Target Detection in Passive Radar Sensors Using Least Angle Regression
Passive bistatic radars (PBRs) use illuminators of opportunity to detect and localize targets. Exploiting signals of these sources which are not designed for radar applications results in essential challenges in target detection, and requires special signal processing techniques. In this paper, we p...
Saved in:
| Published in | IEEE sensors journal Vol. 21; no. 4; pp. 4533 - 4542 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
15.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2020.3035630 |
Cover
| Abstract | Passive bistatic radars (PBRs) use illuminators of opportunity to detect and localize targets. Exploiting signals of these sources which are not designed for radar applications results in essential challenges in target detection, and requires special signal processing techniques. In this paper, we propose a new approach for target detection in PBRs by formulating the problem as a linear regression. To solve this problem, we take advantage of the sparsity of received signals in the range-Doppler domain which enables us to employ statistical model selection algorithms, such as LASSO or LAR. In contrast to the most existing PBR algorithms, the proposed method does not require to specify a prior subspace for clutter and eliminate interferences before target detection. This advantage is achieved because our algorithm identifies targets, clutter, and direct-path simultaneously within a unified procedure. Our extensive simulation results illustrate that the proposed method performs very close to the optimal upper band performance (i.e., that of the matched-filter based detector) in the single-target scenario. Moreover, our results reveal that our algorithm has high detection performance in multitarget scenarios with the presence of interfering targets, strong clutter, and a very powerful direct-path. |
|---|---|
| AbstractList | Passive bistatic radars (PBRs) use illuminators of opportunity to detect and localize targets. Exploiting signals of these sources which are not designed for radar applications results in essential challenges in target detection, and requires special signal processing techniques. In this paper, we propose a new approach for target detection in PBRs by formulating the problem as a linear regression. To solve this problem, we take advantage of the sparsity of received signals in the range-Doppler domain which enables us to employ statistical model selection algorithms, such as LASSO or LAR. In contrast to the most existing PBR algorithms, the proposed method does not require to specify a prior subspace for clutter and eliminate interferences before target detection. This advantage is achieved because our algorithm identifies targets, clutter, and direct-path simultaneously within a unified procedure. Our extensive simulation results illustrate that the proposed method performs very close to the optimal upper band performance (i.e., that of the matched-filter based detector) in the single-target scenario. Moreover, our results reveal that our algorithm has high detection performance in multitarget scenarios with the presence of interfering targets, strong clutter, and a very powerful direct-path. |
| Author | Gazor, Saeed Sheikhi, Abbas Nikaein, Hossein |
| Author_xml | – sequence: 1 givenname: Hossein orcidid: 0000-0001-5911-0202 surname: Nikaein fullname: Nikaein, Hossein email: hossein.nikaein@shirazu.ac.ir organization: Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran – sequence: 2 givenname: Abbas orcidid: 0000-0002-8854-7902 surname: Sheikhi fullname: Sheikhi, Abbas email: sheikhi@shirazu.ac.ir organization: Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran – sequence: 3 givenname: Saeed orcidid: 0000-0003-4368-6682 surname: Gazor fullname: Gazor, Saeed email: gazor@queensu.ca organization: Department of Electrical and Computer Engineering, Queen's University, Kingston, ON, Canada |
| BookMark | eNp9kE1LAzEQhoMo2FZ_gHgJeN6aj80mOZba-kFRsS14C9nd2WVLzdYkFfz37tLiwYOnGZj3mRmeITp1rQOErigZU0r07dNy9jxmhJExJ1xknJygARVCJVSm6rTvOUlSLt_P0TCEDSFUSyEHaL6yvoaI7yBCEZvW4cbhVxtC8wX4zZbW4yW40PqA16FxNV6ADRFPXL3t5lB76KKtu0Bnld0GuDzWEVrPZ6vpQ7J4uX-cThZJwTSPibZZnnEoWCYFVTYjghdAVUUZS4GSkpRKlllVgAWWW8sqrXJbCZEyXYo8E3yEbg57d7793EOIZtPuvetOGpZKrVSWCtql6CFV-DYED5XZ-ebD-m9Diel1mV6X6XWZo66OkX-Yoom2NxK9bbb_ktcHsgGA30u6-4cJxn8ATjd5HA |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_JSEN_2023_3343924 crossref_primary_10_1109_JSEN_2023_3317955 crossref_primary_10_1016_j_sigpro_2021_108398 crossref_primary_10_3390_s23010459 crossref_primary_10_1109_ACCESS_2023_3340696 crossref_primary_10_1109_JSEN_2023_3300887 crossref_primary_10_1109_TAES_2023_3301459 crossref_primary_10_1109_LGRS_2023_3266219 crossref_primary_10_1109_JSEN_2021_3099533 crossref_primary_10_1109_JSEN_2021_3119747 crossref_primary_10_1186_s13634_023_01106_y crossref_primary_10_3390_rs16132294 crossref_primary_10_1109_ACCESS_2021_3108195 |
| Cites_doi | 10.1109/JSTARS.2017.2684132 10.1137/S003614450037906X 10.1049/ip-rsn:20045082 10.1109/JSEN.2016.2579618 10.1109/TIM.2010.2078310 10.1109/TSP.2017.2659650 10.1109/LSP.2018.2791447 10.1016/j.sigpro.2008.04.016 10.1109/TAES.2018.2884806 10.1109/PIERS-Fall48861.2019.9021707 10.1109/TWC.2006.1687760 10.1109/ACCESS.2019.2926353 10.1016/j.inffus.2019.08.010 10.1049/iet-rsn.2013.0185 10.1109/TAES.2016.150477 10.1109/JSEN.2016.2577881 10.1109/JSEN.2019.2907660 10.1214/009053604000000067 10.1109/JSTSP.2007.910971 10.1137/080714488 10.1109/RADAR.2014.7060405 10.1109/JSEN.2020.3011129 10.1017/CBO9781316576533 10.1109/TIT.2006.871582 10.1049/iet-rsn.2012.0072 10.1109/TAES.2009.5089551 10.1109/MSP.2007.914731 10.1109/JSTSP.2015.2479190 10.1109/MAES.2012.6373911 10.1111/j.2517-6161.1996.tb02080.x 10.1109/JSTSP.2007.910281 10.1109/TSP.2009.2014277 10.1109/MAES.2018.160146 10.1109/TAES.2019.2897474 10.1109/JSTSP.2009.2038973 10.1049/iet-rsn.2019.0172 10.1109/JSTSP.2009.2038977 10.1109/JSEN.2020.2986717 10.1111/j.1467-9868.2005.00532.x 10.1109/TAES.2013.120455 10.1109/JPROC.2010.2044010 10.1049/iet-rsn.2019.0309 10.1109/TAES.2019.2895710 10.1109/IRS.2016.7497313 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2020.3035630 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 4542 |
| ExternalDocumentID | 10_1109_JSEN_2020_3035630 9247252 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-9a6b63ec267518a6053ce18f1224e10d0d87d6fceae2baa2f98baf55429d5b653 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:17:55 EDT 2025 Wed Oct 01 04:14:47 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Wed Aug 27 06:01:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-9a6b63ec267518a6053ce18f1224e10d0d87d6fceae2baa2f98baf55429d5b653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5911-0202 0000-0002-8854-7902 0000-0003-4368-6682 |
| PQID | 2479886451 |
| PQPubID | 75733 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9247252 crossref_primary_10_1109_JSEN_2020_3035630 crossref_citationtrail_10_1109_JSEN_2020_3035630 proquest_journals_2479886451 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-15 |
| PublicationDateYYYYMMDD | 2021-02-15 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref37 ref15 feng (ref3) 2019 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ender (ref21) 2013 ref2 ref1 ref39 ref17 ref38 ref16 wu (ref4) 2016 ref19 ref18 ref46 ref24 ref45 ref23 ref48 ref26 ref47 ref25 ref20 ref42 hesterberg (ref29) 2006 ref41 ref22 ref44 ref43 ref28 ref27 ref8 ref7 ref9 kutyniok (ref36) 2012 ref6 ref5 ref40 chen (ref34) 2001; 43 |
| References_xml | – ident: ref35 doi: 10.1109/JSTARS.2017.2684132 – volume: 43 start-page: 33 year: 2001 ident: ref34 publication-title: SIAM Rev doi: 10.1137/S003614450037906X – ident: ref44 doi: 10.1049/ip-rsn:20045082 – ident: ref26 doi: 10.1109/JSEN.2016.2579618 – ident: ref14 doi: 10.1109/TIM.2010.2078310 – ident: ref7 doi: 10.1109/TSP.2017.2659650 – ident: ref17 doi: 10.1109/LSP.2018.2791447 – ident: ref48 doi: 10.1016/j.sigpro.2008.04.016 – ident: ref25 doi: 10.1109/TAES.2018.2884806 – start-page: 586 year: 2019 ident: ref3 article-title: Passive bistatic radar using digital terrestrial television broadcasting signal for subsurface target detection publication-title: Proc Photon Electromagn Res Symp Fall (PIERS-FALL) doi: 10.1109/PIERS-Fall48861.2019.9021707 – ident: ref31 doi: 10.1109/TWC.2006.1687760 – ident: ref24 doi: 10.1109/ACCESS.2019.2926353 – ident: ref23 doi: 10.1016/j.inffus.2019.08.010 – ident: ref1 doi: 10.1049/iet-rsn.2013.0185 – ident: ref10 doi: 10.1109/TAES.2016.150477 – year: 2012 ident: ref36 publication-title: Compressed Sensing Theory and Applications – ident: ref18 doi: 10.1109/JSEN.2016.2577881 – ident: ref9 doi: 10.1109/JSEN.2019.2907660 – ident: ref42 doi: 10.1214/009053604000000067 – ident: ref39 doi: 10.1109/JSTSP.2007.910971 – start-page: 258 year: 2016 ident: ref4 article-title: Off-grid compressed sensing for WiFi-based passive radar publication-title: Proc ISSPIT – ident: ref37 doi: 10.1137/080714488 – ident: ref2 doi: 10.1109/RADAR.2014.7060405 – ident: ref45 doi: 10.1109/JSEN.2020.3011129 – ident: ref43 doi: 10.1017/CBO9781316576533 – start-page: 1 year: 2013 ident: ref21 article-title: A compressive sensing approach to the fusion of PCL sensors publication-title: Proc 21st EUSIPCO – ident: ref12 doi: 10.1109/TIT.2006.871582 – ident: ref27 doi: 10.1049/iet-rsn.2012.0072 – ident: ref8 doi: 10.1109/TAES.2009.5089551 – ident: ref13 doi: 10.1109/MSP.2007.914731 – ident: ref15 doi: 10.1109/JSTSP.2015.2479190 – ident: ref5 doi: 10.1109/MAES.2012.6373911 – ident: ref38 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref40 doi: 10.1109/JSTSP.2007.910281 – ident: ref11 doi: 10.1109/TSP.2009.2014277 – ident: ref6 doi: 10.1109/MAES.2018.160146 – ident: ref19 doi: 10.1109/TAES.2019.2897474 – ident: ref16 doi: 10.1109/JSTSP.2009.2038973 – ident: ref28 doi: 10.1049/iet-rsn.2019.0172 – ident: ref22 doi: 10.1109/JSTSP.2009.2038977 – ident: ref47 doi: 10.1109/JSEN.2020.2986717 – ident: ref30 doi: 10.1111/j.1467-9868.2005.00532.x – ident: ref32 doi: 10.1109/TAES.2013.120455 – ident: ref33 doi: 10.1109/JPROC.2010.2044010 – start-page: 2054 year: 2006 ident: ref29 article-title: S-PLUS and R package for least angle regression publication-title: Proc Statist Comput Sect Amer Stat Assoc – ident: ref46 doi: 10.1049/iet-rsn.2019.0309 – ident: ref20 doi: 10.1109/TAES.2019.2895710 – ident: ref41 doi: 10.1109/IRS.2016.7497313 |
| SSID | ssj0019757 |
| Score | 2.4030666 |
| Snippet | Passive bistatic radars (PBRs) use illuminators of opportunity to detect and localize targets. Exploiting signals of these sources which are not designed for... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4533 |
| SubjectTerms | Algorithms Clutter Doppler effect Doppler radar Illuminators LAR linear inverse problem Object detection Passive bistatic radar passive coherent location Radar detection Sensors Signal processing Signal processing algorithms sparse model selection Statistical analysis Statistical models Surveillance Target detection Target recognition |
| Title | Target Detection in Passive Radar Sensors Using Least Angle Regression |
| URI | https://ieeexplore.ieee.org/document/9247252 https://www.proquest.com/docview/2479886451 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6qF_XgW6xWycGTuHUfSXb3WNQiRUVshd6WJJuoWLZStwf99U6y2-IL8baQBEImj_l2vpkP4CiSWlBKY8-wIPKoEoknKRMeekgiCE2QG2OTk69v-OU97Q3ZsAEn81wYrbUjn-m2_XSx_HyspvZX2SlihThkeOEuxAmvcrXmEYM0dlU98QD7Ho3iYR3BDPz0tNe_uEEkGCJA9SNbD-vLG-REVX7cxO556a7B9WxiFavkuT0tZVu9f6vZ-N-Zr8Nq7WeSTrUxNqChi01Y-VR9cBOWagH0x7ct6A4cI5yc69JxswryVJBbdKzxMiR3IhcT0kfAO568EkcyIFdW84d0iocRtuuHik1bbMN992JwdunVEguewne-9FLBJY-0CrkNvwjENpHSQWJsvE0Hfu7nSZxzo7TQoRQiNGkihWFW5CpnkrNoBxaLcaF3gSA24i5KF0aKCmqEYBLBm5GUoxeaJ03wZ4ueqbr-uJXBGGUOh_hpZu2UWTtltZ2acDwf8lIV3_ir85Zd93nHesmb0JpZNquP52uGTWmScMqCvd9H7cNyaMkrVvmFtWCxnEz1AXofpTx02-4DntvUhQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB6h9AAcaMtDhKbFB04Vm-zD9u4eI0oUIIlQk0i5rWyvHRBog8LmQH89Y-8maimqelvJD1keP-bb-TwfwFkktaCUxp5hQeRRJRJPUiY89JBEEJogN8Y-Th6OeH9Kr2dstgXnm7cwWmtHPtNt--li-flCreyvsg5ihThkeOB-YNg_q15rbWIGaezyeuIW9j0axbM6hhn4aed6fDlCLBgiRPUjmxHrj1vIyar8dRa7C6b3EYbroVW8kof2qpRt9etN1sb_Hfsn2Ks9TdKtlsZn2NLFPuz-ln9wH7ZrCfS7lwPoTRwnnPzQpWNnFeS-ILfoWuNxSH6KXCzJGCHvYvlMHM2ADKzqD-kW80cs1_OKT1scwrR3Obnoe7XIgqfwpi-9VHDJI61CbgMwAtFNpHSQGBtx04Gf-3kS59woLXQohQhNmkhhmJW5ypnkLDqCRrEo9DEQREfcxenCSFFBjRBMInwzknL0Q_OkCf560jNVZyC3QhiPmUMifppZO2XWTlltpyZ83zR5qtJv_KvygZ33TcV6ypvQWls2qzfoc4ZFaZJwyoKT91udwnZ_Mhxkg6vRzRfYCS2VxerAsBY0yuVKf0VfpJTf3BJ8Bexw19I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target+Detection+in+Passive+Radar+Sensors+Using+Least+Angle+Regression&rft.jtitle=IEEE+sensors+journal&rft.au=Nikaein%2C+Hossein&rft.au=Sheikhi%2C+Abbas&rft.au=Gazor%2C+Saeed&rft.date=2021-02-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=4&rft.spage=4533&rft.epage=4542&rft_id=info:doi/10.1109%2FJSEN.2020.3035630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2020_3035630 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |