A Wearable Sensor for Arterial Stiffness Monitoring Based on Machine Learning Algorithms
Arterial stiffness is strongly associated with cardiovascular events. Existing devices for evaluating arterial stiffness based on ultrasound or pulse wave velocity suffer a lot from complexity and inconvenience in home-care settings. This paper proposed a wearable sensor for arterial stiffness monit...
        Saved in:
      
    
          | Published in | IEEE sensors journal Vol. 19; no. 4; pp. 1426 - 1434 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        15.02.2019
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1530-437X 1558-1748  | 
| DOI | 10.1109/JSEN.2018.2880434 | 
Cover
| Abstract | Arterial stiffness is strongly associated with cardiovascular events. Existing devices for evaluating arterial stiffness based on ultrasound or pulse wave velocity suffer a lot from complexity and inconvenience in home-care settings. This paper proposed a wearable sensor for arterial stiffness monitoring via machine learning techniques. The proposed sensor is comprised of one electrocardiogram (ECG) and one photoplethysmogram (PPG) module. The ECG and PPG signals were first simultaneously collected by the wearable sensor, and 21 features were extracted from two signals for arterial stiffness evaluation. A genetic algorithm-based feature selection method was then used to select the important indicators. Multivariate linear regression (MLR), decision tree, and back propagation (BP) neural network were employed to develop the model. Vascular age and 10-year cardiovascular disease risk from OMRON arteriosclerosis instrument were deemed as the gold standard to evaluate arterial stiffness. Experimental results based on 501 diverse subjects showed that the MLR approach exhibited the best accuracy in vascular age estimation (correlation coefficient, 0.89; mean of the residual, 0.2136; and standard deviation of the residual, 6.2432). While the BP neural networks-based approach was best in cardiovascular disease risk estimation (correlation coefficient, 0.9488; mean of the residual, - 0.3579%; and standard deviation of the residual, 3.7131%). The results indicate that the proposed learning-based sensor has great potential in arterial stiffness monitoring in home-care settings. | 
    
|---|---|
| AbstractList | Arterial stiffness is strongly associated with cardiovascular events. Existing devices for evaluating arterial stiffness based on ultrasound or pulse wave velocity suffer a lot from complexity and inconvenience in home-care settings. This paper proposed a wearable sensor for arterial stiffness monitoring via machine learning techniques. The proposed sensor is comprised of one electrocardiogram (ECG) and one photoplethysmogram (PPG) module. The ECG and PPG signals were first simultaneously collected by the wearable sensor, and 21 features were extracted from two signals for arterial stiffness evaluation. A genetic algorithm-based feature selection method was then used to select the important indicators. Multivariate linear regression (MLR), decision tree, and back propagation (BP) neural network were employed to develop the model. Vascular age and 10-year cardiovascular disease risk from OMRON arteriosclerosis instrument were deemed as the gold standard to evaluate arterial stiffness. Experimental results based on 501 diverse subjects showed that the MLR approach exhibited the best accuracy in vascular age estimation (correlation coefficient, 0.89; mean of the residual, 0.2136; and standard deviation of the residual, 6.2432). While the BP neural networks-based approach was best in cardiovascular disease risk estimation (correlation coefficient, 0.9488; mean of the residual, - 0.3579%; and standard deviation of the residual, 3.7131%). The results indicate that the proposed learning-based sensor has great potential in arterial stiffness monitoring in home-care settings. | 
    
| Author | Wang, Xurong Li, Ye Miao, Fen Yin, Liyan  | 
    
| Author_xml | – sequence: 1 givenname: Fen orcidid: 0000-0003-3054-807X surname: Miao fullname: Miao, Fen organization: Key Laboratory for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 2 givenname: Xurong surname: Wang fullname: Wang, Xurong organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 3 givenname: Liyan orcidid: 0000-0003-0807-0356 surname: Yin fullname: Yin, Liyan organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 4 givenname: Ye orcidid: 0000-0002-5351-8546 surname: Li fullname: Li, Ye email: ye.li@siat.ac.cn organization: Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China  | 
    
| BookMark | eNp9kE1LAzEQhoNU0FZ_gHgJeN6aj02TPVapX7R6qKK3JbuZaGSbaJIe_PfuUvHgwcMwA_M8M_CO0cgHDwidUDKllFTnd-vF_ZQRqqZMKVLycg8dUiFUQWWpRsPMSVFy-XKAxim9E0IrKeQhepnjZ9BRNx3gNfgUIrZ9zWOG6HSH19lZ6yElvAre5RCdf8UXOoHBweOVbt-cB7zsT_hhM-9eeyS_bdIR2re6S3D80yfo6WrxeHlTLB-uby_ny6JlFc-FZpUtOStnxDTUKGOFIgJYY1QjrK2YmhHBZsIY0GYGnJaskkaJSjekaoSwfILOdnc_YvjcQsr1e9hG37-sGZVEEloS1lNyR7UxpBTB1q3LOrvgc9SuqymphxjrIcZ6iLH-ibE36R_zI7qNjl__Oqc7xwHAL68Ep5Jz_g2qkH-N | 
    
| CODEN | ISJEAZ | 
    
| CitedBy_id | crossref_primary_10_1109_RBME_2021_3092208 crossref_primary_10_1007_s12652_020_02706_4 crossref_primary_10_1145_3670854 crossref_primary_10_1016_j_bspc_2022_103781 crossref_primary_10_3390_biomimetics8020207 crossref_primary_10_32604_cmc_2021_015984 crossref_primary_10_1016_j_bspc_2019_101747 crossref_primary_10_1002_anse_202200062 crossref_primary_10_3390_bioengineering11090952 crossref_primary_10_3390_mi12050569 crossref_primary_10_1038_s41597_023_02762_3 crossref_primary_10_3390_s20072073 crossref_primary_10_1007_s13721_021_00290_x crossref_primary_10_1016_j_compbiomed_2024_108235 crossref_primary_10_1016_j_measurement_2025_117028 crossref_primary_10_3390_healthcare11162240 crossref_primary_10_3390_s19163491 crossref_primary_10_1109_JSEN_2020_3030030 crossref_primary_10_1016_j_cmpb_2022_106842 crossref_primary_10_1039_D0MA00573H crossref_primary_10_1109_JSEN_2022_3211981 crossref_primary_10_1097_CM9_0000000000002117 crossref_primary_10_3390_s23125606 crossref_primary_10_1002_adsr_202300118 crossref_primary_10_1109_TIM_2023_3346527 crossref_primary_10_1109_TUFFC_2021_3109117 crossref_primary_10_1007_s10389_023_01893_6 crossref_primary_10_1007_s13246_022_01206_3 crossref_primary_10_1109_JBHI_2024_3383234  | 
    
| Cites_doi | 10.1097/MAJ.0b013e318242a354 10.4070/kcj.2013.43.2.73 10.1253/circj.72.304 10.1136/hrt.73.3.265 10.1109/TBME.2010.2084087 10.1016/S0753-3322(04)80015-5 10.5551/jat.12484 10.1155/2015/303250 10.1291/hypres.27.71 10.1088/0967-3334/35/10/2027 10.1109/JBHI.2017.2691715 10.1155/2013/169035 10.1007/978-3-642-34197-7_14 10.1161/CIRCULATIONAHA.105.555235 10.1088/0967-3334/37/2/227 10.1161/01.HYP.37.5.1236 10.1161/CIRCULATIONAHA.105.579342 10.1161/01.STR.25.1.11 10.1253/circj.69.259 10.1098/rspb.1922.0022 10.1177/0003319711410307 10.1016/j.acvd.2010.03.004 10.1161/01.HYP.32.2.365 10.1109/5254.671091 10.1253/circj.71.1710 10.3389/fimmu.2017.01058 10.1007/978-3-642-30223-7_87 10.1109/JSEN.2016.2582805 10.1088/1361-6579/aaa454 10.1016/j.atherosclerosis.2012.04.022 10.1117/12.889801 10.1097/01.hjh.0000500511.30771.79 10.1109/TBME.2012.2207384 10.1097/00126097-200112000-00012 10.1161/CIRCULATIONAHA.107.699579  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| DOI | 10.1109/JSEN.2018.2880434 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Engineering  | 
    
| EISSN | 1558-1748 | 
    
| EndPage | 1434 | 
    
| ExternalDocumentID | 10_1109_JSEN_2018_2880434 8531733  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Science and Technology Planning Project of Guangdong Province grantid: 2015B010129012 – fundername: Major Special Project of Guangdong Province grantid: 2017B030308007 – fundername: Shenzhen Science and Technology Projects grantid: JCYJ20150630114942270; JCYJ20170413161515911 – fundername: National Natural Science Foundation of China grantid: 61502472; 61771465 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M RIG  | 
    
| ID | FETCH-LOGICAL-c293t-a29f432460db1d8df5805e2bd8b5ff928605265ddead6e314297d859ab09b55f3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1530-437X | 
    
| IngestDate | Mon Jun 30 10:25:14 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Wed Oct 01 04:14:34 EDT 2025 Wed Aug 27 03:05:58 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c293t-a29f432460db1d8df5805e2bd8b5ff928605265ddead6e314297d859ab09b55f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0807-0356 0000-0002-5351-8546 0000-0003-3054-807X  | 
    
| PQID | 2170701402 | 
    
| PQPubID | 75733 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_journals_2170701402 ieee_primary_8531733 crossref_citationtrail_10_1109_JSEN_2018_2880434 crossref_primary_10_1109_JSEN_2018_2880434  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-02-15 | 
    
| PublicationDateYYYYMMDD | 2019-02-15 | 
    
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE sensors journal | 
    
| PublicationTitleAbbrev | JSEN | 
    
| PublicationYear | 2019 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 william-hansen (ref18) 2006; 113 ref30 ref11 ref32 ref10 li (ref31) 2012; 169 ref2 ref39 ref17 ref38 ref16 ref19 wu (ref20) 2011; 58 guyon (ref28) 2003; 3 (ref1) 2015 goldberg (ref29) 1989 ref23 ref26 ref25 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 yamamoto (ref24) 2015; 56 nichols (ref33) 1998  | 
    
| References_xml | – ident: ref36 doi: 10.1097/MAJ.0b013e318242a354 – ident: ref7 doi: 10.4070/kcj.2013.43.2.73 – ident: ref15 doi: 10.1253/circj.72.304 – ident: ref5 doi: 10.1136/hrt.73.3.265 – volume: 58 start-page: 243 year: 2011 ident: ref20 article-title: Arterial stiffness using radial arterial waveforms measured at the wrist as an indicator of diabetic control in the elderly publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2084087 – ident: ref13 doi: 10.1016/S0753-3322(04)80015-5 – ident: ref6 doi: 10.5551/jat.12484 – ident: ref30 doi: 10.1155/2015/303250 – ident: ref14 doi: 10.1291/hypres.27.71 – ident: ref39 doi: 10.1088/0967-3334/35/10/2027 – ident: ref27 doi: 10.1109/JBHI.2017.2691715 – ident: ref21 doi: 10.1155/2013/169035 – ident: ref22 doi: 10.1007/978-3-642-34197-7_14 – ident: ref3 doi: 10.1161/CIRCULATIONAHA.105.555235 – ident: ref25 doi: 10.1088/0967-3334/37/2/227 – ident: ref2 doi: 10.1161/01.HYP.37.5.1236 – volume: 113 start-page: 664 year: 2006 ident: ref18 article-title: Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.579342 – ident: ref4 doi: 10.1161/01.STR.25.1.11 – ident: ref17 doi: 10.1253/circj.69.259 – ident: ref34 doi: 10.1098/rspb.1922.0022 – ident: ref12 doi: 10.1177/0003319711410307 – ident: ref9 doi: 10.1016/j.acvd.2010.03.004 – ident: ref38 doi: 10.1161/01.HYP.32.2.365 – ident: ref26 doi: 10.1109/5254.671091 – ident: ref16 doi: 10.1253/circj.71.1710 – volume: 3 start-page: 1157 year: 2003 ident: ref28 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – ident: ref32 doi: 10.3389/fimmu.2017.01058 – volume: 56 start-page: 1524 year: 2015 ident: ref24 article-title: Stiffness of aorta is inversely related to the myocardial flow reserve as measured by NH3 myocardial perfusion PET in patients with hemodialysis publication-title: J Nucl Med – volume: 169 start-page: 553 year: 2012 ident: ref31 article-title: Brief introduction of back propagation (BP) neural network algorithm and its improvement publication-title: Advances in Computer Science and Information Engineering doi: 10.1007/978-3-642-30223-7_87 – ident: ref19 doi: 10.1109/JSEN.2016.2582805 – ident: ref37 doi: 10.1088/1361-6579/aaa454 – ident: ref35 doi: 10.1016/j.atherosclerosis.2012.04.022 – ident: ref40 doi: 10.1117/12.889801 – ident: ref11 doi: 10.1097/01.hjh.0000500511.30771.79 – start-page: 54 year: 1998 ident: ref33 article-title: Vascular impedance publication-title: McDonald s Blood Flow in Arteries Theoretic Experimental and Clinical Principles – ident: ref23 doi: 10.1109/TBME.2012.2207384 – ident: ref10 doi: 10.1097/00126097-200112000-00012 – year: 1989 ident: ref29 publication-title: Genetic Algorithms in Search Optimization and Machine Learning – year: 2015 ident: ref1 publication-title: Global status report on non-communicable disease 2014 – ident: ref8 doi: 10.1161/CIRCULATIONAHA.107.699579  | 
    
| SSID | ssj0019757 | 
    
| Score | 2.405595 | 
    
| Snippet | Arterial stiffness is strongly associated with cardiovascular events. Existing devices for evaluating arterial stiffness based on ultrasound or pulse wave... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1426 | 
    
| SubjectTerms | Arterial stiffness Arteriosclerosis Artificial intelligence Back propagation networks Cardiovascular disease Chronology Correlation coefficients Decision trees Electrocardiography Feature extraction Genetic algorithms Hardware Hormone replacement therapy Instruments Machine learning machine learning algorithms Monitoring Neural networks pulse wave analysis Sensors Standard deviation Stiffness Wearable sensors Wearable technology  | 
    
| Title | A Wearable Sensor for Arterial Stiffness Monitoring Based on Machine Learning Algorithms | 
    
| URI | https://ieeexplore.ieee.org/document/8531733 https://www.proquest.com/docview/2170701402  | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BCzDwRpSXPDAhUpyHE3ssqAghtUtBdIvi2AZEaVGbDvDrOTtuxUuILYNf0ne-R3z3HcCJjafTVCeBlDENkoKXQSGFDDIqleEyNNox8HW66fVdctNn_QU4m9fCaK1d8plu2k_3lq9G5dT-KjtH0xJmcbwIixlP61qt-YuByByrJ15g3DLO-v4FM6Ti_KbX7tokLt6MUFqTOPlig1xTlR-a2JmXq3XozA5WZ5U8N6eVbJbv3zgb_3vyDVjzfiZp1YKxCQt6uAWrn9gHt2DZN0B_fNuGfovco8zbOirSw8h2NCbozdrpTkJJr3oyxmpFUisBuwK5QAuoyGhIOi4jUxNP1vpAWoMHHFI9vkx24O6qfXt5HfimC0GJlr8KikgYy9KXUiVDxZVhnDIdScUlM0ZEPLUMMQy1YqFSHYdozzLFmSgkFZIxE-_C0nA01HtAFOqLIjYGfRKWaCV4JiOTpFGkpFY8pA2gMxjy0jOS28YYg9xFJlTkFrncIpd75BpwOp_yWtNx_DV42yIxH-hBaMDhDOvcX9hJjpEZKj-MNqP932cdwAquLWzCdsgOYakaT_UR-iOVPHaC-AHkGtty | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5BegAObXmJFAo-cEJs8O7au_YxVKAUSC4BkdtqvbYBlSYV2RzaX9-x14lKQYjbHvySvvE81jPfABy6eDrLDIuUSmnESlFFpZIqyqnSVqjYGs_A1x9kvRt2MeKjJThe1MIYY3zymem4T_-WryfVzP0qO0HTEudpugwfOGOMN9VaizcDmXteT7zCuGmaj8IbZkzlycXwbODSuEQnQXllKXtmhXxblRe62BuY80_Qnx-tySv50ZnVqlP9-Y-18b1n_wwfg6dJuo1orMOSGW_A2j_8gxuwElqg3__ehFGX3KLUu0oqMsTYdvJE0J91072MkmH9YK3Ti6RRA24Fcoo2UJPJmPR9TqYhga71jnQf73BIff9zugU352fX33pRaLsQVWj766hMpHU8fRnVKtZCWy4oN4nSQnFrZSIyxxHDUS-WOjNpjBYt14LLUlGpOLfpNrTGk7HZAaJRY5SpteiVcGa0FLlKLMuSRCujRUzbQOcwFFXgJHetMR4LH5tQWTjkCodcEZBrw9Fiyq-GkOOtwZsOicXAAEIb9uZYF-HKTguMzVD9YbyZfHl91gGs9K77V8XV98HlLqziPtKlb8d8D1r108x8Re-kVvteKP8CiyTevw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Wearable+Sensor+for+Arterial+Stiffness+Monitoring+Based+on+Machine+Learning+Algorithms&rft.jtitle=IEEE+sensors+journal&rft.au=Miao%2C+Fen&rft.au=Wang%2C+Xurong&rft.au=Yin%2C+Liyan&rft.au=Li%2C+Ye&rft.date=2019-02-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=19&rft.issue=4&rft.spage=1426&rft.epage=1434&rft_id=info:doi/10.1109%2FJSEN.2018.2880434&rft.externalDocID=8531733 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |