Trajectory Tracking Control for a Three-Dimensional Flexible Wing
This brief mainly considers trajectory tracking and vibration suppression for a 3-D flexible wing. The dynamical model of the flexible wing is regarded as a distributed parameter system, which is described by partial differential equations and ordinary differential equations. A control strategy regu...
Saved in:
| Published in | IEEE transactions on control systems technology Vol. 30; no. 5; pp. 2243 - 2250 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6536 1558-0865 |
| DOI | 10.1109/TCST.2021.3139087 |
Cover
| Abstract | This brief mainly considers trajectory tracking and vibration suppression for a 3-D flexible wing. The dynamical model of the flexible wing is regarded as a distributed parameter system, which is described by partial differential equations and ordinary differential equations. A control strategy regulates the flexible wing to track the desired trajectory by controlling two angles. Meanwhile, two active boundary controllers are proposed to restrain the vibrations both in bending and twisting. By using Lyapunov's direct method, the stability of the flexible wing system can be ensured. Numerical simulations based on the finite-difference method demonstrate the effectiveness of the proposed control schemes. |
|---|---|
| AbstractList | This brief mainly considers trajectory tracking and vibration suppression for a 3-D flexible wing. The dynamical model of the flexible wing is regarded as a distributed parameter system, which is described by partial differential equations and ordinary differential equations. A control strategy regulates the flexible wing to track the desired trajectory by controlling two angles. Meanwhile, two active boundary controllers are proposed to restrain the vibrations both in bending and twisting. By using Lyapunov’s direct method, the stability of the flexible wing system can be ensured. Numerical simulations based on the finite-difference method demonstrate the effectiveness of the proposed control schemes. |
| Author | Wang, Tingting Liu, Zhijie He, Wei Tang, Xinyue |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-8944-9861 surname: He fullname: He, Wei email: weihe@ieee.org organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Xinyue orcidid: 0000-0002-3530-7606 surname: Tang fullname: Tang, Xinyue email: tangxinyue6@163.com organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Tingting surname: Wang fullname: Wang, Tingting email: wttchina@163.com organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China – sequence: 4 givenname: Zhijie orcidid: 0000-0001-9522-4178 surname: Liu fullname: Liu, Zhijie email: liuzhijie2012@gmail.com organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China |
| BookMark | eNp9kD9PwzAUxC0EEm3hAyCWSMwp_hM79lgVCkiVGAhitBz3BVzSuNipRL89jloxMDDdDXfvnX5jdNr5DhC6InhKCFa31fylmlJMyZQRprAsT9CIcC5zLAU_TR4LlgvOxDkax7jGmBScliM0q4JZg-192GfJ2k_XvWdz3_XBt1njQ2ay6iMA5HduA110vjNttmjh29UtZG8pfYHOGtNGuDzqBL0u7qv5Y758fniaz5a5pYr1uVpRY1XJgNW0VlzRZiW4XZVF2op5ITGk9WAlcJAFM7JWdQNlXVBSWGllzSbo5nB3G_zXDmKv134X0pyoaYkLrGSSlCKHlA0-xgCN3ga3MWGvCdYDKT2Q0gMpfSSVOuWfjnW96d1Awbj23-b1oekA4PeTElIIUrAfjVx3Tw |
| CODEN | IETTE2 |
| CitedBy_id | crossref_primary_10_1002_acs_3644 crossref_primary_10_1080_02564602_2022_2162453 crossref_primary_10_1109_TSMC_2024_3489587 crossref_primary_10_1002_rnc_6505 crossref_primary_10_1007_s40747_022_00920_5 crossref_primary_10_1016_j_cnsns_2025_108697 crossref_primary_10_1016_j_jmaa_2023_127694 crossref_primary_10_1109_TAES_2023_3268607 crossref_primary_10_1177_10775463221113222 crossref_primary_10_1002_rnc_7362 crossref_primary_10_1109_TFUZZ_2022_3175606 crossref_primary_10_1109_TSMC_2024_3376459 crossref_primary_10_1109_LRA_2024_3458591 crossref_primary_10_1109_TCSI_2024_3357690 crossref_primary_10_1109_TCSII_2023_3285658 crossref_primary_10_1109_TCYB_2022_3204275 crossref_primary_10_1002_mma_8539 crossref_primary_10_1016_j_automatica_2025_112155 crossref_primary_10_1002_rnc_7124 crossref_primary_10_1016_j_asr_2025_01_031 crossref_primary_10_1109_TFUZZ_2024_3364245 crossref_primary_10_1016_j_sysconle_2023_105607 crossref_primary_10_1109_TSMC_2024_3357539 crossref_primary_10_1007_s11071_024_10046_7 crossref_primary_10_1109_TIE_2023_3347831 crossref_primary_10_1002_asjc_3483 crossref_primary_10_1109_TFUZZ_2022_3216983 crossref_primary_10_1016_j_knosys_2024_112206 crossref_primary_10_1080_00207179_2023_2207679 crossref_primary_10_1061_JAEEEZ_ASENG_5449 crossref_primary_10_1002_acs_3576 crossref_primary_10_1109_TASE_2022_3186668 crossref_primary_10_1115_1_4064600 crossref_primary_10_1002_acs_3772 crossref_primary_10_1109_TASE_2024_3391312 crossref_primary_10_1109_TAC_2023_3347599 crossref_primary_10_3390_app13031705 crossref_primary_10_1109_TCYB_2023_3278711 crossref_primary_10_1109_TCDS_2023_3316776 crossref_primary_10_1016_j_camwa_2024_03_004 crossref_primary_10_1016_j_jfranklin_2024_01_027 crossref_primary_10_1109_TAES_2024_3401668 crossref_primary_10_1177_10775463231166962 crossref_primary_10_1002_rnc_6862 crossref_primary_10_1109_TCYB_2023_3312491 crossref_primary_10_1002_rnc_6585 crossref_primary_10_1016_j_isatra_2024_09_003 crossref_primary_10_3390_act13060220 crossref_primary_10_1109_TSMC_2024_3420882 crossref_primary_10_1016_j_jfranklin_2024_01_040 crossref_primary_10_1017_S026357472200176X crossref_primary_10_1080_23307706_2022_2136274 crossref_primary_10_1109_TCDS_2023_3293097 crossref_primary_10_1109_TMECH_2022_3221931 crossref_primary_10_1177_10775463221132877 crossref_primary_10_1088_2631_8695_ad4307 crossref_primary_10_1109_TCYB_2022_3177587 crossref_primary_10_1109_TIE_2023_3260355 crossref_primary_10_3390_mi14081547 crossref_primary_10_1109_TSMC_2023_3301662 crossref_primary_10_1109_TCSII_2022_3220019 crossref_primary_10_1108_RIA_01_2024_0006 crossref_primary_10_1002_acs_3819 crossref_primary_10_1109_TSMC_2024_3487257 crossref_primary_10_1109_TAES_2022_3219804 crossref_primary_10_1007_s10846_023_01805_6 crossref_primary_10_1016_j_ast_2024_109244 crossref_primary_10_1109_TCYB_2022_3227899 crossref_primary_10_1002_rnc_7207 crossref_primary_10_1109_TAES_2022_3208531 crossref_primary_10_1177_10775463221148792 crossref_primary_10_1002_oca_3020 crossref_primary_10_1002_rnc_6679 crossref_primary_10_1109_JSEN_2023_3299329 crossref_primary_10_3390_en16248042 crossref_primary_10_3390_app14072793 crossref_primary_10_1002_acs_3510 crossref_primary_10_1002_acs_3598 crossref_primary_10_1016_j_jai_2023_11_002 crossref_primary_10_1002_oca_2923 crossref_primary_10_1080_23307706_2023_2258525 crossref_primary_10_1002_asjc_3108 crossref_primary_10_1109_TFUZZ_2023_3235402 crossref_primary_10_1016_j_apm_2023_10_029 crossref_primary_10_1109_TFUZZ_2023_3319392 crossref_primary_10_1007_s11071_024_09341_0 crossref_primary_10_1109_TASE_2024_3368415 crossref_primary_10_1109_TSMC_2022_3213477 |
| Cites_doi | 10.1109/TRO.2006.875480 10.1109/JAS.2020.1003225 10.2514/1.C032853 10.1109/TMECH.2014.2358500 10.1007/s11424-020-9210-0 10.1109/TSMC.2018.2870999 10.1017/CBO9780511551154 10.1007/s11432-019-2764-1 10.1098/rsif.2017.0224 10.1109/TSMC.2019.2944999 10.1007/s11424-018-7182-0 10.1016/j.compfluid.2014.12.002 10.1109/TMECH.2020.2987963 10.1049/PBCE068E 10.1109/ACCESS.2020.3024793 10.1016/j.apm.2021.03.040 10.1109/TRO.2013.2240711 10.1109/TSMC.2020.2999485 10.1007/978-3-662-04641-8 10.1109/LRA.2021.3059626 10.2514/1.40473 10.1109/TIE.2019.2931230 10.1108/AA-06-2019-0103 10.1109/TNNLS.2016.2516948 10.1109/TSMC.2021.3104862 10.1007/s11432-020-3109-x 10.1109/TIE.2018.2884172 10.1137/1.9780898718607 10.1016/j.automatica.2018.10.030 10.1016/j.ast.2019.105593 10.1109/TAC.2018.2793940 10.1109/ACCESS.2019.2946018 10.1115/1.1399379 10.1007/s11432-019-2893-y 10.1016/j.ifacol.2015.12.161 10.1109/TNNLS.2020.2979600 10.1016/j.ast.2020.105944 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
| DOI | 10.1109/TCST.2021.3139087 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplorer CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Engineering Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplorer url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0865 |
| EndPage | 2250 |
| ExternalDocumentID | 10_1109_TCST_2021_3139087 9686614 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Beijing Natural Science Foundation grantid: JQ20026 funderid: 10.13039/501100004826 – fundername: National Natural Science Foundation of China grantid: 61933001; 62073030; U20A20225 funderid: 10.13039/501100001809 – fundername: Beijing Top Discipline for Artificial Intelligence Science and Engineering, University of Science and Technology Beijing funderid: 10.13039/501100008778 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
| ID | FETCH-LOGICAL-c293t-9d2ac973e3b2b9592fd65cd7408705480e202ec8e5e843a8b9bfe7b4214c8c8b3 |
| IEDL.DBID | RIE |
| ISSN | 1063-6536 |
| IngestDate | Mon Jun 30 07:17:45 EDT 2025 Wed Oct 01 03:14:44 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Wed Aug 27 02:22:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-9d2ac973e3b2b9592fd65cd7408705480e202ec8e5e843a8b9bfe7b4214c8c8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9522-4178 0000-0002-3530-7606 0000-0002-8944-9861 |
| PQID | 2704098270 |
| PQPubID | 85425 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_TCST_2021_3139087 ieee_primary_9686614 proquest_journals_2704098270 crossref_citationtrail_10_1109_TCST_2021_3139087 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Sept. 2022-9-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on control systems technology |
| PublicationTitleAbbrev | TCST |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ren (ref19) 2021 ref4 ref3 chattaraj (ref36) 2019; 28 ref6 ref5 |
| References_xml | – volume: 28 start-page: 1 year: 2019 ident: ref36 article-title: Design of a distributed compliant mechanism using spring-lever model and topology optimization for piezoelectrically actuated flapping wings publication-title: Mechanics of Advanced Materials and Structures – ident: ref3 doi: 10.1109/TRO.2006.875480 – ident: ref9 doi: 10.1109/JAS.2020.1003225 – ident: ref7 doi: 10.2514/1.C032853 – ident: ref34 doi: 10.1109/TMECH.2014.2358500 – ident: ref10 doi: 10.1007/s11424-020-9210-0 – ident: ref21 doi: 10.1109/TSMC.2018.2870999 – ident: ref39 doi: 10.1017/CBO9780511551154 – ident: ref2 doi: 10.1007/s11432-019-2764-1 – ident: ref28 doi: 10.1098/rsif.2017.0224 – ident: ref11 doi: 10.1109/TSMC.2019.2944999 – ident: ref15 doi: 10.1007/s11424-018-7182-0 – ident: ref31 doi: 10.1016/j.compfluid.2014.12.002 – ident: ref33 doi: 10.1109/TMECH.2020.2987963 – ident: ref35 doi: 10.1049/PBCE068E – ident: ref6 doi: 10.1109/ACCESS.2020.3024793 – ident: ref17 doi: 10.1016/j.apm.2021.03.040 – ident: ref23 doi: 10.1109/TRO.2013.2240711 – ident: ref24 doi: 10.1109/TSMC.2020.2999485 – ident: ref37 doi: 10.1007/978-3-662-04641-8 – ident: ref1 doi: 10.1109/LRA.2021.3059626 – ident: ref30 doi: 10.2514/1.40473 – ident: ref16 doi: 10.1109/TIE.2019.2931230 – ident: ref4 doi: 10.1108/AA-06-2019-0103 – ident: ref5 doi: 10.1109/TNNLS.2016.2516948 – ident: ref8 doi: 10.1109/TSMC.2021.3104862 – ident: ref12 doi: 10.1007/s11432-020-3109-x – year: 2021 ident: ref19 article-title: Adaptive fault-tolerant boundary control for a flexible string with unknown dead zone and actuator fault publication-title: IEEE Trans Cybern – ident: ref13 doi: 10.1109/TIE.2018.2884172 – ident: ref22 doi: 10.1137/1.9780898718607 – ident: ref26 doi: 10.1016/j.automatica.2018.10.030 – ident: ref32 doi: 10.1016/j.ast.2019.105593 – ident: ref14 doi: 10.1109/TAC.2018.2793940 – ident: ref20 doi: 10.1109/ACCESS.2019.2946018 – ident: ref38 doi: 10.1115/1.1399379 – ident: ref25 doi: 10.1007/s11432-019-2893-y – ident: ref27 doi: 10.1016/j.ifacol.2015.12.161 – ident: ref18 doi: 10.1109/TNNLS.2020.2979600 – ident: ref29 doi: 10.1016/j.ast.2020.105944 |
| SSID | ssj0014527 |
| Score | 2.6469138 |
| Snippet | This brief mainly considers trajectory tracking and vibration suppression for a 3-D flexible wing. The dynamical model of the flexible wing is regarded as a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2243 |
| SubjectTerms | 3-D flexible wing Aerospace electronics Bending distributed parameter system Dynamic models Finite difference method Flexible wings Mathematical models Partial differential equations Solid modeling Tracking control Trajectory Trajectory control Trajectory tracking trajectory tracking control Vibration control Vibrations |
| Title | Trajectory Tracking Control for a Three-Dimensional Flexible Wing |
| URI | https://ieeexplore.ieee.org/document/9686614 https://www.proquest.com/docview/2704098270 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplorer customDbUrl: eissn: 1558-0865 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014527 issn: 1063-6536 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RTjDwRpSXPDAhXFrbSewRFaoKqSwEwRbFzmWAqkXQDvDrOTtphAAhpniwJevOufd9B3BqZBHJQkWcVIHgSjjHrVOaI8ZC28IZW_p4x_g2Ht2rm8focQXOm14YRAzFZ9j1y5DLL2Zu4UNlFybWXp20oJXouOrVajIGqhrPSh6O5HFISXZqPM2LdHCXkico-uSgkovvq-e-6KAwVOWHJA7qZbgB4-XFqqqS5-5ibrvu4xtm439vvgnrtZ3JLquHsQUrON2GtS_ogztwSXrqKQTt3xktnQ-as0FVus7IlmU5S4nTyK_8BIAKvYMNPYCmnSB7oN27cD-8TgcjXk9U4I7U-pybQuTOJBKlFdZERpRFHLkiUUSUnkd-QyITOo0RaiVzbYlVmFgl-sppp63cg_Z0NsV9YP0kV7osRa80TuXWWUm2hEkKElqlJMHRgd6Sxpmr4cb91ItJFtyOnsk8WzLPlqxmSwfOmiMvFdbGX5t3PJmbjTWFO3C0ZGRW_41vmUhIVBlNn4PfTx3CqvBtDaF27Aja89cFHpOxMbcn4ZV9Ap3Nz0k |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PTAhXFrbSewRFaryKAtBsEWxcxkAFQTtAL-es5NWCBBiigdbsu6ce993AAdGFpEsVMRJFQiuhHPcOqU5Yiy0LZyxpY939K_j3q26uI_up-Bo0guDiKH4DJt-GXL5xbMb-VDZsYm1VyfTMBsppaKqW2uSM1DVgFbycSSPQ1KyUSNqHqedm5R8QdEmF5WcfF8_90ULhbEqP2RxUDDdJeiPr1bVlTw2R0PbdB_fUBv_e_dlWKwtTXZSPY0VmMLBKix8wR9cgxPSVA8hbP_OaOl82Jx1quJ1RtYsy1lKvEZ-6mcAVPgdrOshNO0TsjvavQ633bO00-P1TAXuSLEPuSlE7kwiUVphTWREWcSRKxJFRGl57DckMqHTGKFWMteWmIWJVaKtnHbayg2YGTwPcBNYO8mVLkvRKo1TuXVWkjVhkoLEVilJdDSgNaZx5mrAcT_34ikLjkfLZJ4tmWdLVrOlAYeTIy8V2sZfm9c8mScbawo3YGfMyKz-H98ykZCwMpo-W7-f2oe5Xtq_yq7Ory-3YV74JodQSbYDM8PXEe6S6TG0e-HFfQKlZ9KW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Tracking+Control+for+a+Three-Dimensional+Flexible+Wing&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=He%2C+Wei&rft.au=Tang%2C+Xinyue&rft.au=Wang%2C+Tingting&rft.au=Liu%2C+Zhijie&rft.date=2022-09-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=30&rft.issue=5&rft.spage=2243&rft.epage=2250&rft_id=info:doi/10.1109%2FTCST.2021.3139087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2021_3139087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |