Trajectory Tracking Control for a Three-Dimensional Flexible Wing

This brief mainly considers trajectory tracking and vibration suppression for a 3-D flexible wing. The dynamical model of the flexible wing is regarded as a distributed parameter system, which is described by partial differential equations and ordinary differential equations. A control strategy regu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 30; no. 5; pp. 2243 - 2250
Main Authors He, Wei, Tang, Xinyue, Wang, Tingting, Liu, Zhijie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2021.3139087

Cover

Abstract This brief mainly considers trajectory tracking and vibration suppression for a 3-D flexible wing. The dynamical model of the flexible wing is regarded as a distributed parameter system, which is described by partial differential equations and ordinary differential equations. A control strategy regulates the flexible wing to track the desired trajectory by controlling two angles. Meanwhile, two active boundary controllers are proposed to restrain the vibrations both in bending and twisting. By using Lyapunov's direct method, the stability of the flexible wing system can be ensured. Numerical simulations based on the finite-difference method demonstrate the effectiveness of the proposed control schemes.
AbstractList This brief mainly considers trajectory tracking and vibration suppression for a 3-D flexible wing. The dynamical model of the flexible wing is regarded as a distributed parameter system, which is described by partial differential equations and ordinary differential equations. A control strategy regulates the flexible wing to track the desired trajectory by controlling two angles. Meanwhile, two active boundary controllers are proposed to restrain the vibrations both in bending and twisting. By using Lyapunov’s direct method, the stability of the flexible wing system can be ensured. Numerical simulations based on the finite-difference method demonstrate the effectiveness of the proposed control schemes.
Author Wang, Tingting
Liu, Zhijie
He, Wei
Tang, Xinyue
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-8944-9861
  surname: He
  fullname: He, Wei
  email: weihe@ieee.org
  organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Xinyue
  orcidid: 0000-0002-3530-7606
  surname: Tang
  fullname: Tang, Xinyue
  email: tangxinyue6@163.com
  organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
– sequence: 3
  givenname: Tingting
  surname: Wang
  fullname: Wang, Tingting
  email: wttchina@163.com
  organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
– sequence: 4
  givenname: Zhijie
  orcidid: 0000-0001-9522-4178
  surname: Liu
  fullname: Liu, Zhijie
  email: liuzhijie2012@gmail.com
  organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
BookMark eNp9kD9PwzAUxC0EEm3hAyCWSMwp_hM79lgVCkiVGAhitBz3BVzSuNipRL89jloxMDDdDXfvnX5jdNr5DhC6InhKCFa31fylmlJMyZQRprAsT9CIcC5zLAU_TR4LlgvOxDkax7jGmBScliM0q4JZg-192GfJ2k_XvWdz3_XBt1njQ2ay6iMA5HduA110vjNttmjh29UtZG8pfYHOGtNGuDzqBL0u7qv5Y758fniaz5a5pYr1uVpRY1XJgNW0VlzRZiW4XZVF2op5ITGk9WAlcJAFM7JWdQNlXVBSWGllzSbo5nB3G_zXDmKv134X0pyoaYkLrGSSlCKHlA0-xgCN3ga3MWGvCdYDKT2Q0gMpfSSVOuWfjnW96d1Awbj23-b1oekA4PeTElIIUrAfjVx3Tw
CODEN IETTE2
CitedBy_id crossref_primary_10_1002_acs_3644
crossref_primary_10_1080_02564602_2022_2162453
crossref_primary_10_1109_TSMC_2024_3489587
crossref_primary_10_1002_rnc_6505
crossref_primary_10_1007_s40747_022_00920_5
crossref_primary_10_1016_j_cnsns_2025_108697
crossref_primary_10_1016_j_jmaa_2023_127694
crossref_primary_10_1109_TAES_2023_3268607
crossref_primary_10_1177_10775463221113222
crossref_primary_10_1002_rnc_7362
crossref_primary_10_1109_TFUZZ_2022_3175606
crossref_primary_10_1109_TSMC_2024_3376459
crossref_primary_10_1109_LRA_2024_3458591
crossref_primary_10_1109_TCSI_2024_3357690
crossref_primary_10_1109_TCSII_2023_3285658
crossref_primary_10_1109_TCYB_2022_3204275
crossref_primary_10_1002_mma_8539
crossref_primary_10_1016_j_automatica_2025_112155
crossref_primary_10_1002_rnc_7124
crossref_primary_10_1016_j_asr_2025_01_031
crossref_primary_10_1109_TFUZZ_2024_3364245
crossref_primary_10_1016_j_sysconle_2023_105607
crossref_primary_10_1109_TSMC_2024_3357539
crossref_primary_10_1007_s11071_024_10046_7
crossref_primary_10_1109_TIE_2023_3347831
crossref_primary_10_1002_asjc_3483
crossref_primary_10_1109_TFUZZ_2022_3216983
crossref_primary_10_1016_j_knosys_2024_112206
crossref_primary_10_1080_00207179_2023_2207679
crossref_primary_10_1061_JAEEEZ_ASENG_5449
crossref_primary_10_1002_acs_3576
crossref_primary_10_1109_TASE_2022_3186668
crossref_primary_10_1115_1_4064600
crossref_primary_10_1002_acs_3772
crossref_primary_10_1109_TASE_2024_3391312
crossref_primary_10_1109_TAC_2023_3347599
crossref_primary_10_3390_app13031705
crossref_primary_10_1109_TCYB_2023_3278711
crossref_primary_10_1109_TCDS_2023_3316776
crossref_primary_10_1016_j_camwa_2024_03_004
crossref_primary_10_1016_j_jfranklin_2024_01_027
crossref_primary_10_1109_TAES_2024_3401668
crossref_primary_10_1177_10775463231166962
crossref_primary_10_1002_rnc_6862
crossref_primary_10_1109_TCYB_2023_3312491
crossref_primary_10_1002_rnc_6585
crossref_primary_10_1016_j_isatra_2024_09_003
crossref_primary_10_3390_act13060220
crossref_primary_10_1109_TSMC_2024_3420882
crossref_primary_10_1016_j_jfranklin_2024_01_040
crossref_primary_10_1017_S026357472200176X
crossref_primary_10_1080_23307706_2022_2136274
crossref_primary_10_1109_TCDS_2023_3293097
crossref_primary_10_1109_TMECH_2022_3221931
crossref_primary_10_1177_10775463221132877
crossref_primary_10_1088_2631_8695_ad4307
crossref_primary_10_1109_TCYB_2022_3177587
crossref_primary_10_1109_TIE_2023_3260355
crossref_primary_10_3390_mi14081547
crossref_primary_10_1109_TSMC_2023_3301662
crossref_primary_10_1109_TCSII_2022_3220019
crossref_primary_10_1108_RIA_01_2024_0006
crossref_primary_10_1002_acs_3819
crossref_primary_10_1109_TSMC_2024_3487257
crossref_primary_10_1109_TAES_2022_3219804
crossref_primary_10_1007_s10846_023_01805_6
crossref_primary_10_1016_j_ast_2024_109244
crossref_primary_10_1109_TCYB_2022_3227899
crossref_primary_10_1002_rnc_7207
crossref_primary_10_1109_TAES_2022_3208531
crossref_primary_10_1177_10775463221148792
crossref_primary_10_1002_oca_3020
crossref_primary_10_1002_rnc_6679
crossref_primary_10_1109_JSEN_2023_3299329
crossref_primary_10_3390_en16248042
crossref_primary_10_3390_app14072793
crossref_primary_10_1002_acs_3510
crossref_primary_10_1002_acs_3598
crossref_primary_10_1016_j_jai_2023_11_002
crossref_primary_10_1002_oca_2923
crossref_primary_10_1080_23307706_2023_2258525
crossref_primary_10_1002_asjc_3108
crossref_primary_10_1109_TFUZZ_2023_3235402
crossref_primary_10_1016_j_apm_2023_10_029
crossref_primary_10_1109_TFUZZ_2023_3319392
crossref_primary_10_1007_s11071_024_09341_0
crossref_primary_10_1109_TASE_2024_3368415
crossref_primary_10_1109_TSMC_2022_3213477
Cites_doi 10.1109/TRO.2006.875480
10.1109/JAS.2020.1003225
10.2514/1.C032853
10.1109/TMECH.2014.2358500
10.1007/s11424-020-9210-0
10.1109/TSMC.2018.2870999
10.1017/CBO9780511551154
10.1007/s11432-019-2764-1
10.1098/rsif.2017.0224
10.1109/TSMC.2019.2944999
10.1007/s11424-018-7182-0
10.1016/j.compfluid.2014.12.002
10.1109/TMECH.2020.2987963
10.1049/PBCE068E
10.1109/ACCESS.2020.3024793
10.1016/j.apm.2021.03.040
10.1109/TRO.2013.2240711
10.1109/TSMC.2020.2999485
10.1007/978-3-662-04641-8
10.1109/LRA.2021.3059626
10.2514/1.40473
10.1109/TIE.2019.2931230
10.1108/AA-06-2019-0103
10.1109/TNNLS.2016.2516948
10.1109/TSMC.2021.3104862
10.1007/s11432-020-3109-x
10.1109/TIE.2018.2884172
10.1137/1.9780898718607
10.1016/j.automatica.2018.10.030
10.1016/j.ast.2019.105593
10.1109/TAC.2018.2793940
10.1109/ACCESS.2019.2946018
10.1115/1.1399379
10.1007/s11432-019-2893-y
10.1016/j.ifacol.2015.12.161
10.1109/TNNLS.2020.2979600
10.1016/j.ast.2020.105944
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2021.3139087
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplorer
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplorer
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 2250
ExternalDocumentID 10_1109_TCST_2021_3139087
9686614
Genre orig-research
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  grantid: JQ20026
  funderid: 10.13039/501100004826
– fundername: National Natural Science Foundation of China
  grantid: 61933001; 62073030; U20A20225
  funderid: 10.13039/501100001809
– fundername: Beijing Top Discipline for Artificial Intelligence Science and Engineering, University of Science and Technology Beijing
  funderid: 10.13039/501100008778
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c293t-9d2ac973e3b2b9592fd65cd7408705480e202ec8e5e843a8b9bfe7b4214c8c8b3
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Mon Jun 30 07:17:45 EDT 2025
Wed Oct 01 03:14:44 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Wed Aug 27 02:22:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9d2ac973e3b2b9592fd65cd7408705480e202ec8e5e843a8b9bfe7b4214c8c8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9522-4178
0000-0002-3530-7606
0000-0002-8944-9861
PQID 2704098270
PQPubID 85425
PageCount 8
ParticipantIDs crossref_primary_10_1109_TCST_2021_3139087
ieee_primary_9686614
proquest_journals_2704098270
crossref_citationtrail_10_1109_TCST_2021_3139087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Sept.
2022-9-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ren (ref19) 2021
ref4
ref3
chattaraj (ref36) 2019; 28
ref6
ref5
References_xml – volume: 28
  start-page: 1
  year: 2019
  ident: ref36
  article-title: Design of a distributed compliant mechanism using spring-lever model and topology optimization for piezoelectrically actuated flapping wings
  publication-title: Mechanics of Advanced Materials and Structures
– ident: ref3
  doi: 10.1109/TRO.2006.875480
– ident: ref9
  doi: 10.1109/JAS.2020.1003225
– ident: ref7
  doi: 10.2514/1.C032853
– ident: ref34
  doi: 10.1109/TMECH.2014.2358500
– ident: ref10
  doi: 10.1007/s11424-020-9210-0
– ident: ref21
  doi: 10.1109/TSMC.2018.2870999
– ident: ref39
  doi: 10.1017/CBO9780511551154
– ident: ref2
  doi: 10.1007/s11432-019-2764-1
– ident: ref28
  doi: 10.1098/rsif.2017.0224
– ident: ref11
  doi: 10.1109/TSMC.2019.2944999
– ident: ref15
  doi: 10.1007/s11424-018-7182-0
– ident: ref31
  doi: 10.1016/j.compfluid.2014.12.002
– ident: ref33
  doi: 10.1109/TMECH.2020.2987963
– ident: ref35
  doi: 10.1049/PBCE068E
– ident: ref6
  doi: 10.1109/ACCESS.2020.3024793
– ident: ref17
  doi: 10.1016/j.apm.2021.03.040
– ident: ref23
  doi: 10.1109/TRO.2013.2240711
– ident: ref24
  doi: 10.1109/TSMC.2020.2999485
– ident: ref37
  doi: 10.1007/978-3-662-04641-8
– ident: ref1
  doi: 10.1109/LRA.2021.3059626
– ident: ref30
  doi: 10.2514/1.40473
– ident: ref16
  doi: 10.1109/TIE.2019.2931230
– ident: ref4
  doi: 10.1108/AA-06-2019-0103
– ident: ref5
  doi: 10.1109/TNNLS.2016.2516948
– ident: ref8
  doi: 10.1109/TSMC.2021.3104862
– ident: ref12
  doi: 10.1007/s11432-020-3109-x
– year: 2021
  ident: ref19
  article-title: Adaptive fault-tolerant boundary control for a flexible string with unknown dead zone and actuator fault
  publication-title: IEEE Trans Cybern
– ident: ref13
  doi: 10.1109/TIE.2018.2884172
– ident: ref22
  doi: 10.1137/1.9780898718607
– ident: ref26
  doi: 10.1016/j.automatica.2018.10.030
– ident: ref32
  doi: 10.1016/j.ast.2019.105593
– ident: ref14
  doi: 10.1109/TAC.2018.2793940
– ident: ref20
  doi: 10.1109/ACCESS.2019.2946018
– ident: ref38
  doi: 10.1115/1.1399379
– ident: ref25
  doi: 10.1007/s11432-019-2893-y
– ident: ref27
  doi: 10.1016/j.ifacol.2015.12.161
– ident: ref18
  doi: 10.1109/TNNLS.2020.2979600
– ident: ref29
  doi: 10.1016/j.ast.2020.105944
SSID ssj0014527
Score 2.6469138
Snippet This brief mainly considers trajectory tracking and vibration suppression for a 3-D flexible wing. The dynamical model of the flexible wing is regarded as a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2243
SubjectTerms 3-D flexible wing
Aerospace electronics
Bending
distributed parameter system
Dynamic models
Finite difference method
Flexible wings
Mathematical models
Partial differential equations
Solid modeling
Tracking control
Trajectory
Trajectory control
Trajectory tracking
trajectory tracking control
Vibration control
Vibrations
Title Trajectory Tracking Control for a Three-Dimensional Flexible Wing
URI https://ieeexplore.ieee.org/document/9686614
https://www.proquest.com/docview/2704098270
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplorer
  customDbUrl:
  eissn: 1558-0865
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014527
  issn: 1063-6536
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RTjDwRpSXPDAhXFrbSewRFaoKqSwEwRbFzmWAqkXQDvDrOTtphAAhpniwJevOufd9B3BqZBHJQkWcVIHgSjjHrVOaI8ZC28IZW_p4x_g2Ht2rm8focQXOm14YRAzFZ9j1y5DLL2Zu4UNlFybWXp20oJXouOrVajIGqhrPSh6O5HFISXZqPM2LdHCXkico-uSgkovvq-e-6KAwVOWHJA7qZbgB4-XFqqqS5-5ibrvu4xtm439vvgnrtZ3JLquHsQUrON2GtS_ogztwSXrqKQTt3xktnQ-as0FVus7IlmU5S4nTyK_8BIAKvYMNPYCmnSB7oN27cD-8TgcjXk9U4I7U-pybQuTOJBKlFdZERpRFHLkiUUSUnkd-QyITOo0RaiVzbYlVmFgl-sppp63cg_Z0NsV9YP0kV7osRa80TuXWWUm2hEkKElqlJMHRgd6Sxpmr4cb91ItJFtyOnsk8WzLPlqxmSwfOmiMvFdbGX5t3PJmbjTWFO3C0ZGRW_41vmUhIVBlNn4PfTx3CqvBtDaF27Aja89cFHpOxMbcn4ZV9Ap3Nz0k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PTAhXFrbSewRFaryKAtBsEWxcxkAFQTtAL-es5NWCBBiigdbsu6ce993AAdGFpEsVMRJFQiuhHPcOqU5Yiy0LZyxpY939K_j3q26uI_up-Bo0guDiKH4DJt-GXL5xbMb-VDZsYm1VyfTMBsppaKqW2uSM1DVgFbycSSPQ1KyUSNqHqedm5R8QdEmF5WcfF8_90ULhbEqP2RxUDDdJeiPr1bVlTw2R0PbdB_fUBv_e_dlWKwtTXZSPY0VmMLBKix8wR9cgxPSVA8hbP_OaOl82Jx1quJ1RtYsy1lKvEZ-6mcAVPgdrOshNO0TsjvavQ633bO00-P1TAXuSLEPuSlE7kwiUVphTWREWcSRKxJFRGl57DckMqHTGKFWMteWmIWJVaKtnHbayg2YGTwPcBNYO8mVLkvRKo1TuXVWkjVhkoLEVilJdDSgNaZx5mrAcT_34ikLjkfLZJ4tmWdLVrOlAYeTIy8V2sZfm9c8mScbawo3YGfMyKz-H98ykZCwMpo-W7-f2oe5Xtq_yq7Ory-3YV74JodQSbYDM8PXEe6S6TG0e-HFfQKlZ9KW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Tracking+Control+for+a+Three-Dimensional+Flexible+Wing&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=He%2C+Wei&rft.au=Tang%2C+Xinyue&rft.au=Wang%2C+Tingting&rft.au=Liu%2C+Zhijie&rft.date=2022-09-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=30&rft.issue=5&rft.spage=2243&rft.epage=2250&rft_id=info:doi/10.1109%2FTCST.2021.3139087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2021_3139087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon