Nonnegative-Constrained Joint Collaborative Representation with Union Dictionary for Hyperspectral Anomaly Detection
Recently, many collaborative representation-based (CR) algorithms have been proposed for hyperspectral anomaly detection. CR-based detectors approximate the image by a linear combination of background dictionaries and the coefficient matrix, and derive the detection map by utilizing recovery residua...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 60; p. 1 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2022.3195339 |
Cover
| Abstract | Recently, many collaborative representation-based (CR) algorithms have been proposed for hyperspectral anomaly detection. CR-based detectors approximate the image by a linear combination of background dictionaries and the coefficient matrix, and derive the detection map by utilizing recovery residuals. However, these CR-based detectors are often established on the premise of precise background features and strong image representation, which are very difficult to obtain. In addition, pursuing the coefficient matrix reinforced by the general l 2 -min is very time consuming. To address these issues, a nonnegative-constrained joint collaborative representation model is proposed in this paper for the hyperspectral anomaly detection task. To extract reliable samples, a union dictionary consisting of background and anomaly sub-dictionaries is designed, where the background sub-dictionary is obtained at the superpixel level and the anomaly sub-dictionary is extracted by the pre-detection process. And the coefficient matrix is jointly optimized by the Frobenius norm regularization with a nonnegative constraint and a sum-to-one constraint. After the optimization process, the abnormal information is finally derived by calculating the residuals that exclude the assumed background information. To conduct comparable experiments, the proposed nonnegative-constrained joint collaborative representation (NJCR) model and its kernel version (KNJCR) are tested in four HSI datasets and achieve superior results compared with other state-of-the-art detectors. The codes of the proposed method will be available online. |
|---|---|
| AbstractList | Recently, many collaborative representation (CR)-based algorithms have been proposed for hyperspectral anomaly detection (AD). CR-based detectors approximate the image by a linear combination of background dictionaries and the coefficient matrix and derive the detection map by utilizing recovery residuals. However, these CR-based detectors are often established on the premise of precise background features and strong image representation, which are very difficult to obtain. In addition, pursuing the coefficient matrix reinforced by the general [Formula Omitted]-min is very time-consuming. To address these issues, a nonnegative-constrained joint collaborative representation (NJCR) model is proposed in this article for the hyperspectral AD task. To extract reliable samples, a union dictionary consisting of background and anomaly subdictionaries is designed, where the background subdictionary is obtained at the superpixel level and the anomaly subdictionary is extracted by the predetection process. And the coefficient matrix is jointly optimized by the Frobenius norm regularization with a nonnegative constraint and a sum-to-one constraint. After the optimization process, the abnormal information is finally derived by calculating the residuals that exclude the assumed background information. To conduct comparable experiments, the proposed nonnegative-constrained joint collaborative representation (NJCR) model and its kernel version (KNJCR) are tested in four hyperspectral images (HSIs) datasets and achieve superior results compared with other state-of-the-art detectors. The codes of the proposed method will be available online ( https://github.com/ShizhenChang/NJCR ). Recently, many collaborative representation-based (CR) algorithms have been proposed for hyperspectral anomaly detection. CR-based detectors approximate the image by a linear combination of background dictionaries and the coefficient matrix, and derive the detection map by utilizing recovery residuals. However, these CR-based detectors are often established on the premise of precise background features and strong image representation, which are very difficult to obtain. In addition, pursuing the coefficient matrix reinforced by the general l 2 -min is very time consuming. To address these issues, a nonnegative-constrained joint collaborative representation model is proposed in this paper for the hyperspectral anomaly detection task. To extract reliable samples, a union dictionary consisting of background and anomaly sub-dictionaries is designed, where the background sub-dictionary is obtained at the superpixel level and the anomaly sub-dictionary is extracted by the pre-detection process. And the coefficient matrix is jointly optimized by the Frobenius norm regularization with a nonnegative constraint and a sum-to-one constraint. After the optimization process, the abnormal information is finally derived by calculating the residuals that exclude the assumed background information. To conduct comparable experiments, the proposed nonnegative-constrained joint collaborative representation (NJCR) model and its kernel version (KNJCR) are tested in four HSI datasets and achieve superior results compared with other state-of-the-art detectors. The codes of the proposed method will be available online. |
| Author | Ghamisi, Pedram Chang, Shizhen |
| Author_xml | – sequence: 1 givenname: Shizhen orcidid: 0000-0002-9785-7937 surname: Chang fullname: Chang, Shizhen organization: Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria – sequence: 2 givenname: Pedram orcidid: 0000-0003-1203-741X surname: Ghamisi fullname: Ghamisi, Pedram organization: Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria |
| BookMark | eNp9kMtOwzAQRS0EEqXwAYiNJdYpfiW2l6i8VYFUyjpKnAmkCnawXVD_nqRBLFiwmte9M5pzhPats4DQKSUzSom-WN0un2eMMDbjVKec6z00oWmqEpIJsY8mhOosYUqzQ3QUwpoQKlIqJyg-OmvhtYjNJyRzZ0P0RWOhwg-usRHPXdsWpfO7OV5C5yGAjX3pLP5q4ht-sUN61ZihVfgtrp3Hd9sOfOjA9NtafGnde9Fu8RVE2MmO0UFdtAFOfuIUvdxcr-Z3yeLp9n5-uUgM0zwmGhhQIDzjvKi1LItKmxSUVFmpFeGMVrUCUhJTcp4KWRFOuZFGlkJoRSXjU3Q-7u28-9hAiPnabbztT-ZMEiIo1SrrVXRUGe9C8FDnnW_e-1dySvIBbj7AzQe4-Q_c3iP_eEwzUhn4tf86z0ZnAwC_l7QSqchS_g3GYotW |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2024_3399313 crossref_primary_10_1109_TGRS_2024_3476152 crossref_primary_10_1109_TGRS_2023_3329510 crossref_primary_10_1109_TIM_2023_3330225 crossref_primary_10_1080_2150704X_2024_2391092 crossref_primary_10_1109_TIM_2024_3446609 crossref_primary_10_1109_TGRS_2023_3269097 crossref_primary_10_1109_JSTARS_2022_3229834 crossref_primary_10_1109_TIM_2023_3323997 crossref_primary_10_1109_TIM_2022_3222499 crossref_primary_10_3390_rs16111837 crossref_primary_10_1109_TGRS_2024_3388426 crossref_primary_10_1007_s11760_024_03238_6 crossref_primary_10_1109_TGRS_2024_3388476 crossref_primary_10_1109_TGRS_2023_3346526 crossref_primary_10_1109_TGRS_2023_3341245 crossref_primary_10_1109_TIM_2024_3403211 crossref_primary_10_1109_LGRS_2023_3271899 crossref_primary_10_1109_TGRS_2024_3456799 crossref_primary_10_1109_TIM_2024_3405582 |
| Cites_doi | 10.3390/rs11111318 10.1109/MAES.2010.5546306 10.1109/TGRS.2013.2293732 10.1109/JSTARS.2020.3009324 10.1109/CVPR.2011.5995556 10.1080/10618600.2018.1473777 10.1109/ICASSP.2013.6638183 10.1109/TGRS.2014.2343955 10.1109/JSTARS.2016.2531747 10.1109/TGRS.2015.2493201 10.1109/TIP.2017.2773199 10.1109/TIP.2011.2159730 10.1109/79.974730 10.1016/S0167-9473(99)00101-2 10.1117/12.919743 10.1109/MGRS.2021.3105440 10.1109/TGRS.2020.3021671 10.1561/9781601984616 10.1109/JSTARS.2018.2880749 10.1016/j.dsp.2021.102993 10.1109/WHISPERS.2009.5289019 10.1109/TGRS.2019.2936609 10.1109/TGRS.2018.2872590 10.1109/34.868688 10.1109/TGRS.2020.3018879 10.1016/j.isprsjprs.2015.07.003 10.1109/TCYB.2020.2968750 10.1109/TGRS.2021.3057721 10.1109/MSP.2013.2278992 10.1117/12.2224067 10.1109/TGRS.2006.873019 10.1117/12.2568411 10.1109/TGRS.2020.3004478 10.1109/TGRS.2010.2081677 10.1109/JSTARS.2012.2194696 10.1109/LGRS.2013.2250907 10.1023/B:VISI.0000022288.19776.77 10.1109/TGRS.2019.2960391 10.1109/18.857796 10.1109/TGRS.2015.2421638 10.1109/MGRS.2016.2616418 10.1109/TGRS.2015.2479299 10.1109/WHISPERS.2010.5594901 10.1109/TGRS.2021.3097097 10.1109/URSIGASS.2011.6050650 10.1109/JSTARS.2014.2311995 10.1016/j.isprsjprs.2020.09.008 10.1109/29.60107 10.1007/BFb0020217 10.1109/CVPR.2011.5995323 10.1109/TGRS.2003.819189 10.1109/TGRS.2004.841487 10.1016/j.patrec.2019.11.022 10.1109/TGRS.2017.2664658 10.1016/j.jag.2021.102603 10.1007/s00521-020-04754-5 10.1109/TGRS.2012.2201730 10.1109/TGRS.2018.2818159 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2022.3195339 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TGRS_2022_3195339 9845465 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-9e2e1e03633af97bad9c5e8786b980321df8e0b0cb33547d0313c7c7b44981723 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:43:50 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Wed Oct 01 02:20:18 EDT 2025 Wed Aug 27 02:24:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-9e2e1e03633af97bad9c5e8786b980321df8e0b0cb33547d0313c7c7b44981723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1203-741X 0000-0002-9785-7937 |
| PQID | 2700411986 |
| PQPubID | 85465 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2022_3195339 crossref_citationtrail_10_1109_TGRS_2022_3195339 proquest_journals_2700411986 ieee_primary_9845465 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 Xu (ref48) 2019 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref26 doi: 10.3390/rs11111318 – ident: ref4 doi: 10.1109/MAES.2010.5546306 – ident: ref34 doi: 10.1109/TGRS.2013.2293732 – ident: ref33 doi: 10.1109/JSTARS.2020.3009324 – ident: ref39 doi: 10.1109/CVPR.2011.5995556 – ident: ref49 doi: 10.1080/10618600.2018.1473777 – ident: ref38 doi: 10.1109/ICASSP.2013.6638183 – ident: ref25 doi: 10.1109/TGRS.2014.2343955 – ident: ref54 doi: 10.1109/JSTARS.2016.2531747 – ident: ref27 doi: 10.1109/TGRS.2015.2493201 – ident: ref6 doi: 10.1109/TIP.2017.2773199 – ident: ref7 doi: 10.1109/TIP.2011.2159730 – ident: ref9 doi: 10.1109/79.974730 – ident: ref12 doi: 10.1016/S0167-9473(99)00101-2 – ident: ref45 doi: 10.1117/12.919743 – ident: ref5 doi: 10.1109/MGRS.2021.3105440 – ident: ref58 doi: 10.1109/TGRS.2020.3021671 – ident: ref50 doi: 10.1561/9781601984616 – ident: ref32 doi: 10.1109/JSTARS.2018.2880749 – ident: ref23 doi: 10.1016/j.dsp.2021.102993 – ident: ref15 doi: 10.1109/WHISPERS.2009.5289019 – ident: ref30 doi: 10.1109/TGRS.2019.2936609 – ident: ref56 doi: 10.1109/TGRS.2018.2872590 – ident: ref41 doi: 10.1109/34.868688 – ident: ref2 doi: 10.1109/TGRS.2020.3018879 – year: 2019 ident: ref48 article-title: Generalized LASSO problem with equality and inequality constraints using ADMM – ident: ref52 doi: 10.1016/j.isprsjprs.2015.07.003 – ident: ref29 doi: 10.1109/TCYB.2020.2968750 – ident: ref59 doi: 10.1109/TGRS.2021.3057721 – ident: ref8 doi: 10.1109/MSP.2013.2278992 – ident: ref44 doi: 10.1117/12.2224067 – ident: ref19 doi: 10.1109/TGRS.2006.873019 – ident: ref14 doi: 10.1117/12.2568411 – ident: ref36 doi: 10.1109/TGRS.2020.3004478 – ident: ref13 doi: 10.1109/TGRS.2010.2081677 – ident: ref37 doi: 10.1109/JSTARS.2012.2194696 – ident: ref22 doi: 10.1109/LGRS.2013.2250907 – ident: ref42 doi: 10.1023/B:VISI.0000022288.19776.77 – ident: ref55 doi: 10.1109/TGRS.2019.2960391 – ident: ref17 doi: 10.1109/18.857796 – ident: ref40 doi: 10.1109/TGRS.2015.2421638 – ident: ref1 doi: 10.1109/MGRS.2016.2616418 – ident: ref28 doi: 10.1109/TGRS.2015.2479299 – ident: ref16 doi: 10.1109/WHISPERS.2010.5594901 – ident: ref57 doi: 10.1109/TGRS.2021.3097097 – ident: ref11 doi: 10.1109/URSIGASS.2011.6050650 – ident: ref20 doi: 10.1109/JSTARS.2014.2311995 – ident: ref31 doi: 10.1016/j.isprsjprs.2020.09.008 – ident: ref10 doi: 10.1109/29.60107 – ident: ref21 doi: 10.1007/BFb0020217 – ident: ref43 doi: 10.1109/CVPR.2011.5995323 – ident: ref53 doi: 10.1109/TGRS.2003.819189 – ident: ref18 doi: 10.1109/TGRS.2004.841487 – ident: ref46 doi: 10.1016/j.patrec.2019.11.022 – ident: ref24 doi: 10.1109/TGRS.2017.2664658 – ident: ref3 doi: 10.1016/j.jag.2021.102603 – ident: ref47 doi: 10.1007/s00521-020-04754-5 – ident: ref51 doi: 10.1109/TGRS.2012.2201730 – ident: ref35 doi: 10.1109/TGRS.2018.2818159 |
| SSID | ssj0014517 |
| Score | 2.5110614 |
| Snippet | Recently, many collaborative representation-based (CR) algorithms have been proposed for hyperspectral anomaly detection. CR-based detectors approximate the... Recently, many collaborative representation (CR)-based algorithms have been proposed for hyperspectral anomaly detection (AD). CR-based detectors approximate... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Anomalies Anomaly detection Coefficients Collaboration Constraints Detection Detectors Dictionaries Glossaries hyperspectral imagery Hyperspectral imaging Information processing joint collaborative representation Mathematical analysis Object detection Optimization Regularization Representations Sensors superpixel segmentation |
| Title | Nonnegative-Constrained Joint Collaborative Representation with Union Dictionary for Hyperspectral Anomaly Detection |
| URI | https://ieeexplore.ieee.org/document/9845465 https://www.proquest.com/docview/2700411986 |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6qIOjBVxXriz14EtPmsU2yR1FrKbSHaqG3kN3silhTaVOh_np3Ntv6RLztYTdM-CaZb3ZeAGeRtguBUqF2SwR1qC-4o-24ctAaRTx1RWYi-N1e2B7QzrA5rMDFshZGSmmSz2QdlyaWn43FDK_KGiymOLt7BVaiOCxrtZYRA9r0bGl06GgnwrcRTM9ljfvb_p32BH1fO6iYTcm-2CAzVOXHn9iYl9YWdBeClVklT_VZwevi7VvPxv9Kvg2blmeSy1IxdqAi813Y-NR9cBfWTPanmFah6GG6y4PpAe7gCE8zOEJmpDN-zAty9aErr5L0Te6sLVnKCV7kEs1c9fL60RRJpJM50VSYtLWLW1ZyTlCSfPycjubkWhYm-yvfg0Hr5v6q7dhxDI7QnKBwmPSlJzHwG6SKaSAzJpoy1lBwFruB72Uqli53BQ-CJo0y7AopIhFxSlmseVKwD6v5OJcHQESoNG9CbhIryqhKPYXjRzPGmZAqDWvgLgBKhO1Vjm8-SozP4rIEMU0Q08RiWoPz5ZGXslHHX5uriNFyo4WnBscLLUjspzxNMDJPPY_F4eHvp45gHZ9d3sscw2oxmckTzVQKfmpU9B0Z2uXo |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCAEHdkRZfeCESMniLD4itrK0BygStyh2bISAFLUpUvl6PI5bViFuPtjKRG-SeePZAHZjbRcCpSLtlgjqUF9wR9tx5aA1innmitxE8JutqHFLL-7CuzHYH9XCSClN8pms49LE8vOO6ONV2QFLKM7uHofJkFIaVtVao5gBDT1bHB052o3wbQzTc9lB--z6RvuCvq9dVMynZF-skBmr8uNfbAzM6Tw0h6JVeSWP9X7J6-LtW9fG_8q-AHOWaZLDSjUWYUwWSzD7qf_gEkyZ_E_RW4ayhQkv96YLuINDPM3oCJmTi85DUZKjD215leTaZM_aoqWC4FUu0dxVL48fTJlE1h0QTYZJQzu5VS1nFyUpOs_Z04Acy9LkfxUrcHt60j5qOHYggyM0KygdJn3pSQz9BpliGsqciVAmcRJxlriB7-UqkS53BQ-CkMY59oUUsYg5pSzRTClYhYmiU8g1ICJSmjkhO0kUZVRlnsIBpDnjTEiVRTVwhwClwnYrxzd_So3X4rIUMU0R09RiWoO90ZGXqlXHX5uXEaPRRgtPDTaHWpDaj7mXYmyeeh5LovXfT-3AdKPdvEqvzluXGzCDz6luaTZhouz25ZbmLSXfNur6Dkek6TU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonnegative-Constrained+Joint+Collaborative+Representation+with+Union+Dictionary+for+Hyperspectral+Anomaly+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Chang%2C+Shizhen&rft.au=Ghamisi%2C+Pedram&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2022.3195339&rft.externalDocID=9845465 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |