Target Detection in Passive Radar Sensors Using Least Angle Regression

Passive bistatic radars (PBRs) use illuminators of opportunity to detect and localize targets. Exploiting signals of these sources which are not designed for radar applications results in essential challenges in target detection, and requires special signal processing techniques. In this paper, we p...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 4; pp. 4533 - 4542
Main Authors Nikaein, Hossein, Sheikhi, Abbas, Gazor, Saeed
Format Journal Article
LanguageEnglish
Published New York IEEE 15.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2020.3035630

Cover

Abstract Passive bistatic radars (PBRs) use illuminators of opportunity to detect and localize targets. Exploiting signals of these sources which are not designed for radar applications results in essential challenges in target detection, and requires special signal processing techniques. In this paper, we propose a new approach for target detection in PBRs by formulating the problem as a linear regression. To solve this problem, we take advantage of the sparsity of received signals in the range-Doppler domain which enables us to employ statistical model selection algorithms, such as LASSO or LAR. In contrast to the most existing PBR algorithms, the proposed method does not require to specify a prior subspace for clutter and eliminate interferences before target detection. This advantage is achieved because our algorithm identifies targets, clutter, and direct-path simultaneously within a unified procedure. Our extensive simulation results illustrate that the proposed method performs very close to the optimal upper band performance (i.e., that of the matched-filter based detector) in the single-target scenario. Moreover, our results reveal that our algorithm has high detection performance in multitarget scenarios with the presence of interfering targets, strong clutter, and a very powerful direct-path.
AbstractList Passive bistatic radars (PBRs) use illuminators of opportunity to detect and localize targets. Exploiting signals of these sources which are not designed for radar applications results in essential challenges in target detection, and requires special signal processing techniques. In this paper, we propose a new approach for target detection in PBRs by formulating the problem as a linear regression. To solve this problem, we take advantage of the sparsity of received signals in the range-Doppler domain which enables us to employ statistical model selection algorithms, such as LASSO or LAR. In contrast to the most existing PBR algorithms, the proposed method does not require to specify a prior subspace for clutter and eliminate interferences before target detection. This advantage is achieved because our algorithm identifies targets, clutter, and direct-path simultaneously within a unified procedure. Our extensive simulation results illustrate that the proposed method performs very close to the optimal upper band performance (i.e., that of the matched-filter based detector) in the single-target scenario. Moreover, our results reveal that our algorithm has high detection performance in multitarget scenarios with the presence of interfering targets, strong clutter, and a very powerful direct-path.
Author Gazor, Saeed
Sheikhi, Abbas
Nikaein, Hossein
Author_xml – sequence: 1
  givenname: Hossein
  orcidid: 0000-0001-5911-0202
  surname: Nikaein
  fullname: Nikaein, Hossein
  email: hossein.nikaein@shirazu.ac.ir
  organization: Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
– sequence: 2
  givenname: Abbas
  orcidid: 0000-0002-8854-7902
  surname: Sheikhi
  fullname: Sheikhi, Abbas
  email: sheikhi@shirazu.ac.ir
  organization: Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
– sequence: 3
  givenname: Saeed
  orcidid: 0000-0003-4368-6682
  surname: Gazor
  fullname: Gazor, Saeed
  email: gazor@queensu.ca
  organization: Department of Electrical and Computer Engineering, Queen's University, Kingston, ON, Canada
BookMark eNp9kE1LAzEQhoMo2FZ_gHgJeN6aj80mOZba-kFRsS14C9nd2WVLzdYkFfz37tLiwYOnGZj3mRmeITp1rQOErigZU0r07dNy9jxmhJExJ1xknJygARVCJVSm6rTvOUlSLt_P0TCEDSFUSyEHaL6yvoaI7yBCEZvW4cbhVxtC8wX4zZbW4yW40PqA16FxNV6ADRFPXL3t5lB76KKtu0Bnld0GuDzWEVrPZ6vpQ7J4uX-cThZJwTSPibZZnnEoWCYFVTYjghdAVUUZS4GSkpRKlllVgAWWW8sqrXJbCZEyXYo8E3yEbg57d7793EOIZtPuvetOGpZKrVSWCtql6CFV-DYED5XZ-ebD-m9Diel1mV6X6XWZo66OkX-Yoom2NxK9bbb_ktcHsgGA30u6-4cJxn8ATjd5HA
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2023_3343924
crossref_primary_10_1109_JSEN_2023_3317955
crossref_primary_10_1016_j_sigpro_2021_108398
crossref_primary_10_3390_s23010459
crossref_primary_10_1109_ACCESS_2023_3340696
crossref_primary_10_1109_JSEN_2023_3300887
crossref_primary_10_1109_TAES_2023_3301459
crossref_primary_10_1109_LGRS_2023_3266219
crossref_primary_10_1109_JSEN_2021_3099533
crossref_primary_10_1109_JSEN_2021_3119747
crossref_primary_10_1186_s13634_023_01106_y
crossref_primary_10_3390_rs16132294
crossref_primary_10_1109_ACCESS_2021_3108195
Cites_doi 10.1109/JSTARS.2017.2684132
10.1137/S003614450037906X
10.1049/ip-rsn:20045082
10.1109/JSEN.2016.2579618
10.1109/TIM.2010.2078310
10.1109/TSP.2017.2659650
10.1109/LSP.2018.2791447
10.1016/j.sigpro.2008.04.016
10.1109/TAES.2018.2884806
10.1109/PIERS-Fall48861.2019.9021707
10.1109/TWC.2006.1687760
10.1109/ACCESS.2019.2926353
10.1016/j.inffus.2019.08.010
10.1049/iet-rsn.2013.0185
10.1109/TAES.2016.150477
10.1109/JSEN.2016.2577881
10.1109/JSEN.2019.2907660
10.1214/009053604000000067
10.1109/JSTSP.2007.910971
10.1137/080714488
10.1109/RADAR.2014.7060405
10.1109/JSEN.2020.3011129
10.1017/CBO9781316576533
10.1109/TIT.2006.871582
10.1049/iet-rsn.2012.0072
10.1109/TAES.2009.5089551
10.1109/MSP.2007.914731
10.1109/JSTSP.2015.2479190
10.1109/MAES.2012.6373911
10.1111/j.2517-6161.1996.tb02080.x
10.1109/JSTSP.2007.910281
10.1109/TSP.2009.2014277
10.1109/MAES.2018.160146
10.1109/TAES.2019.2897474
10.1109/JSTSP.2009.2038973
10.1049/iet-rsn.2019.0172
10.1109/JSTSP.2009.2038977
10.1109/JSEN.2020.2986717
10.1111/j.1467-9868.2005.00532.x
10.1109/TAES.2013.120455
10.1109/JPROC.2010.2044010
10.1049/iet-rsn.2019.0309
10.1109/TAES.2019.2895710
10.1109/IRS.2016.7497313
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3035630
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 4542
ExternalDocumentID 10_1109_JSEN_2020_3035630
9247252
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-9a6b63ec267518a6053ce18f1224e10d0d87d6fceae2baa2f98baf55429d5b653
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:17:55 EDT 2025
Wed Oct 01 04:14:47 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Wed Aug 27 06:01:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9a6b63ec267518a6053ce18f1224e10d0d87d6fceae2baa2f98baf55429d5b653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5911-0202
0000-0002-8854-7902
0000-0003-4368-6682
PQID 2479886451
PQPubID 75733
PageCount 10
ParticipantIDs ieee_primary_9247252
crossref_primary_10_1109_JSEN_2020_3035630
crossref_citationtrail_10_1109_JSEN_2020_3035630
proquest_journals_2479886451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
feng (ref3) 2019
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ender (ref21) 2013
ref2
ref1
ref39
ref17
ref38
ref16
wu (ref4) 2016
ref19
ref18
ref46
ref24
ref45
ref23
ref48
ref26
ref47
ref25
ref20
ref42
hesterberg (ref29) 2006
ref41
ref22
ref44
ref43
ref28
ref27
ref8
ref7
ref9
kutyniok (ref36) 2012
ref6
ref5
ref40
chen (ref34) 2001; 43
References_xml – ident: ref35
  doi: 10.1109/JSTARS.2017.2684132
– volume: 43
  start-page: 33
  year: 2001
  ident: ref34
  publication-title: SIAM Rev
  doi: 10.1137/S003614450037906X
– ident: ref44
  doi: 10.1049/ip-rsn:20045082
– ident: ref26
  doi: 10.1109/JSEN.2016.2579618
– ident: ref14
  doi: 10.1109/TIM.2010.2078310
– ident: ref7
  doi: 10.1109/TSP.2017.2659650
– ident: ref17
  doi: 10.1109/LSP.2018.2791447
– ident: ref48
  doi: 10.1016/j.sigpro.2008.04.016
– ident: ref25
  doi: 10.1109/TAES.2018.2884806
– start-page: 586
  year: 2019
  ident: ref3
  article-title: Passive bistatic radar using digital terrestrial television broadcasting signal for subsurface target detection
  publication-title: Proc Photon Electromagn Res Symp Fall (PIERS-FALL)
  doi: 10.1109/PIERS-Fall48861.2019.9021707
– ident: ref31
  doi: 10.1109/TWC.2006.1687760
– ident: ref24
  doi: 10.1109/ACCESS.2019.2926353
– ident: ref23
  doi: 10.1016/j.inffus.2019.08.010
– ident: ref1
  doi: 10.1049/iet-rsn.2013.0185
– ident: ref10
  doi: 10.1109/TAES.2016.150477
– year: 2012
  ident: ref36
  publication-title: Compressed Sensing Theory and Applications
– ident: ref18
  doi: 10.1109/JSEN.2016.2577881
– ident: ref9
  doi: 10.1109/JSEN.2019.2907660
– ident: ref42
  doi: 10.1214/009053604000000067
– ident: ref39
  doi: 10.1109/JSTSP.2007.910971
– start-page: 258
  year: 2016
  ident: ref4
  article-title: Off-grid compressed sensing for WiFi-based passive radar
  publication-title: Proc ISSPIT
– ident: ref37
  doi: 10.1137/080714488
– ident: ref2
  doi: 10.1109/RADAR.2014.7060405
– ident: ref45
  doi: 10.1109/JSEN.2020.3011129
– ident: ref43
  doi: 10.1017/CBO9781316576533
– start-page: 1
  year: 2013
  ident: ref21
  article-title: A compressive sensing approach to the fusion of PCL sensors
  publication-title: Proc 21st EUSIPCO
– ident: ref12
  doi: 10.1109/TIT.2006.871582
– ident: ref27
  doi: 10.1049/iet-rsn.2012.0072
– ident: ref8
  doi: 10.1109/TAES.2009.5089551
– ident: ref13
  doi: 10.1109/MSP.2007.914731
– ident: ref15
  doi: 10.1109/JSTSP.2015.2479190
– ident: ref5
  doi: 10.1109/MAES.2012.6373911
– ident: ref38
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref40
  doi: 10.1109/JSTSP.2007.910281
– ident: ref11
  doi: 10.1109/TSP.2009.2014277
– ident: ref6
  doi: 10.1109/MAES.2018.160146
– ident: ref19
  doi: 10.1109/TAES.2019.2897474
– ident: ref16
  doi: 10.1109/JSTSP.2009.2038973
– ident: ref28
  doi: 10.1049/iet-rsn.2019.0172
– ident: ref22
  doi: 10.1109/JSTSP.2009.2038977
– ident: ref47
  doi: 10.1109/JSEN.2020.2986717
– ident: ref30
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: ref32
  doi: 10.1109/TAES.2013.120455
– ident: ref33
  doi: 10.1109/JPROC.2010.2044010
– start-page: 2054
  year: 2006
  ident: ref29
  article-title: S-PLUS and R package for least angle regression
  publication-title: Proc Statist Comput Sect Amer Stat Assoc
– ident: ref46
  doi: 10.1049/iet-rsn.2019.0309
– ident: ref20
  doi: 10.1109/TAES.2019.2895710
– ident: ref41
  doi: 10.1109/IRS.2016.7497313
SSID ssj0019757
Score 2.4030666
Snippet Passive bistatic radars (PBRs) use illuminators of opportunity to detect and localize targets. Exploiting signals of these sources which are not designed for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4533
SubjectTerms Algorithms
Clutter
Doppler effect
Doppler radar
Illuminators
LAR
linear inverse problem
Object detection
Passive bistatic radar
passive coherent location
Radar detection
Sensors
Signal processing
Signal processing algorithms
sparse model selection
Statistical analysis
Statistical models
Surveillance
Target detection
Target recognition
Title Target Detection in Passive Radar Sensors Using Least Angle Regression
URI https://ieeexplore.ieee.org/document/9247252
https://www.proquest.com/docview/2479886451
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6qF_XgW6xWycGTuHUfSXb3WNQiRUVshd6WJJuoWLZStwf99U6y2-IL8baQBEImj_l2vpkP4CiSWlBKY8-wIPKoEoknKRMeekgiCE2QG2OTk69v-OU97Q3ZsAEn81wYrbUjn-m2_XSx_HyspvZX2SlihThkeOEuxAmvcrXmEYM0dlU98QD7Ho3iYR3BDPz0tNe_uEEkGCJA9SNbD-vLG-REVX7cxO556a7B9WxiFavkuT0tZVu9f6vZ-N-Zr8Nq7WeSTrUxNqChi01Y-VR9cBOWagH0x7ct6A4cI5yc69JxswryVJBbdKzxMiR3IhcT0kfAO568EkcyIFdW84d0iocRtuuHik1bbMN992JwdunVEguewne-9FLBJY-0CrkNvwjENpHSQWJsvE0Hfu7nSZxzo7TQoRQiNGkihWFW5CpnkrNoBxaLcaF3gSA24i5KF0aKCmqEYBLBm5GUoxeaJ03wZ4ueqbr-uJXBGGUOh_hpZu2UWTtltZ2acDwf8lIV3_ir85Zd93nHesmb0JpZNquP52uGTWmScMqCvd9H7cNyaMkrVvmFtWCxnEz1AXofpTx02-4DntvUhQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB6h9AAcaMtDhKbFB04Vm-zD9u4eI0oUIIlQk0i5rWyvHRBog8LmQH89Y-8maimqelvJD1keP-bb-TwfwFkktaCUxp5hQeRRJRJPUiY89JBEEJogN8Y-Th6OeH9Kr2dstgXnm7cwWmtHPtNt--li-flCreyvsg5ihThkeOB-YNg_q15rbWIGaezyeuIW9j0axbM6hhn4aed6fDlCLBgiRPUjmxHrj1vIyar8dRa7C6b3EYbroVW8kof2qpRt9etN1sb_Hfsn2Ks9TdKtlsZn2NLFPuz-ln9wH7ZrCfS7lwPoTRwnnPzQpWNnFeS-ILfoWuNxSH6KXCzJGCHvYvlMHM2ADKzqD-kW80cs1_OKT1scwrR3Obnoe7XIgqfwpi-9VHDJI61CbgMwAtFNpHSQGBtx04Gf-3kS59woLXQohQhNmkhhmJW5ypnkLDqCRrEo9DEQREfcxenCSFFBjRBMInwzknL0Q_OkCf560jNVZyC3QhiPmUMifppZO2XWTlltpyZ83zR5qtJv_KvygZ33TcV6ypvQWls2qzfoc4ZFaZJwyoKT91udwnZ_Mhxkg6vRzRfYCS2VxerAsBY0yuVKf0VfpJTf3BJ8Bexw19I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target+Detection+in+Passive+Radar+Sensors+Using+Least+Angle+Regression&rft.jtitle=IEEE+sensors+journal&rft.au=Nikaein%2C+Hossein&rft.au=Sheikhi%2C+Abbas&rft.au=Gazor%2C+Saeed&rft.date=2021-02-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=4&rft.spage=4533&rft.epage=4542&rft_id=info:doi/10.1109%2FJSEN.2020.3035630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2020_3035630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon