Nonnegative-Constrained Joint Collaborative Representation with Union Dictionary for Hyperspectral Anomaly Detection

Recently, many collaborative representation-based (CR) algorithms have been proposed for hyperspectral anomaly detection. CR-based detectors approximate the image by a linear combination of background dictionaries and the coefficient matrix, and derive the detection map by utilizing recovery residua...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; p. 1
Main Authors Chang, Shizhen, Ghamisi, Pedram
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2022.3195339

Cover

Abstract Recently, many collaborative representation-based (CR) algorithms have been proposed for hyperspectral anomaly detection. CR-based detectors approximate the image by a linear combination of background dictionaries and the coefficient matrix, and derive the detection map by utilizing recovery residuals. However, these CR-based detectors are often established on the premise of precise background features and strong image representation, which are very difficult to obtain. In addition, pursuing the coefficient matrix reinforced by the general l 2 -min is very time consuming. To address these issues, a nonnegative-constrained joint collaborative representation model is proposed in this paper for the hyperspectral anomaly detection task. To extract reliable samples, a union dictionary consisting of background and anomaly sub-dictionaries is designed, where the background sub-dictionary is obtained at the superpixel level and the anomaly sub-dictionary is extracted by the pre-detection process. And the coefficient matrix is jointly optimized by the Frobenius norm regularization with a nonnegative constraint and a sum-to-one constraint. After the optimization process, the abnormal information is finally derived by calculating the residuals that exclude the assumed background information. To conduct comparable experiments, the proposed nonnegative-constrained joint collaborative representation (NJCR) model and its kernel version (KNJCR) are tested in four HSI datasets and achieve superior results compared with other state-of-the-art detectors. The codes of the proposed method will be available online.
AbstractList Recently, many collaborative representation (CR)-based algorithms have been proposed for hyperspectral anomaly detection (AD). CR-based detectors approximate the image by a linear combination of background dictionaries and the coefficient matrix and derive the detection map by utilizing recovery residuals. However, these CR-based detectors are often established on the premise of precise background features and strong image representation, which are very difficult to obtain. In addition, pursuing the coefficient matrix reinforced by the general [Formula Omitted]-min is very time-consuming. To address these issues, a nonnegative-constrained joint collaborative representation (NJCR) model is proposed in this article for the hyperspectral AD task. To extract reliable samples, a union dictionary consisting of background and anomaly subdictionaries is designed, where the background subdictionary is obtained at the superpixel level and the anomaly subdictionary is extracted by the predetection process. And the coefficient matrix is jointly optimized by the Frobenius norm regularization with a nonnegative constraint and a sum-to-one constraint. After the optimization process, the abnormal information is finally derived by calculating the residuals that exclude the assumed background information. To conduct comparable experiments, the proposed nonnegative-constrained joint collaborative representation (NJCR) model and its kernel version (KNJCR) are tested in four hyperspectral images (HSIs) datasets and achieve superior results compared with other state-of-the-art detectors. The codes of the proposed method will be available online ( https://github.com/ShizhenChang/NJCR ).
Recently, many collaborative representation-based (CR) algorithms have been proposed for hyperspectral anomaly detection. CR-based detectors approximate the image by a linear combination of background dictionaries and the coefficient matrix, and derive the detection map by utilizing recovery residuals. However, these CR-based detectors are often established on the premise of precise background features and strong image representation, which are very difficult to obtain. In addition, pursuing the coefficient matrix reinforced by the general l 2 -min is very time consuming. To address these issues, a nonnegative-constrained joint collaborative representation model is proposed in this paper for the hyperspectral anomaly detection task. To extract reliable samples, a union dictionary consisting of background and anomaly sub-dictionaries is designed, where the background sub-dictionary is obtained at the superpixel level and the anomaly sub-dictionary is extracted by the pre-detection process. And the coefficient matrix is jointly optimized by the Frobenius norm regularization with a nonnegative constraint and a sum-to-one constraint. After the optimization process, the abnormal information is finally derived by calculating the residuals that exclude the assumed background information. To conduct comparable experiments, the proposed nonnegative-constrained joint collaborative representation (NJCR) model and its kernel version (KNJCR) are tested in four HSI datasets and achieve superior results compared with other state-of-the-art detectors. The codes of the proposed method will be available online.
Author Ghamisi, Pedram
Chang, Shizhen
Author_xml – sequence: 1
  givenname: Shizhen
  orcidid: 0000-0002-9785-7937
  surname: Chang
  fullname: Chang, Shizhen
  organization: Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria
– sequence: 2
  givenname: Pedram
  orcidid: 0000-0003-1203-741X
  surname: Ghamisi
  fullname: Ghamisi, Pedram
  organization: Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria
BookMark eNp9kMtOwzAQRS0EEqXwAYiNJdYpfiW2l6i8VYFUyjpKnAmkCnawXVD_nqRBLFiwmte9M5pzhPats4DQKSUzSom-WN0un2eMMDbjVKec6z00oWmqEpIJsY8mhOosYUqzQ3QUwpoQKlIqJyg-OmvhtYjNJyRzZ0P0RWOhwg-usRHPXdsWpfO7OV5C5yGAjX3pLP5q4ht-sUN61ZihVfgtrp3Hd9sOfOjA9NtafGnde9Fu8RVE2MmO0UFdtAFOfuIUvdxcr-Z3yeLp9n5-uUgM0zwmGhhQIDzjvKi1LItKmxSUVFmpFeGMVrUCUhJTcp4KWRFOuZFGlkJoRSXjU3Q-7u28-9hAiPnabbztT-ZMEiIo1SrrVXRUGe9C8FDnnW_e-1dySvIBbj7AzQe4-Q_c3iP_eEwzUhn4tf86z0ZnAwC_l7QSqchS_g3GYotW
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2024_3399313
crossref_primary_10_1109_TGRS_2024_3476152
crossref_primary_10_1109_TGRS_2023_3329510
crossref_primary_10_1109_TIM_2023_3330225
crossref_primary_10_1080_2150704X_2024_2391092
crossref_primary_10_1109_TIM_2024_3446609
crossref_primary_10_1109_TGRS_2023_3269097
crossref_primary_10_1109_JSTARS_2022_3229834
crossref_primary_10_1109_TIM_2023_3323997
crossref_primary_10_1109_TIM_2022_3222499
crossref_primary_10_3390_rs16111837
crossref_primary_10_1109_TGRS_2024_3388426
crossref_primary_10_1007_s11760_024_03238_6
crossref_primary_10_1109_TGRS_2024_3388476
crossref_primary_10_1109_TGRS_2023_3346526
crossref_primary_10_1109_TGRS_2023_3341245
crossref_primary_10_1109_TIM_2024_3403211
crossref_primary_10_1109_LGRS_2023_3271899
crossref_primary_10_1109_TGRS_2024_3456799
crossref_primary_10_1109_TIM_2024_3405582
Cites_doi 10.3390/rs11111318
10.1109/MAES.2010.5546306
10.1109/TGRS.2013.2293732
10.1109/JSTARS.2020.3009324
10.1109/CVPR.2011.5995556
10.1080/10618600.2018.1473777
10.1109/ICASSP.2013.6638183
10.1109/TGRS.2014.2343955
10.1109/JSTARS.2016.2531747
10.1109/TGRS.2015.2493201
10.1109/TIP.2017.2773199
10.1109/TIP.2011.2159730
10.1109/79.974730
10.1016/S0167-9473(99)00101-2
10.1117/12.919743
10.1109/MGRS.2021.3105440
10.1109/TGRS.2020.3021671
10.1561/9781601984616
10.1109/JSTARS.2018.2880749
10.1016/j.dsp.2021.102993
10.1109/WHISPERS.2009.5289019
10.1109/TGRS.2019.2936609
10.1109/TGRS.2018.2872590
10.1109/34.868688
10.1109/TGRS.2020.3018879
10.1016/j.isprsjprs.2015.07.003
10.1109/TCYB.2020.2968750
10.1109/TGRS.2021.3057721
10.1109/MSP.2013.2278992
10.1117/12.2224067
10.1109/TGRS.2006.873019
10.1117/12.2568411
10.1109/TGRS.2020.3004478
10.1109/TGRS.2010.2081677
10.1109/JSTARS.2012.2194696
10.1109/LGRS.2013.2250907
10.1023/B:VISI.0000022288.19776.77
10.1109/TGRS.2019.2960391
10.1109/18.857796
10.1109/TGRS.2015.2421638
10.1109/MGRS.2016.2616418
10.1109/TGRS.2015.2479299
10.1109/WHISPERS.2010.5594901
10.1109/TGRS.2021.3097097
10.1109/URSIGASS.2011.6050650
10.1109/JSTARS.2014.2311995
10.1016/j.isprsjprs.2020.09.008
10.1109/29.60107
10.1007/BFb0020217
10.1109/CVPR.2011.5995323
10.1109/TGRS.2003.819189
10.1109/TGRS.2004.841487
10.1016/j.patrec.2019.11.022
10.1109/TGRS.2017.2664658
10.1016/j.jag.2021.102603
10.1007/s00521-020-04754-5
10.1109/TGRS.2012.2201730
10.1109/TGRS.2018.2818159
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2022.3195339
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2022_3195339
9845465
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-9e2e1e03633af97bad9c5e8786b980321df8e0b0cb33547d0313c7c7b44981723
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:43:50 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Wed Oct 01 02:20:18 EDT 2025
Wed Aug 27 02:24:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9e2e1e03633af97bad9c5e8786b980321df8e0b0cb33547d0313c7c7b44981723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1203-741X
0000-0002-9785-7937
PQID 2700411986
PQPubID 85465
PageCount 1
ParticipantIDs crossref_primary_10_1109_TGRS_2022_3195339
crossref_citationtrail_10_1109_TGRS_2022_3195339
proquest_journals_2700411986
ieee_primary_9845465
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
Xu (ref48) 2019
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref26
  doi: 10.3390/rs11111318
– ident: ref4
  doi: 10.1109/MAES.2010.5546306
– ident: ref34
  doi: 10.1109/TGRS.2013.2293732
– ident: ref33
  doi: 10.1109/JSTARS.2020.3009324
– ident: ref39
  doi: 10.1109/CVPR.2011.5995556
– ident: ref49
  doi: 10.1080/10618600.2018.1473777
– ident: ref38
  doi: 10.1109/ICASSP.2013.6638183
– ident: ref25
  doi: 10.1109/TGRS.2014.2343955
– ident: ref54
  doi: 10.1109/JSTARS.2016.2531747
– ident: ref27
  doi: 10.1109/TGRS.2015.2493201
– ident: ref6
  doi: 10.1109/TIP.2017.2773199
– ident: ref7
  doi: 10.1109/TIP.2011.2159730
– ident: ref9
  doi: 10.1109/79.974730
– ident: ref12
  doi: 10.1016/S0167-9473(99)00101-2
– ident: ref45
  doi: 10.1117/12.919743
– ident: ref5
  doi: 10.1109/MGRS.2021.3105440
– ident: ref58
  doi: 10.1109/TGRS.2020.3021671
– ident: ref50
  doi: 10.1561/9781601984616
– ident: ref32
  doi: 10.1109/JSTARS.2018.2880749
– ident: ref23
  doi: 10.1016/j.dsp.2021.102993
– ident: ref15
  doi: 10.1109/WHISPERS.2009.5289019
– ident: ref30
  doi: 10.1109/TGRS.2019.2936609
– ident: ref56
  doi: 10.1109/TGRS.2018.2872590
– ident: ref41
  doi: 10.1109/34.868688
– ident: ref2
  doi: 10.1109/TGRS.2020.3018879
– year: 2019
  ident: ref48
  article-title: Generalized LASSO problem with equality and inequality constraints using ADMM
– ident: ref52
  doi: 10.1016/j.isprsjprs.2015.07.003
– ident: ref29
  doi: 10.1109/TCYB.2020.2968750
– ident: ref59
  doi: 10.1109/TGRS.2021.3057721
– ident: ref8
  doi: 10.1109/MSP.2013.2278992
– ident: ref44
  doi: 10.1117/12.2224067
– ident: ref19
  doi: 10.1109/TGRS.2006.873019
– ident: ref14
  doi: 10.1117/12.2568411
– ident: ref36
  doi: 10.1109/TGRS.2020.3004478
– ident: ref13
  doi: 10.1109/TGRS.2010.2081677
– ident: ref37
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref22
  doi: 10.1109/LGRS.2013.2250907
– ident: ref42
  doi: 10.1023/B:VISI.0000022288.19776.77
– ident: ref55
  doi: 10.1109/TGRS.2019.2960391
– ident: ref17
  doi: 10.1109/18.857796
– ident: ref40
  doi: 10.1109/TGRS.2015.2421638
– ident: ref1
  doi: 10.1109/MGRS.2016.2616418
– ident: ref28
  doi: 10.1109/TGRS.2015.2479299
– ident: ref16
  doi: 10.1109/WHISPERS.2010.5594901
– ident: ref57
  doi: 10.1109/TGRS.2021.3097097
– ident: ref11
  doi: 10.1109/URSIGASS.2011.6050650
– ident: ref20
  doi: 10.1109/JSTARS.2014.2311995
– ident: ref31
  doi: 10.1016/j.isprsjprs.2020.09.008
– ident: ref10
  doi: 10.1109/29.60107
– ident: ref21
  doi: 10.1007/BFb0020217
– ident: ref43
  doi: 10.1109/CVPR.2011.5995323
– ident: ref53
  doi: 10.1109/TGRS.2003.819189
– ident: ref18
  doi: 10.1109/TGRS.2004.841487
– ident: ref46
  doi: 10.1016/j.patrec.2019.11.022
– ident: ref24
  doi: 10.1109/TGRS.2017.2664658
– ident: ref3
  doi: 10.1016/j.jag.2021.102603
– ident: ref47
  doi: 10.1007/s00521-020-04754-5
– ident: ref51
  doi: 10.1109/TGRS.2012.2201730
– ident: ref35
  doi: 10.1109/TGRS.2018.2818159
SSID ssj0014517
Score 2.5110614
Snippet Recently, many collaborative representation-based (CR) algorithms have been proposed for hyperspectral anomaly detection. CR-based detectors approximate the...
Recently, many collaborative representation (CR)-based algorithms have been proposed for hyperspectral anomaly detection (AD). CR-based detectors approximate...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Anomalies
Anomaly detection
Coefficients
Collaboration
Constraints
Detection
Detectors
Dictionaries
Glossaries
hyperspectral imagery
Hyperspectral imaging
Information processing
joint collaborative representation
Mathematical analysis
Object detection
Optimization
Regularization
Representations
Sensors
superpixel segmentation
Title Nonnegative-Constrained Joint Collaborative Representation with Union Dictionary for Hyperspectral Anomaly Detection
URI https://ieeexplore.ieee.org/document/9845465
https://www.proquest.com/docview/2700411986
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6qIOjBVxXriz14EtPmsU2yR1FrKbSHaqG3kN3silhTaVOh_np3Ntv6RLztYTdM-CaZb3ZeAGeRtguBUqF2SwR1qC-4o-24ctAaRTx1RWYi-N1e2B7QzrA5rMDFshZGSmmSz2QdlyaWn43FDK_KGiymOLt7BVaiOCxrtZYRA9r0bGl06GgnwrcRTM9ljfvb_p32BH1fO6iYTcm-2CAzVOXHn9iYl9YWdBeClVklT_VZwevi7VvPxv9Kvg2blmeSy1IxdqAi813Y-NR9cBfWTPanmFah6GG6y4PpAe7gCE8zOEJmpDN-zAty9aErr5L0Te6sLVnKCV7kEs1c9fL60RRJpJM50VSYtLWLW1ZyTlCSfPycjubkWhYm-yvfg0Hr5v6q7dhxDI7QnKBwmPSlJzHwG6SKaSAzJpoy1lBwFruB72Uqli53BQ-CJo0y7AopIhFxSlmseVKwD6v5OJcHQESoNG9CbhIryqhKPYXjRzPGmZAqDWvgLgBKhO1Vjm8-SozP4rIEMU0Q08RiWoPz5ZGXslHHX5uriNFyo4WnBscLLUjspzxNMDJPPY_F4eHvp45gHZ9d3sscw2oxmckTzVQKfmpU9B0Z2uXo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCAEHdkRZfeCESMniLD4itrK0BygStyh2bISAFLUpUvl6PI5bViFuPtjKRG-SeePZAHZjbRcCpSLtlgjqUF9wR9tx5aA1innmitxE8JutqHFLL-7CuzHYH9XCSClN8pms49LE8vOO6ONV2QFLKM7uHofJkFIaVtVao5gBDT1bHB052o3wbQzTc9lB--z6RvuCvq9dVMynZF-skBmr8uNfbAzM6Tw0h6JVeSWP9X7J6-LtW9fG_8q-AHOWaZLDSjUWYUwWSzD7qf_gEkyZ_E_RW4ayhQkv96YLuINDPM3oCJmTi85DUZKjD215leTaZM_aoqWC4FUu0dxVL48fTJlE1h0QTYZJQzu5VS1nFyUpOs_Z04Acy9LkfxUrcHt60j5qOHYggyM0KygdJn3pSQz9BpliGsqciVAmcRJxlriB7-UqkS53BQ-CkMY59oUUsYg5pSzRTClYhYmiU8g1ICJSmjkhO0kUZVRlnsIBpDnjTEiVRTVwhwClwnYrxzd_So3X4rIUMU0R09RiWoO90ZGXqlXHX5uXEaPRRgtPDTaHWpDaj7mXYmyeeh5LovXfT-3AdKPdvEqvzluXGzCDz6luaTZhouz25ZbmLSXfNur6Dkek6TU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonnegative-Constrained+Joint+Collaborative+Representation+with+Union+Dictionary+for+Hyperspectral+Anomaly+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Chang%2C+Shizhen&rft.au=Ghamisi%2C+Pedram&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2022.3195339&rft.externalDocID=9845465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon