8531733
https://www.proquest.com/docview/2170701402
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BCzDwRpSXPDAhUpyHE3ssqAghtUtBdIvi2AZEaVGbDvDrOTtuxUuILYNf0ne-R3z3HcCJjafTVCeBlDENkoKXQSGFDDIqleEyNNox8HW66fVdctNn_QU4m9fCaK1d8plu2k_3lq9G5dT-KjtH0xJmcbwIixlP61qt-YuByByrJ15g3DLO-v4FM6Ti_KbX7tokLt6MUFqTOPlig1xTlR-a2JmXq3XozA5WZ5U8N6eVbJbv3zgb_3vyDVjzfiZp1YKxCQt6uAWrn9gHt2DZN0B_fNuGfovco8zbOirSw8h2NCbozdrpTkJJr3oyxmpFUisBuwK5QAuoyGhIOi4jUxNP1vpAWoMHHFI9vkx24O6qfXt5HfimC0GJlr8KikgYy9KXUiVDxZVhnDIdScUlM0ZEPLUMMQy1YqFSHYdozzLFmSgkFZIxE-_C0nA01HtAFOqLIjYGfRKWaCV4JiOTpFGkpFY8pA2gMxjy0jOS28YYg9xFJlTkFrncIpd75BpwOp_yWtNx_DV42yIxH-hBaMDhDOvcX9hJjpEZKj-MNqP932cdwAquLWzCdsgOYakaT_UR-iOVPHaC-AHkGtty
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5BegAObXmJFAo-cEJs8O7au_YxVKAUSC4BkdtqvbYBlSYV2RzaX9-x14lKQYjbHvySvvE81jPfABy6eDrLDIuUSmnESlFFpZIqyqnSVqjYGs_A1x9kvRt2MeKjJThe1MIYY3zymem4T_-WryfVzP0qO0HTEudpugwfOGOMN9VaizcDmXteT7zCuGmaj8IbZkzlycXwbODSuEQnQXllKXtmhXxblRe62BuY80_Qnx-tySv50ZnVqlP9-Y-18b1n_wwfg6dJuo1orMOSGW_A2j_8gxuwElqg3__ehFGX3KLUu0oqMsTYdvJE0J91072MkmH9YK3Ti6RRA24Fcoo2UJPJmPR9TqYhga71jnQf73BIff9zugU352fX33pRaLsQVWj766hMpHU8fRnVKtZCWy4oN4nSQnFrZSIyxxHDUS-WOjNpjBYt14LLUlGpOLfpNrTGk7HZAaJRY5SpteiVcGa0FLlKLMuSRCujRUzbQOcwFFXgJHetMR4LH5tQWTjkCodcEZBrw9Fiyq-GkOOtwZsOicXAAEIb9uZYF-HKTguMzVD9YbyZfHl91gGs9K77V8XV98HlLqziPtKlb8d8D1r108x8Re-kVvteKP8CiyTevw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Wearable+Sensor+for+Arterial+Stiffness+Monitoring+Based+on+Machine+Learning+Algorithms&rft.jtitle=IEEE+sensors+journal&rft.au=Miao%2C+Fen&rft.au=Wang%2C+Xurong&rft.au=Yin%2C+Liyan&rft.au=Li%2C+Ye&rft.date=2019-02-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=19&rft.issue=4&rft.spage=1426&rft.epage=1434&rft_id=info:doi/10.1109%2FJSEN.2018.2880434&rft.externalDocID=8531733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon