Message-Passing-Driven Triplet Representation for Geo-Object Relational Inference in HRSI

A high-resolution remote sensing image (HRSI) scene typically contains multiple geo-objects, and geospatial relations among these geo-objects are obvious. As the important information conveyed by HRSI, the intelligent expression of geospatial relation is helpful in understanding HRSI scenes. Previou...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5
Main Authors Chen, Jie, Zhou, Xing, Zhang, Yi, Sun, Geng, Deng, Min, Li, Haifeng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2020.3038569

Cover

Abstract A high-resolution remote sensing image (HRSI) scene typically contains multiple geo-objects, and geospatial relations among these geo-objects are obvious. As the important information conveyed by HRSI, the intelligent expression of geospatial relation is helpful in understanding HRSI scenes. Previous HRSI semantic understanding was mainly based on image captions that only generate one sentence to describe image content, thereby resulting in insufficient understanding of the scene. Thus, the present letter proposes an approach to represent geospatial relations in an HRSI scene with structured form of <inline-formula> <tex-math notation="LaTeX">\langle </tex-math></inline-formula>subject, geospatial relation, object<inline-formula> <tex-math notation="LaTeX">\rangle </tex-math></inline-formula>. A geospatial relation triplet representation data set that contains visual and semantic information, such as category, location, and geospatial relations of the geo-objects, is constructed first. An "object-relation" message-passing mechanism is adopted to enhance the information exchange between the geo-objects and geospatial relations to predict triplets accurately. The experimental results show that the proposed method can effectively predict the geospatial relation in a HRSI scene.
AbstractList A high-resolution remote sensing image (HRSI) scene typically contains multiple geo-objects, and geospatial relations among these geo-objects are obvious. As the important information conveyed by HRSI, the intelligent expression of geospatial relation is helpful in understanding HRSI scenes. Previous HRSI semantic understanding was mainly based on image captions that only generate one sentence to describe image content, thereby resulting in insufficient understanding of the scene. Thus, the present letter proposes an approach to represent geospatial relations in an HRSI scene with structured form of [Formula Omitted]subject, geospatial relation, object[Formula Omitted]. A geospatial relation triplet representation data set that contains visual and semantic information, such as category, location, and geospatial relations of the geo-objects, is constructed first. An “object-relation” message-passing mechanism is adopted to enhance the information exchange between the geo-objects and geospatial relations to predict triplets accurately. The experimental results show that the proposed method can effectively predict the geospatial relation in a HRSI scene.
A high-resolution remote sensing image (HRSI) scene typically contains multiple geo-objects, and geospatial relations among these geo-objects are obvious. As the important information conveyed by HRSI, the intelligent expression of geospatial relation is helpful in understanding HRSI scenes. Previous HRSI semantic understanding was mainly based on image captions that only generate one sentence to describe image content, thereby resulting in insufficient understanding of the scene. Thus, the present letter proposes an approach to represent geospatial relations in an HRSI scene with structured form of <inline-formula> <tex-math notation="LaTeX">\langle </tex-math></inline-formula>subject, geospatial relation, object<inline-formula> <tex-math notation="LaTeX">\rangle </tex-math></inline-formula>. A geospatial relation triplet representation data set that contains visual and semantic information, such as category, location, and geospatial relations of the geo-objects, is constructed first. An "object-relation" message-passing mechanism is adopted to enhance the information exchange between the geo-objects and geospatial relations to predict triplets accurately. The experimental results show that the proposed method can effectively predict the geospatial relation in a HRSI scene.
Author Zhang, Yi
Deng, Min
Li, Haifeng
Chen, Jie
Zhou, Xing
Sun, Geng
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-3864-9265
  surname: Chen
  fullname: Chen, Jie
  email: cjcsu@hotmail.com
  organization: School of Geosciences and Info-physics, Central South University, Changsha, China
– sequence: 2
  givenname: Xing
  surname: Zhou
  fullname: Zhou, Xing
  email: 175011013@csu.edu.cn
  organization: School of Geosciences and Info-physics, Central South University, Changsha, China
– sequence: 3
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  email: zhangyi_csu@csu.edu.cn
  organization: School of Geosciences and Info-physics, Central South University, Changsha, China
– sequence: 4
  givenname: Geng
  surname: Sun
  fullname: Sun, Geng
  email: 0106170206@csu.edu.cn
  organization: School of Geosciences and Info-physics, Central South University, Changsha, China
– sequence: 5
  givenname: Min
  surname: Deng
  fullname: Deng, Min
  email: dengmin028@yahoo.com
  organization: School of Geosciences and Info-physics, Central South University, Changsha, China
– sequence: 6
  givenname: Haifeng
  orcidid: 0000-0003-1173-6593
  surname: Li
  fullname: Li, Haifeng
  email: lihaifeng@csu.edu.cn
  organization: School of Geosciences and Info-physics, Central South University, Changsha, China
BookMark eNp9kE1Lw0AQQBdRsK3-APES8Lx1P7Kb7FGqtoVKpa2gp2WTTMqWuIm7qeC_tzHFgwdPM8zMmxneEJ262gFCV5SMKSXqdjFdrceMMDLmhKdCqhM0oEKkmIiEnnZ5LLBQ6es5GoawI4TFaZoM0NsThGC2gJ9NCNZt8b23n-CijbdNBW20gsZDANea1tYuKmsfTaHGy2wHedetfuqmiuauBA8uh8i6aLZazy_QWWmqAJfHOEIvjw-byQwvltP55G6Bc6Z4i1VG4oJLmWVSMMNpqgqmSiNLQgqpUqqSJCk5JSBpzDg1UMQiVbLMGYmNEjEfoZt-b-Prjz2EVu_qvT-8FDSTBwWUSd5N0X4q93UIHkrdePtu_JemRHcGdWdQdwb10eCBSf4wue09tN7Y6l_yuictAPxeUpwJQRT_BnDffuE
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_TPAMI_2024_3508072
Cites_doi 10.3390/rs10050743
10.1109/ICCV.2017.121
10.1109/CVPR.2018.00611
10.1109/CVPRW.2019.00058
10.1007/978-3-319-46448-0_51
10.1016/j.isprsjprs.2018.06.005
10.1109/TGRS.2016.2601622
10.1109/TGRS.2017.2677464
10.1080/01431161.2019.1594439
10.1007/s11263-016-0981-7
10.1080/13658810701602104
10.1109/CVPR.2017.352
10.1109/CITS.2016.7546397
10.1109/TGRS.2017.2776321
10.1109/FSKD.2008.490
10.1109/TGRS.2017.2778300
10.1109/LGRS.2019.2893772
10.1109/LGRS.2019.2930462
10.1109/CVPR.2017.330
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2020.3038569
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2020_3038569
9325509
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province, China
  grantid: 2020JJ4691
  funderid: 10.13039/501100004735
– fundername: National Natural Science Foundation of China
  grantid: 41671357; 42071427
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-9b04d366bb652a3189d29fa6f00d69819777f310e614231aed45896fc204a9543
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 10:23:00 EDT 2025
Wed Oct 01 04:25:46 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Wed Aug 27 05:00:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9b04d366bb652a3189d29fa6f00d69819777f310e614231aed45896fc204a9543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3864-9265
0000-0003-1173-6593
PQID 2615512634
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_2615512634
ieee_primary_9325509
crossref_primary_10_1109_LGRS_2020_3038569
crossref_citationtrail_10_1109_LGRS_2020_3038569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
Xu (ref21)
Mou (ref5) 2018
References_xml – start-page: 2048
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref21
  article-title: Show, attend and tell: Neural image caption generation with visual attention
– ident: ref6
  doi: 10.3390/rs10050743
– ident: ref10
  doi: 10.1109/ICCV.2017.121
– ident: ref13
  doi: 10.1109/CVPR.2018.00611
– ident: ref8
  doi: 10.1109/CVPRW.2019.00058
– ident: ref9
  doi: 10.1007/978-3-319-46448-0_51
– ident: ref4
  doi: 10.1016/j.isprsjprs.2018.06.005
– ident: ref2
  doi: 10.1109/TGRS.2016.2601622
– ident: ref16
  doi: 10.1109/TGRS.2017.2677464
– ident: ref17
  doi: 10.1080/01431161.2019.1594439
– ident: ref11
  doi: 10.1007/s11263-016-0981-7
– ident: ref19
  doi: 10.1080/13658810701602104
– ident: ref7
  doi: 10.1109/CVPR.2017.352
– ident: ref14
  doi: 10.1109/CITS.2016.7546397
– ident: ref15
  doi: 10.1109/TGRS.2017.2776321
– ident: ref20
  doi: 10.1109/FSKD.2008.490
– ident: ref3
  doi: 10.1109/TGRS.2017.2778300
– ident: ref18
  doi: 10.1109/LGRS.2019.2893772
– volume-title: arXiv:1805.02091
  year: 2018
  ident: ref5
  article-title: RiFCN: Recurrent network in fully convolutional network for semantic segmentation of high resolution remote sensing images
– ident: ref1
  doi: 10.1109/LGRS.2019.2930462
– ident: ref12
  doi: 10.1109/CVPR.2017.330
SSID ssj0024887
Score 2.3129072
Snippet A high-resolution remote sensing image (HRSI) scene typically contains multiple geo-objects, and geospatial relations among these geo-objects are obvious. As...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Buildings
Data exchange
Geospatial analysis
Geospatial relation
high-resolution remote sensing image (HRSI)
Image resolution
image understanding
Message passing
Object recognition
Remote sensing
Representations
Semantics
triplet
Visualization
Title Message-Passing-Driven Triplet Representation for Geo-Object Relational Inference in HRSI
URI https://ieeexplore.ieee.org/document/9325509
https://www.proquest.com/docview/2615512634
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8CJDQuG1AQHQz5sBOaWzdNnPg4bSstWgfqh1ROkZ04gJjCVNID--v3nuuUCRDiloOtPOn5-f38vn4An42x0ohCco34m4cxmiLanOVhoJMMfUIhI-odHv6S_Wl4Notma_Bl1QtjrXXFZ7ZFny6Xn99lCwqVtRFrIKBW67AeJ3LZq_U4Vy9xZHiECHikkpnPYHaEav88HY3xJRjgA5XyYFTb_J8PcqQqz25i5156H2BYC7asKrltLSrTyv4-mdn4Vsm34b3Hmezr8mDswJotd-Gdpzy_ftiFzVPH6fvQgMsh0aBcWX6BQBo9Gf8-pyuQTeYUhK_YyBXL-h6lkiHKZbiXnxsK4bC6mg5_NqibB9lNyfqj8WAPpr0fk2997hkXeIZuv-LKiDDvSmmMjAKN5q7yQBVaFkLkUiF4iOO4QEBo0akjMNQ2D6NEySILRKhVFHb3YaO8K-0BsG5shc6k0EIjaFGJpoRPJGyurKQZck0QtQ7SzI8jJ1aM36l7lgiVktpSUlvq1daEk9WWP8tZHK8tbpAaVgu9BppwVCs69dZ6nwaUnO0EKNfHl3cdwlZAbQ8u9HIEG9V8YT8hGKnMsTuF_wDvd9gM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VVqi9QGlBhJbiAyeEU3dje9dHRB8JJAWlqRROK3vXCxVoW6WbQ_vrmXG8AbWo4rYHWzvSeDyf5_UBvHXOaycqzS3iby5TNEW0Oc9lYrMCfUKlFfUOj051_1x-mqrpCrxf9sJ470Pxme_SZ8jll5fFnEJl-4g1EFCbR7CmpJRq0a31Z7JeFujwCBNwZbJpzGEeCLM_PBmf4VswwScqZcKouvkvLxRoVe7dxcHBHD-FUSvaoq7kZ3feuG5xe2dq4__KvglPItJkHxZH4xms-HoL1iPp-Y-bLXh8Elh9b7bh24iIUL57_hWhNPoyfjijS5BNZhSGb9g4lMvGLqWaIc5luJd_cRTEYW09Hf5s0LYPsoua9cdng-dwfnw0-djnkXOBF-j4G26ckGVPa-e0SiwavCkTU1ldCVFqg_AhTdMKIaFHt47Q0PpSqszoqkiEtEbJ3gtYrS9r_xJYL_XCFlpYYRG2mMxSykcJXxqvaYpcB0Srg7yIA8mJF-NXHh4mwuSktpzUlke1deDdcsvVYhrHQ4u3SQ3LhVEDHdhtFZ1He73OE0rPHiQo16t_73oD6_3JaJgPB6efd2AjoSaIEIjZhdVmNvevEZo0bi-cyN9sFttZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Message-Passing-Driven+Triplet+Representation+for+Geo-Object+Relational+Inference+in+HRSI&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Chen%2C+Jie&rft.au=Zhou%2C+Xing&rft.au=Zhang%2C+Yi&rft.au=Sun%2C+Geng&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3038569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2020_3038569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon