Battery Fault Diagnosis for Electric Vehicles Based on Voltage Abnormality by Combining the Long Short-Term Memory Neural Network and the Equivalent Circuit Model

Battery fault diagnosis is essential for ensuring safe and reliable operation of electric vehicles. In this article, a novel battery fault diagnosis method is presented by combining the long short-term memory recurrent neural network and the equivalent circuit model. The modified adaptive boosting m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 36; no. 2; pp. 1303 - 1315
Main Authors Li, Da, Zhang, Zhaosheng, Liu, Peng, Wang, Zhenpo, Zhang, Lei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8993
1941-0107
DOI10.1109/TPEL.2020.3008194

Cover

Abstract Battery fault diagnosis is essential for ensuring safe and reliable operation of electric vehicles. In this article, a novel battery fault diagnosis method is presented by combining the long short-term memory recurrent neural network and the equivalent circuit model. The modified adaptive boosting method is utilized to improve diagnosis accuracy, and a prejudging model is employed to reduce computational time and improve diagnosis reliability. Considering the influence of the driver behavior on battery systems, the proposed scheme is able to achieve potential failure risk assessment and accordingly to issue early thermal runaway warning. A large volume of real-world operation data is acquired from the National Monitoring and Management Center for New Energy Vehicles in China to examine its robustness, reliability, and superiority. The verification results show that the proposed method can achieve accurate fault diagnosis for potential battery cell failure and precise locating of thermal runaway cells.
AbstractList Battery fault diagnosis is essential for ensuring safe and reliable operation of electric vehicles. In this article, a novel battery fault diagnosis method is presented by combining the long short-term memory recurrent neural network and the equivalent circuit model. The modified adaptive boosting method is utilized to improve diagnosis accuracy, and a prejudging model is employed to reduce computational time and improve diagnosis reliability. Considering the influence of the driver behavior on battery systems, the proposed scheme is able to achieve potential failure risk assessment and accordingly to issue early thermal runaway warning. A large volume of real-world operation data is acquired from the National Monitoring and Management Center for New Energy Vehicles in China to examine its robustness, reliability, and superiority. The verification results show that the proposed method can achieve accurate fault diagnosis for potential battery cell failure and precise locating of thermal runaway cells.
Author Zhang, Zhaosheng
Liu, Peng
Li, Da
Wang, Zhenpo
Zhang, Lei
Author_xml – sequence: 1
  givenname: Da
  surname: Li
  fullname: Li, Da
  email: da.li@bit.edu.cn
  organization: National Engineering Laboratory for Electric Vehicles and the Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Zhaosheng
  orcidid: 0000-0003-0591-9641
  surname: Zhang
  fullname: Zhang, Zhaosheng
  email: zhangzhaosheng@bit.edu.cn
  organization: National Engineering Laboratory for Electric Vehicles and the Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Peng
  orcidid: 0000-0001-9702-6888
  surname: Liu
  fullname: Liu, Peng
  email: roc726@126.com
  organization: National Engineering Laboratory for Electric Vehicles and the Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Zhenpo
  surname: Wang
  fullname: Wang, Zhenpo
  email: zhenpowang@bit.edu.cn
  organization: National Engineering Laboratory for Electric Vehicles and the Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Lei
  orcidid: 0000-0002-1763-0397
  surname: Zhang
  fullname: Zhang, Lei
  email: lei_zhang@bit.edu.cn
  organization: National Engineering Laboratory for Electric Vehicles and the Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China
BookMark eNp9kU9v1DAQxS1UJLaFD4C4jMQ5i_8lcY7tsgWkLSCx9Bo5zmTXxbFb2ynar8MnJctWHDhwmTeH35un0TsnZz54JOQ1o0vGaPNu-3W9WXLK6VJQqlgjn5HFPFlBGa3PyIIqVRaqacQLcp7SHaVMlpQtyK8rnTPGA1zryWV4b_XOh2QTDCHC2qHJ0Rq4xb01DhNc6YQ9BA-3wWW9Q7jsfIijdjYfoDvAKoyd9dbvIO8RNmFevu1DzMUW4wg3OIY56jNOUbtZ8s8Qf4D2_R96_TDZR-3QZ1jZaCab4Sb06F6S54N2CV896QX5fr3erj4Wmy8fPq0uN4XhjchFo-bPS1XKyhheV52hyDl2XSk1rRkXnA-sqTWtOlH1lZYD73klBuyYlEqZUlyQt6e79zE8TJhyexem6OfIlktZlyXnFZup-kSZGFKKOLTGZp1t8Dlq61pG22Mh7bGQ9lhI-1TI7GT_OO-jHXU8_Nfz5uSxiPiXb5hQda3Eb_t9maQ
CODEN ITPEE8
CitedBy_id crossref_primary_10_1021_acsomega_2c04991
crossref_primary_10_1109_TII_2022_3202949
crossref_primary_10_1109_TIM_2024_3350153
crossref_primary_10_1016_j_egyr_2023_01_092
crossref_primary_10_1080_15435075_2024_2422463
crossref_primary_10_1049_itr2_12217
crossref_primary_10_1109_TPEL_2022_3173038
crossref_primary_10_1016_j_est_2022_104092
crossref_primary_10_1016_j_est_2025_116007
crossref_primary_10_3390_s25010094
crossref_primary_10_3390_batteries9020124
crossref_primary_10_1016_j_asej_2024_102908
crossref_primary_10_1016_j_apenergy_2023_121970
crossref_primary_10_3390_en17235825
crossref_primary_10_1109_TPEL_2021_3131293
crossref_primary_10_1016_j_apenergy_2024_123757
crossref_primary_10_3390_su16177812
crossref_primary_10_1149_1945_7111_ad5768
crossref_primary_10_1016_j_geits_2024_100236
crossref_primary_10_1109_ACCESS_2022_3157820
crossref_primary_10_1016_j_jpowsour_2022_230975
crossref_primary_10_7467_KSAE_2021_29_12_1133
crossref_primary_10_1016_j_trpro_2024_12_116
crossref_primary_10_1109_TTE_2023_3288394
crossref_primary_10_1109_TII_2022_3202832
crossref_primary_10_1109_TPEL_2021_3073810
crossref_primary_10_1109_TIM_2023_3314827
crossref_primary_10_1149_1945_7111_acb10b
crossref_primary_10_1109_TPEL_2021_3121701
crossref_primary_10_1109_TPEL_2022_3211905
crossref_primary_10_1109_TPEL_2024_3437176
crossref_primary_10_1016_j_est_2022_105074
crossref_primary_10_1109_TPEL_2022_3150026
crossref_primary_10_1109_TIE_2021_3127035
crossref_primary_10_3390_jmse12060965
crossref_primary_10_1016_j_egyr_2021_05_015
crossref_primary_10_3390_sym13091714
crossref_primary_10_1016_j_patter_2021_100432
crossref_primary_10_3390_polym14132611
crossref_primary_10_1016_j_apenergy_2023_121188
crossref_primary_10_1016_j_est_2023_107073
crossref_primary_10_1016_j_etran_2024_100338
crossref_primary_10_1016_j_energy_2022_124612
crossref_primary_10_1016_j_est_2025_115727
crossref_primary_10_1088_1361_6501_ad7e47
crossref_primary_10_1016_j_isci_2021_103265
crossref_primary_10_1109_JESTPE_2022_3153337
crossref_primary_10_3390_batteries8110224
crossref_primary_10_1016_j_jpowsour_2024_235610
crossref_primary_10_2478_amns_2024_3205
crossref_primary_10_1155_2022_7277446
crossref_primary_10_1016_j_geits_2022_100009
crossref_primary_10_1149_1945_7111_acd815
crossref_primary_10_1016_j_est_2021_102740
crossref_primary_10_3390_batteries8100151
crossref_primary_10_1016_j_segan_2021_100590
crossref_primary_10_1016_j_est_2021_102970
crossref_primary_10_1016_j_apenergy_2022_119703
crossref_primary_10_1016_j_asoc_2022_109903
crossref_primary_10_1016_j_energy_2024_132573
crossref_primary_10_1360_SST_2023_0378
crossref_primary_10_1016_j_energy_2022_126496
crossref_primary_10_1109_JIOT_2024_3511961
crossref_primary_10_1109_TII_2021_3098791
crossref_primary_10_1080_17445302_2024_2442339
crossref_primary_10_1149_1945_7111_acd303
crossref_primary_10_3390_batteries9020103
crossref_primary_10_1007_s12555_023_0377_8
crossref_primary_10_1016_j_est_2023_109681
crossref_primary_10_3390_en14154690
crossref_primary_10_1016_j_jpowsour_2023_233349
crossref_primary_10_3390_en17143472
crossref_primary_10_1016_j_apenergy_2021_118172
crossref_primary_10_23919_PCMP_2023_000213
crossref_primary_10_1109_TPEL_2024_3523583
crossref_primary_10_1016_j_jpowsour_2025_236414
crossref_primary_10_1109_TTE_2021_3117841
crossref_primary_10_1002_er_6647
crossref_primary_10_3390_su142315912
crossref_primary_10_3390_batteries8090119
crossref_primary_10_3390_machines11070713
crossref_primary_10_1016_j_energy_2024_131475
crossref_primary_10_1016_j_jpowsour_2024_234111
crossref_primary_10_1016_j_ssci_2023_106363
crossref_primary_10_1016_j_est_2023_110381
crossref_primary_10_1016_j_est_2024_112067
crossref_primary_10_1109_JSEN_2023_3285531
crossref_primary_10_1080_15435075_2024_2395484
crossref_primary_10_1177_14759217241227163
crossref_primary_10_1016_j_etran_2023_100254
crossref_primary_10_1016_j_compeleceng_2022_108555
crossref_primary_10_1109_TPEL_2022_3174390
crossref_primary_10_1109_OJIA_2024_3354899
crossref_primary_10_1016_j_est_2023_109679
crossref_primary_10_1016_j_apenergy_2022_119965
crossref_primary_10_1016_j_est_2022_105384
crossref_primary_10_1016_j_seta_2021_101790
crossref_primary_10_1002_adts_202200933
crossref_primary_10_1016_j_rser_2022_112862
crossref_primary_10_1038_s41467_023_41226_5
crossref_primary_10_1007_s42154_022_00197_x
crossref_primary_10_1016_j_rser_2024_114925
crossref_primary_10_1109_TEC_2021_3061493
crossref_primary_10_1016_j_est_2024_110614
crossref_primary_10_1016_j_seta_2021_101794
crossref_primary_10_3390_machines11070740
crossref_primary_10_1016_j_displa_2025_102976
crossref_primary_10_1007_s43236_022_00580_1
crossref_primary_10_1109_TPEL_2023_3342412
crossref_primary_10_1016_j_est_2021_103889
crossref_primary_10_1109_TTE_2022_3172663
crossref_primary_10_1016_j_apenergy_2024_122989
crossref_primary_10_1109_TIE_2021_3060675
crossref_primary_10_1038_s41598_021_93801_9
crossref_primary_10_3390_wevj15020053
crossref_primary_10_1016_j_apenergy_2023_121936
crossref_primary_10_3390_machines12050303
crossref_primary_10_1016_j_energy_2023_129130
crossref_primary_10_1038_s41598_024_72510_z
crossref_primary_10_1016_j_apenergy_2024_125160
crossref_primary_10_1016_j_apenergy_2022_119614
crossref_primary_10_1016_j_est_2025_115485
crossref_primary_10_1016_j_coelec_2021_100867
crossref_primary_10_1016_j_est_2023_108083
crossref_primary_10_1016_j_energy_2023_128318
crossref_primary_10_1109_ACCESS_2021_3051986
crossref_primary_10_1016_j_energy_2023_128438
crossref_primary_10_1016_j_est_2023_109056
crossref_primary_10_1016_j_est_2023_110045
crossref_primary_10_1109_TPEL_2023_3323984
crossref_primary_10_3390_en15176265
crossref_primary_10_1002_est2_70073
crossref_primary_10_1109_TTE_2022_3160021
crossref_primary_10_1016_j_etran_2024_100374
crossref_primary_10_1080_15435075_2025_2450621
crossref_primary_10_3389_fenrg_2021_702139
crossref_primary_10_1016_j_apenergy_2023_121949
crossref_primary_10_3390_batteries9030154
crossref_primary_10_3390_wevj13090159
crossref_primary_10_1007_s42835_023_01533_9
crossref_primary_10_1088_1361_6501_ac1b43
crossref_primary_10_3390_en15228458
crossref_primary_10_1016_j_jclepro_2024_142889
crossref_primary_10_1109_TEC_2021_3112950
crossref_primary_10_1016_j_est_2022_104030
crossref_primary_10_32604_cmes_2024_056022
crossref_primary_10_1016_j_est_2024_110874
crossref_primary_10_1109_JSYST_2021_3075088
crossref_primary_10_1109_TPEL_2023_3241938
crossref_primary_10_3233_JCM_247551
crossref_primary_10_1049_pel2_12013
crossref_primary_10_3390_en14185989
crossref_primary_10_1016_j_etran_2024_100364
crossref_primary_10_1109_TTE_2024_3419148
crossref_primary_10_3390_batteries8110219
crossref_primary_10_1016_j_asoc_2022_109554
crossref_primary_10_1016_j_etran_2023_100284
crossref_primary_10_1016_j_psep_2024_08_055
crossref_primary_10_1016_j_est_2023_106811
crossref_primary_10_1109_TTE_2024_3456135
crossref_primary_10_1177_00202940221113588
crossref_primary_10_1021_acsomega_3c06796
crossref_primary_10_23919_JSEE_2022_000078
crossref_primary_10_1002_er_7408
crossref_primary_10_20964_2021_07_29
crossref_primary_10_1080_15435075_2024_2376707
crossref_primary_10_1049_itr2_12267
crossref_primary_10_1016_j_egyr_2022_03_016
crossref_primary_10_1109_TII_2021_3121509
crossref_primary_10_1016_j_est_2025_115944
crossref_primary_10_1016_j_geits_2022_100020
crossref_primary_10_3390_pr10061192
crossref_primary_10_1016_j_conengprac_2023_105738
crossref_primary_10_1109_TASE_2024_3363002
crossref_primary_10_1016_j_est_2024_113234
crossref_primary_10_1109_TVT_2023_3246022
crossref_primary_10_1016_j_est_2023_107210
crossref_primary_10_1109_JIOT_2022_3160298
crossref_primary_10_3390_batteries9010063
crossref_primary_10_1016_j_est_2022_104723
crossref_primary_10_1016_j_energy_2024_134150
crossref_primary_10_1016_j_est_2022_104963
Cites_doi 10.1109/TIE.2015.2461523
10.1109/ECCE.2017.8096879
10.1109/TPEL.2018.2861730
10.1098/rspl.1895.0041
10.1162/neco.1997.9.8.1735
10.1016/j.jclepro.2018.03.259
10.3390/pr7100703
10.1109/TIE.2018.2881943
10.1016/j.apenergy.2016.12.143
10.1016/j.ensm.2017.05.013
10.1109/ACCESS.2017.2780258
10.1016/j.apenergy.2017.05.139
10.1109/TASLP.2019.2925934
10.1016/j.jhazmat.2019.03.116
10.3390/en12152977
10.1016/j.est.2018.04.020
10.1162/089976600300015015
10.1016/j.apenergy.2015.10.168
10.1038/nature14539
10.1109/ACCESS.2018.2824838
10.1016/j.jpowsour.2016.11.007
10.1109/TVT.2018.2805189
10.3390/pr7010038
10.1016/j.neucom.2019.09.046
10.1016/j.est.2018.01.010
10.4310/SII.2009.v2.n3.a8
10.1016/j.jpowsour.2011.10.013
10.3390/en12163099
10.1016/j.patrec.2017.09.009
10.1016/j.pecs.2019.03.002
10.1007/s10973-017-6888-x
10.1109/TPEL.2018.2873247
10.1016/j.ejor.2017.11.054
10.1016/j.jpowsour.2012.09.015
10.1016/j.applthermaleng.2019.113960
10.1016/j.jpowsour.2017.08.035
10.1016/j.ijheatmasstransfer.2018.03.100
10.1016/j.apenergy.2019.113381
10.1016/j.rser.2019.05.042
10.3390/en4040582
10.1016/j.apenergy.2016.10.026
10.1016/j.rser.2017.05.001
10.1016/j.jpowsour.2019.227275
10.1109/TPEL.2018.2877294
10.1016/j.apenergy.2016.04.016
10.1016/j.jpowsour.2018.10.019
10.1371/journal.pone.0146917
10.3390/en11010136
10.1016/j.measurement.2018.09.007
10.1016/j.neunet.2014.09.003
10.1016/j.jpowsour.2018.07.094
10.1002/er.4666
10.1149/2.1561910jes
10.1016/j.jpowsour.2019.01.058
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
DOI 10.1109/TPEL.2020.3008194
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
Consulter via IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0107
EndPage 1315
ExternalDocumentID 10_1109_TPEL_2020_3008194
9138778
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61703024; U1764258
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2018YFB0105700; 2018YFB0106404
GroupedDBID -~X
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
ID FETCH-LOGICAL-c293t-9830058546cc276bc0e22ebb54a0712322f197a06b36d6a4f2d263feb14488c53
IEDL.DBID RIE
ISSN 0885-8993
IngestDate Mon Jun 30 07:15:58 EDT 2025
Wed Oct 01 03:20:07 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Wed Aug 27 02:31:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9830058546cc276bc0e22ebb54a0712322f197a06b36d6a4f2d263feb14488c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0591-9641
0000-0001-9702-6888
0000-0002-1763-0397
PQID 2447552261
PQPubID 37080
PageCount 13
ParticipantIDs ieee_primary_9138778
proquest_journals_2447552261
crossref_citationtrail_10_1109_TPEL_2020_3008194
crossref_primary_10_1109_TPEL_2020_3008194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power electronics
PublicationTitleAbbrev TPEL
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref59
ref15
ref58
ref14
ref52
zhao (ref31) 2019; 159
ref55
ref11
ref10
zhu (ref60) 2009; 2
ref17
ref19
ref18
ref51
kingma (ref56) 2015; abs 1412 6980
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref30
ref33
ref32
ref2
pearson (ref54) 1895; 58
ref1
ref39
pedregosa (ref38) 2011; 12
galton (ref53) 1885; 32
ref24
ref23
lecun (ref37) 2015; 521
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ian (ref57) 2018
gong (ref16) 2016; 52
References_xml – ident: ref17
  doi: 10.1109/TIE.2015.2461523
– ident: ref40
  doi: 10.1109/ECCE.2017.8096879
– ident: ref2
  doi: 10.1109/TPEL.2018.2861730
– volume: 58
  start-page: 240
  year: 1895
  ident: ref54
  article-title: Note on regression and inheritance in the case of two parents
  publication-title: Proc Roy Soc London
  doi: 10.1098/rspl.1895.0041
– ident: ref47
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref12
  doi: 10.1016/j.jclepro.2018.03.259
– ident: ref35
  doi: 10.3390/pr7100703
– ident: ref52
  doi: 10.1109/TIE.2018.2881943
– ident: ref22
  doi: 10.1016/j.apenergy.2016.12.143
– ident: ref5
  doi: 10.1016/j.ensm.2017.05.013
– ident: ref43
  doi: 10.1109/ACCESS.2017.2780258
– ident: ref20
  doi: 10.1016/j.apenergy.2017.05.139
– ident: ref49
  doi: 10.1109/TASLP.2019.2925934
– ident: ref29
  doi: 10.1016/j.jhazmat.2019.03.116
– ident: ref23
  doi: 10.3390/en12152977
– ident: ref11
  doi: 10.1016/j.est.2018.04.020
– ident: ref48
  doi: 10.1162/089976600300015015
– ident: ref14
  doi: 10.1016/j.apenergy.2015.10.168
– volume: 521
  start-page: 436
  year: 2015
  ident: ref37
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 52
  start-page: 1759
  year: 2016
  ident: ref16
  article-title: A data-driven bias-correction-method-based lithium-ion battery modeling approach for electric vehicle applications
  publication-title: IEEE Trans Ind Appl
– ident: ref1
  doi: 10.1109/ACCESS.2018.2824838
– ident: ref15
  doi: 10.1016/j.jpowsour.2016.11.007
– ident: ref55
  doi: 10.1109/TVT.2018.2805189
– ident: ref10
  doi: 10.3390/pr7010038
– ident: ref46
  doi: 10.1016/j.neucom.2019.09.046
– ident: ref8
  doi: 10.1016/j.est.2018.01.010
– volume: 2
  start-page: 349
  year: 2009
  ident: ref60
  article-title: Multi-class AdaBoost
  publication-title: Statist Interface
  doi: 10.4310/SII.2009.v2.n3.a8
– ident: ref58
  doi: 10.1016/j.jpowsour.2011.10.013
– ident: ref28
  doi: 10.3390/en12163099
– ident: ref39
  doi: 10.1016/j.patrec.2017.09.009
– ident: ref6
  doi: 10.1016/j.pecs.2019.03.002
– ident: ref30
  doi: 10.1007/s10973-017-6888-x
– ident: ref4
  doi: 10.1109/TPEL.2018.2873247
– ident: ref50
  doi: 10.1016/j.ejor.2017.11.054
– ident: ref21
  doi: 10.1016/j.jpowsour.2012.09.015
– ident: ref32
  doi: 10.1016/j.applthermaleng.2019.113960
– ident: ref34
  doi: 10.1016/j.jpowsour.2017.08.035
– ident: ref36
  doi: 10.1016/j.ijheatmasstransfer.2018.03.100
– ident: ref41
  doi: 10.1016/j.apenergy.2019.113381
– ident: ref25
  doi: 10.1016/j.rser.2019.05.042
– ident: ref59
  doi: 10.3390/en4040582
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref38
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– year: 2018
  ident: ref57
  publication-title: Deep Learning
– ident: ref9
  doi: 10.1016/j.apenergy.2016.10.026
– volume: 32
  start-page: 507
  year: 1885
  ident: ref53
  article-title: Section H; Anthropology; Opening address
  publication-title: Nature
– volume: 159
  year: 2019
  ident: ref31
  article-title: Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions
  publication-title: Appl Thermal Eng
– volume: abs 1412 6980
  year: 2015
  ident: ref56
  article-title: Adam: A method for stochastic optimization
  publication-title: CoRR
– ident: ref42
  doi: 10.1016/j.rser.2017.05.001
– ident: ref19
  doi: 10.1016/j.jpowsour.2019.227275
– ident: ref3
  doi: 10.1109/TPEL.2018.2877294
– ident: ref7
  doi: 10.1016/j.apenergy.2016.04.016
– ident: ref44
  doi: 10.1016/j.jpowsour.2018.10.019
– ident: ref51
  doi: 10.1371/journal.pone.0146917
– ident: ref24
  doi: 10.3390/en11010136
– ident: ref13
  doi: 10.1016/j.measurement.2018.09.007
– ident: ref45
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref27
  doi: 10.1016/j.jpowsour.2018.07.094
– ident: ref26
  doi: 10.1002/er.4666
– ident: ref33
  doi: 10.1149/2.1561910jes
– ident: ref18
  doi: 10.1016/j.jpowsour.2019.01.058
SSID ssj0014501
Score 2.6942904
Snippet Battery fault diagnosis is essential for ensuring safe and reliable operation of electric vehicles. In this article, a novel battery fault diagnosis method is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1303
SubjectTerms Batteries
Circuit faults
Computational modeling
Computing time
Data acquisition
Data models
Driver behavior
Electric vehicles
Electric vehicles (EVs)
equivalent circuit model (ECM)
Equivalent circuits
Fault diagnosis
Integrated circuit modeling
lithium-ion battery
long short-term memory recurrent neural network (LSTM)
Machine learning
Model accuracy
modified adaptive boosting (MAB)
Neural networks
Recurrent neural networks
Reliability
Risk assessment
Thermal runaway
Title Battery Fault Diagnosis for Electric Vehicles Based on Voltage Abnormality by Combining the Long Short-Term Memory Neural Network and the Equivalent Circuit Model
URI https://ieeexplore.ieee.org/document/9138778
https://www.proquest.com/docview/2447552261
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014501
  issn: 0885-8993
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp3KgpRSx5UNz6KlqlsSxE-dIYVeoYhESC-IWxY4jIlZJC8lh-Tn8UsZOdlUKQr35YEeOZjLzxn55A_CtoKwcy6igsiQXHo-59qTMlScSFRL-DxR3Z7qT8-j0iv-6ETcr8GP5L4wxxpHPzNAO3V1-XuvWHpUdJkEo41iuwio9vvtXa3ljwIVrdUwfjfCohgj7G8zATw6nF6MzqgQZFaguA_IXOcg1VXkViV16GX-EyWJjHavkbtg2aqgf_9Fs_N-df4KNHmfiUecYm7Biqs-w_pf64BY8ddqacxxn7azBk450Vz4g4VgcufY4pcZrc-uYc_iT8l2OdYXX9ayhKIRHqrKA1-J4VHOkyKJctwkkTIlnNQ0ubwnce1MK_jixjN45Wi0Q2tZ5Rz7HrMrd7NGftiSXp3fA4_Jet2WDtknb7AtcjUfT41Ovb9ngacINjZdIK38vBbd07DhS2jeMGaUEzwjLEHpjRZDEmR-RJ-RRxguWsygsKGFQmSi1CLdhraorswNY0MLIiCJQkkpWwk2aaUHlXUzhWeVxMQB_YcRU93rmtq3GLHV1jZ-k1u6ptXva230A35dLfndiHu9N3rJ2XE7sTTiAvYWnpP3n_pAyK5tokWzw9e1Vu_CBWTKMo3vvwVpz35p9QjONOnBu_Ayc0_CU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2V9gAcoKVULJQyB06IbBPHTpxjKbtaYHeFxLbqLYodR41YJdAmh-Vz-FLGTnZVaIV688GWHM145r34eQbgbUFZOZZRQbQkFx6PufakzJUnEhUS_g8Ud_90Z_NocsY_X4iLLXi_eQtjjHHiMzO0Q3eXn9e6tb_KjpMglHEsH8CO4JyL7rXW5s6AC9fsmI6N8IhFhP0dZuAnx4uvoylxQUYU1eVA_lcWcm1VbsVil2DGT2G23lqnK_k-bBs11L_-qdp4373vwpMeaeJJ5xp7sGWqZ_D4Rv3BffjdVddc4Thrlw1-7GR35TUSksWRa5BTajw3l047hx8o4-VYV3heLxuKQ3iiKgt5LZJHtUKKLcr1m0BClTitafDtkuC9t6DwjzOr6V2hrQZC25p38nPMqtzNHv1sS3J6-gY8La90WzZo27Qtn8PZeLQ4nXh90wZPE3JovETaAvhScCvIjiOlfcOYUUrwjNAM4TdWBEmc-RH5Qh5lvGA5i8KCUgYRRalFeADbVV2ZF4AFLYyMKAIlibQSctJMCyJ4MQVolcfFAPy1EVPdVzS3jTWWqWM2fpJau6fW7mlv9wG82yz50ZXz-N_kfWvHzcTehAM4XHtK2h_465TZwokWywYv7171Bh5OFrNpOv00__IKHjErjXHi70PYbq5a85qwTaOOnEv_AVgc8-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+Fault+Diagnosis+for+Electric+Vehicles+Based+on+Voltage+Abnormality+by+Combining+the+Long+Short-Term+Memory+Neural+Network+and+the+Equivalent+Circuit+Model&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Li%2C+Da&rft.au=Zhang%2C+Zhaosheng&rft.au=Liu%2C+Peng&rft.au=Wang%2C+Zhenpo&rft.date=2021-02-01&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=36&rft.issue=2&rft.spage=1303&rft.epage=1315&rft_id=info:doi/10.1109%2FTPEL.2020.3008194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPEL_2020_3008194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon