Message-Passing-Driven Triplet Representation for Geo-Object Relational Inference in HRSI
A high-resolution remote sensing image (HRSI) scene typically contains multiple geo-objects, and geospatial relations among these geo-objects are obvious. As the important information conveyed by HRSI, the intelligent expression of geospatial relation is helpful in understanding HRSI scenes. Previou...
        Saved in:
      
    
          | Published in | IEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1545-598X 1558-0571  | 
| DOI | 10.1109/LGRS.2020.3038569 | 
Cover
| Abstract | A high-resolution remote sensing image (HRSI) scene typically contains multiple geo-objects, and geospatial relations among these geo-objects are obvious. As the important information conveyed by HRSI, the intelligent expression of geospatial relation is helpful in understanding HRSI scenes. Previous HRSI semantic understanding was mainly based on image captions that only generate one sentence to describe image content, thereby resulting in insufficient understanding of the scene. Thus, the present letter proposes an approach to represent geospatial relations in an HRSI scene with structured form of <inline-formula> <tex-math notation="LaTeX">\langle </tex-math></inline-formula>subject, geospatial relation, object<inline-formula> <tex-math notation="LaTeX">\rangle </tex-math></inline-formula>. A geospatial relation triplet representation data set that contains visual and semantic information, such as category, location, and geospatial relations of the geo-objects, is constructed first. An "object-relation" message-passing mechanism is adopted to enhance the information exchange between the geo-objects and geospatial relations to predict triplets accurately. The experimental results show that the proposed method can effectively predict the geospatial relation in a HRSI scene. | 
    
|---|---|
| AbstractList | A high-resolution remote sensing image (HRSI) scene typically contains multiple geo-objects, and geospatial relations among these geo-objects are obvious. As the important information conveyed by HRSI, the intelligent expression of geospatial relation is helpful in understanding HRSI scenes. Previous HRSI semantic understanding was mainly based on image captions that only generate one sentence to describe image content, thereby resulting in insufficient understanding of the scene. Thus, the present letter proposes an approach to represent geospatial relations in an HRSI scene with structured form of [Formula Omitted]subject, geospatial relation, object[Formula Omitted]. A geospatial relation triplet representation data set that contains visual and semantic information, such as category, location, and geospatial relations of the geo-objects, is constructed first. An “object-relation” message-passing mechanism is adopted to enhance the information exchange between the geo-objects and geospatial relations to predict triplets accurately. The experimental results show that the proposed method can effectively predict the geospatial relation in a HRSI scene. A high-resolution remote sensing image (HRSI) scene typically contains multiple geo-objects, and geospatial relations among these geo-objects are obvious. As the important information conveyed by HRSI, the intelligent expression of geospatial relation is helpful in understanding HRSI scenes. Previous HRSI semantic understanding was mainly based on image captions that only generate one sentence to describe image content, thereby resulting in insufficient understanding of the scene. Thus, the present letter proposes an approach to represent geospatial relations in an HRSI scene with structured form of <inline-formula> <tex-math notation="LaTeX">\langle </tex-math></inline-formula>subject, geospatial relation, object<inline-formula> <tex-math notation="LaTeX">\rangle </tex-math></inline-formula>. A geospatial relation triplet representation data set that contains visual and semantic information, such as category, location, and geospatial relations of the geo-objects, is constructed first. An "object-relation" message-passing mechanism is adopted to enhance the information exchange between the geo-objects and geospatial relations to predict triplets accurately. The experimental results show that the proposed method can effectively predict the geospatial relation in a HRSI scene.  | 
    
| Author | Zhang, Yi Deng, Min Li, Haifeng Chen, Jie Zhou, Xing Sun, Geng  | 
    
| Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0002-3864-9265 surname: Chen fullname: Chen, Jie email: cjcsu@hotmail.com organization: School of Geosciences and Info-physics, Central South University, Changsha, China – sequence: 2 givenname: Xing surname: Zhou fullname: Zhou, Xing email: 175011013@csu.edu.cn organization: School of Geosciences and Info-physics, Central South University, Changsha, China – sequence: 3 givenname: Yi surname: Zhang fullname: Zhang, Yi email: zhangyi_csu@csu.edu.cn organization: School of Geosciences and Info-physics, Central South University, Changsha, China – sequence: 4 givenname: Geng surname: Sun fullname: Sun, Geng email: 0106170206@csu.edu.cn organization: School of Geosciences and Info-physics, Central South University, Changsha, China – sequence: 5 givenname: Min surname: Deng fullname: Deng, Min email: dengmin028@yahoo.com organization: School of Geosciences and Info-physics, Central South University, Changsha, China – sequence: 6 givenname: Haifeng orcidid: 0000-0003-1173-6593 surname: Li fullname: Li, Haifeng email: lihaifeng@csu.edu.cn organization: School of Geosciences and Info-physics, Central South University, Changsha, China  | 
    
| BookMark | eNp9kE1Lw0AQQBdRsK3-APES8Lx1P7Kb7FGqtoVKpa2gp2WTTMqWuIm7qeC_tzHFgwdPM8zMmxneEJ262gFCV5SMKSXqdjFdrceMMDLmhKdCqhM0oEKkmIiEnnZ5LLBQ6es5GoawI4TFaZoM0NsThGC2gJ9NCNZt8b23n-CijbdNBW20gsZDANea1tYuKmsfTaHGy2wHedetfuqmiuauBA8uh8i6aLZazy_QWWmqAJfHOEIvjw-byQwvltP55G6Bc6Z4i1VG4oJLmWVSMMNpqgqmSiNLQgqpUqqSJCk5JSBpzDg1UMQiVbLMGYmNEjEfoZt-b-Prjz2EVu_qvT-8FDSTBwWUSd5N0X4q93UIHkrdePtu_JemRHcGdWdQdwb10eCBSf4wue09tN7Y6l_yuictAPxeUpwJQRT_BnDffuE | 
    
| CODEN | IGRSBY | 
    
| CitedBy_id | crossref_primary_10_1109_TPAMI_2024_3508072 | 
    
| Cites_doi | 10.3390/rs10050743 10.1109/ICCV.2017.121 10.1109/CVPR.2018.00611 10.1109/CVPRW.2019.00058 10.1007/978-3-319-46448-0_51 10.1016/j.isprsjprs.2018.06.005 10.1109/TGRS.2016.2601622 10.1109/TGRS.2017.2677464 10.1080/01431161.2019.1594439 10.1007/s11263-016-0981-7 10.1080/13658810701602104 10.1109/CVPR.2017.352 10.1109/CITS.2016.7546397 10.1109/TGRS.2017.2776321 10.1109/FSKD.2008.490 10.1109/TGRS.2017.2778300 10.1109/LGRS.2019.2893772 10.1109/LGRS.2019.2930462 10.1109/CVPR.2017.330  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D  | 
    
| DOI | 10.1109/LGRS.2020.3038569 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Geology  | 
    
| EISSN | 1558-0571 | 
    
| EndPage | 5 | 
    
| ExternalDocumentID | 10_1109_LGRS_2020_3038569 9325509  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province, China grantid: 2020JJ4691 funderid: 10.13039/501100004735 – fundername: National Natural Science Foundation of China grantid: 41671357; 42071427 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c293t-9b04d366bb652a3189d29fa6f00d69819777f310e614231aed45896fc204a9543 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1545-598X | 
    
| IngestDate | Mon Jun 30 10:23:00 EDT 2025 Wed Oct 01 04:25:46 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Wed Aug 27 05:00:43 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c293t-9b04d366bb652a3189d29fa6f00d69819777f310e614231aed45896fc204a9543 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-3864-9265 0000-0003-1173-6593  | 
    
| PQID | 2615512634 | 
    
| PQPubID | 75725 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | proquest_journals_2615512634 ieee_primary_9325509 crossref_primary_10_1109_LGRS_2020_3038569 crossref_citationtrail_10_1109_LGRS_2020_3038569  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220000 2022-00-00 20220101  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 20220000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE geoscience and remote sensing letters | 
    
| PublicationTitleAbbrev | LGRS | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 Xu (ref21) Mou (ref5) 2018  | 
    
| References_xml | – start-page: 2048 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref21 article-title: Show, attend and tell: Neural image caption generation with visual attention – ident: ref6 doi: 10.3390/rs10050743 – ident: ref10 doi: 10.1109/ICCV.2017.121 – ident: ref13 doi: 10.1109/CVPR.2018.00611 – ident: ref8 doi: 10.1109/CVPRW.2019.00058 – ident: ref9 doi: 10.1007/978-3-319-46448-0_51 – ident: ref4 doi: 10.1016/j.isprsjprs.2018.06.005 – ident: ref2 doi: 10.1109/TGRS.2016.2601622 – ident: ref16 doi: 10.1109/TGRS.2017.2677464 – ident: ref17 doi: 10.1080/01431161.2019.1594439 – ident: ref11 doi: 10.1007/s11263-016-0981-7 – ident: ref19 doi: 10.1080/13658810701602104 – ident: ref7 doi: 10.1109/CVPR.2017.352 – ident: ref14 doi: 10.1109/CITS.2016.7546397 – ident: ref15 doi: 10.1109/TGRS.2017.2776321 – ident: ref20 doi: 10.1109/FSKD.2008.490 – ident: ref3 doi: 10.1109/TGRS.2017.2778300 – ident: ref18 doi: 10.1109/LGRS.2019.2893772 – volume-title: arXiv:1805.02091 year: 2018 ident: ref5 article-title: RiFCN: Recurrent network in fully convolutional network for semantic segmentation of high resolution remote sensing images – ident: ref1 doi: 10.1109/LGRS.2019.2930462 – ident: ref12 doi: 10.1109/CVPR.2017.330  | 
    
| SSID | ssj0024887 | 
    
| Score | 2.3129072 | 
    
| Snippet | A high-resolution remote sensing image (HRSI) scene typically contains multiple geo-objects, and geospatial relations among these geo-objects are obvious. As... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Buildings Data exchange Geospatial analysis Geospatial relation high-resolution remote sensing image (HRSI) Image resolution image understanding Message passing Object recognition Remote sensing Representations Semantics triplet Visualization  | 
    
| Title | Message-Passing-Driven Triplet Representation for Geo-Object Relational Inference in HRSI | 
    
| URI | https://ieeexplore.ieee.org/document/9325509 https://www.proquest.com/docview/2615512634  | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8CJDQuG1AQHQz5sBOaWzdNnPg4bSstWgfqh1ROkZ04gJjCVNID--v3nuuUCRDiloOtPOn5-f38vn4An42x0ohCco34m4cxmiLanOVhoJMMfUIhI-odHv6S_Wl4Notma_Bl1QtjrXXFZ7ZFny6Xn99lCwqVtRFrIKBW67AeJ3LZq_U4Vy9xZHiECHikkpnPYHaEav88HY3xJRjgA5XyYFTb_J8PcqQqz25i5156H2BYC7asKrltLSrTyv4-mdn4Vsm34b3Hmezr8mDswJotd-Gdpzy_ftiFzVPH6fvQgMsh0aBcWX6BQBo9Gf8-pyuQTeYUhK_YyBXL-h6lkiHKZbiXnxsK4bC6mg5_NqibB9lNyfqj8WAPpr0fk2997hkXeIZuv-LKiDDvSmmMjAKN5q7yQBVaFkLkUiF4iOO4QEBo0akjMNQ2D6NEySILRKhVFHb3YaO8K-0BsG5shc6k0EIjaFGJpoRPJGyurKQZck0QtQ7SzI8jJ1aM36l7lgiVktpSUlvq1daEk9WWP8tZHK8tbpAaVgu9BppwVCs69dZ6nwaUnO0EKNfHl3cdwlZAbQ8u9HIEG9V8YT8hGKnMsTuF_wDvd9gM | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VVqi9QGlBhJbiAyeEU3dje9dHRB8JJAWlqRROK3vXCxVoW6WbQ_vrmXG8AbWo4rYHWzvSeDyf5_UBvHXOaycqzS3iby5TNEW0Oc9lYrMCfUKlFfUOj051_1x-mqrpCrxf9sJ470Pxme_SZ8jll5fFnEJl-4g1EFCbR7CmpJRq0a31Z7JeFujwCBNwZbJpzGEeCLM_PBmf4VswwScqZcKouvkvLxRoVe7dxcHBHD-FUSvaoq7kZ3feuG5xe2dq4__KvglPItJkHxZH4xms-HoL1iPp-Y-bLXh8Elh9b7bh24iIUL57_hWhNPoyfjijS5BNZhSGb9g4lMvGLqWaIc5luJd_cRTEYW09Hf5s0LYPsoua9cdng-dwfnw0-djnkXOBF-j4G26ckGVPa-e0SiwavCkTU1ldCVFqg_AhTdMKIaFHt47Q0PpSqszoqkiEtEbJ3gtYrS9r_xJYL_XCFlpYYRG2mMxSykcJXxqvaYpcB0Srg7yIA8mJF-NXHh4mwuSktpzUlke1deDdcsvVYhrHQ4u3SQ3LhVEDHdhtFZ1He73OE0rPHiQo16t_73oD6_3JaJgPB6efd2AjoSaIEIjZhdVmNvevEZo0bi-cyN9sFttZ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Message-Passing-Driven+Triplet+Representation+for+Geo-Object+Relational+Inference+in+HRSI&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Chen%2C+Jie&rft.au=Zhou%2C+Xing&rft.au=Zhang%2C+Yi&rft.au=Sun%2C+Geng&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3038569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2020_3038569 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |