Battery Fault Diagnosis for Electric Vehicles Based on Voltage Abnormality by Combining the Long Short-Term Memory Neural Network and the Equivalent Circuit Model
Battery fault diagnosis is essential for ensuring safe and reliable operation of electric vehicles. In this article, a novel battery fault diagnosis method is presented by combining the long short-term memory recurrent neural network and the equivalent circuit model. The modified adaptive boosting m...
Saved in:
| Published in | IEEE transactions on power electronics Vol. 36; no. 2; pp. 1303 - 1315 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-8993 1941-0107 |
| DOI | 10.1109/TPEL.2020.3008194 |
Cover
| Abstract | Battery fault diagnosis is essential for ensuring safe and reliable operation of electric vehicles. In this article, a novel battery fault diagnosis method is presented by combining the long short-term memory recurrent neural network and the equivalent circuit model. The modified adaptive boosting method is utilized to improve diagnosis accuracy, and a prejudging model is employed to reduce computational time and improve diagnosis reliability. Considering the influence of the driver behavior on battery systems, the proposed scheme is able to achieve potential failure risk assessment and accordingly to issue early thermal runaway warning. A large volume of real-world operation data is acquired from the National Monitoring and Management Center for New Energy Vehicles in China to examine its robustness, reliability, and superiority. The verification results show that the proposed method can achieve accurate fault diagnosis for potential battery cell failure and precise locating of thermal runaway cells. |
|---|---|
| AbstractList | Battery fault diagnosis is essential for ensuring safe and reliable operation of electric vehicles. In this article, a novel battery fault diagnosis method is presented by combining the long short-term memory recurrent neural network and the equivalent circuit model. The modified adaptive boosting method is utilized to improve diagnosis accuracy, and a prejudging model is employed to reduce computational time and improve diagnosis reliability. Considering the influence of the driver behavior on battery systems, the proposed scheme is able to achieve potential failure risk assessment and accordingly to issue early thermal runaway warning. A large volume of real-world operation data is acquired from the National Monitoring and Management Center for New Energy Vehicles in China to examine its robustness, reliability, and superiority. The verification results show that the proposed method can achieve accurate fault diagnosis for potential battery cell failure and precise locating of thermal runaway cells. |
| Author | Zhang, Zhaosheng Liu, Peng Li, Da Wang, Zhenpo Zhang, Lei |
| Author_xml | – sequence: 1 givenname: Da surname: Li fullname: Li, Da email: da.li@bit.edu.cn organization: National Engineering Laboratory for Electric Vehicles and the Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Zhaosheng orcidid: 0000-0003-0591-9641 surname: Zhang fullname: Zhang, Zhaosheng email: zhangzhaosheng@bit.edu.cn organization: National Engineering Laboratory for Electric Vehicles and the Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Peng orcidid: 0000-0001-9702-6888 surname: Liu fullname: Liu, Peng email: roc726@126.com organization: National Engineering Laboratory for Electric Vehicles and the Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Zhenpo surname: Wang fullname: Wang, Zhenpo email: zhenpowang@bit.edu.cn organization: National Engineering Laboratory for Electric Vehicles and the Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Lei orcidid: 0000-0002-1763-0397 surname: Zhang fullname: Zhang, Lei email: lei_zhang@bit.edu.cn organization: National Engineering Laboratory for Electric Vehicles and the Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China |
| BookMark | eNp9kU9v1DAQxS1UJLaFD4C4jMQ5i_8lcY7tsgWkLSCx9Bo5zmTXxbFb2ynar8MnJctWHDhwmTeH35un0TsnZz54JOQ1o0vGaPNu-3W9WXLK6VJQqlgjn5HFPFlBGa3PyIIqVRaqacQLcp7SHaVMlpQtyK8rnTPGA1zryWV4b_XOh2QTDCHC2qHJ0Rq4xb01DhNc6YQ9BA-3wWW9Q7jsfIijdjYfoDvAKoyd9dbvIO8RNmFevu1DzMUW4wg3OIY56jNOUbtZ8s8Qf4D2_R96_TDZR-3QZ1jZaCab4Sb06F6S54N2CV896QX5fr3erj4Wmy8fPq0uN4XhjchFo-bPS1XKyhheV52hyDl2XSk1rRkXnA-sqTWtOlH1lZYD73klBuyYlEqZUlyQt6e79zE8TJhyexem6OfIlktZlyXnFZup-kSZGFKKOLTGZp1t8Dlq61pG22Mh7bGQ9lhI-1TI7GT_OO-jHXU8_Nfz5uSxiPiXb5hQda3Eb_t9maQ |
| CODEN | ITPEE8 |
| CitedBy_id | crossref_primary_10_1021_acsomega_2c04991 crossref_primary_10_1109_TII_2022_3202949 crossref_primary_10_1109_TIM_2024_3350153 crossref_primary_10_1016_j_egyr_2023_01_092 crossref_primary_10_1080_15435075_2024_2422463 crossref_primary_10_1049_itr2_12217 crossref_primary_10_1109_TPEL_2022_3173038 crossref_primary_10_1016_j_est_2022_104092 crossref_primary_10_1016_j_est_2025_116007 crossref_primary_10_3390_s25010094 crossref_primary_10_3390_batteries9020124 crossref_primary_10_1016_j_asej_2024_102908 crossref_primary_10_1016_j_apenergy_2023_121970 crossref_primary_10_3390_en17235825 crossref_primary_10_1109_TPEL_2021_3131293 crossref_primary_10_1016_j_apenergy_2024_123757 crossref_primary_10_3390_su16177812 crossref_primary_10_1149_1945_7111_ad5768 crossref_primary_10_1016_j_geits_2024_100236 crossref_primary_10_1109_ACCESS_2022_3157820 crossref_primary_10_1016_j_jpowsour_2022_230975 crossref_primary_10_7467_KSAE_2021_29_12_1133 crossref_primary_10_1016_j_trpro_2024_12_116 crossref_primary_10_1109_TTE_2023_3288394 crossref_primary_10_1109_TII_2022_3202832 crossref_primary_10_1109_TPEL_2021_3073810 crossref_primary_10_1109_TIM_2023_3314827 crossref_primary_10_1149_1945_7111_acb10b crossref_primary_10_1109_TPEL_2021_3121701 crossref_primary_10_1109_TPEL_2022_3211905 crossref_primary_10_1109_TPEL_2024_3437176 crossref_primary_10_1016_j_est_2022_105074 crossref_primary_10_1109_TPEL_2022_3150026 crossref_primary_10_1109_TIE_2021_3127035 crossref_primary_10_3390_jmse12060965 crossref_primary_10_1016_j_egyr_2021_05_015 crossref_primary_10_3390_sym13091714 crossref_primary_10_1016_j_patter_2021_100432 crossref_primary_10_3390_polym14132611 crossref_primary_10_1016_j_apenergy_2023_121188 crossref_primary_10_1016_j_est_2023_107073 crossref_primary_10_1016_j_etran_2024_100338 crossref_primary_10_1016_j_energy_2022_124612 crossref_primary_10_1016_j_est_2025_115727 crossref_primary_10_1088_1361_6501_ad7e47 crossref_primary_10_1016_j_isci_2021_103265 crossref_primary_10_1109_JESTPE_2022_3153337 crossref_primary_10_3390_batteries8110224 crossref_primary_10_1016_j_jpowsour_2024_235610 crossref_primary_10_2478_amns_2024_3205 crossref_primary_10_1155_2022_7277446 crossref_primary_10_1016_j_geits_2022_100009 crossref_primary_10_1149_1945_7111_acd815 crossref_primary_10_1016_j_est_2021_102740 crossref_primary_10_3390_batteries8100151 crossref_primary_10_1016_j_segan_2021_100590 crossref_primary_10_1016_j_est_2021_102970 crossref_primary_10_1016_j_apenergy_2022_119703 crossref_primary_10_1016_j_asoc_2022_109903 crossref_primary_10_1016_j_energy_2024_132573 crossref_primary_10_1360_SST_2023_0378 crossref_primary_10_1016_j_energy_2022_126496 crossref_primary_10_1109_JIOT_2024_3511961 crossref_primary_10_1109_TII_2021_3098791 crossref_primary_10_1080_17445302_2024_2442339 crossref_primary_10_1149_1945_7111_acd303 crossref_primary_10_3390_batteries9020103 crossref_primary_10_1007_s12555_023_0377_8 crossref_primary_10_1016_j_est_2023_109681 crossref_primary_10_3390_en14154690 crossref_primary_10_1016_j_jpowsour_2023_233349 crossref_primary_10_3390_en17143472 crossref_primary_10_1016_j_apenergy_2021_118172 crossref_primary_10_23919_PCMP_2023_000213 crossref_primary_10_1109_TPEL_2024_3523583 crossref_primary_10_1016_j_jpowsour_2025_236414 crossref_primary_10_1109_TTE_2021_3117841 crossref_primary_10_1002_er_6647 crossref_primary_10_3390_su142315912 crossref_primary_10_3390_batteries8090119 crossref_primary_10_3390_machines11070713 crossref_primary_10_1016_j_energy_2024_131475 crossref_primary_10_1016_j_jpowsour_2024_234111 crossref_primary_10_1016_j_ssci_2023_106363 crossref_primary_10_1016_j_est_2023_110381 crossref_primary_10_1016_j_est_2024_112067 crossref_primary_10_1109_JSEN_2023_3285531 crossref_primary_10_1080_15435075_2024_2395484 crossref_primary_10_1177_14759217241227163 crossref_primary_10_1016_j_etran_2023_100254 crossref_primary_10_1016_j_compeleceng_2022_108555 crossref_primary_10_1109_TPEL_2022_3174390 crossref_primary_10_1109_OJIA_2024_3354899 crossref_primary_10_1016_j_est_2023_109679 crossref_primary_10_1016_j_apenergy_2022_119965 crossref_primary_10_1016_j_est_2022_105384 crossref_primary_10_1016_j_seta_2021_101790 crossref_primary_10_1002_adts_202200933 crossref_primary_10_1016_j_rser_2022_112862 crossref_primary_10_1038_s41467_023_41226_5 crossref_primary_10_1007_s42154_022_00197_x crossref_primary_10_1016_j_rser_2024_114925 crossref_primary_10_1109_TEC_2021_3061493 crossref_primary_10_1016_j_est_2024_110614 crossref_primary_10_1016_j_seta_2021_101794 crossref_primary_10_3390_machines11070740 crossref_primary_10_1016_j_displa_2025_102976 crossref_primary_10_1007_s43236_022_00580_1 crossref_primary_10_1109_TPEL_2023_3342412 crossref_primary_10_1016_j_est_2021_103889 crossref_primary_10_1109_TTE_2022_3172663 crossref_primary_10_1016_j_apenergy_2024_122989 crossref_primary_10_1109_TIE_2021_3060675 crossref_primary_10_1038_s41598_021_93801_9 crossref_primary_10_3390_wevj15020053 crossref_primary_10_1016_j_apenergy_2023_121936 crossref_primary_10_3390_machines12050303 crossref_primary_10_1016_j_energy_2023_129130 crossref_primary_10_1038_s41598_024_72510_z crossref_primary_10_1016_j_apenergy_2024_125160 crossref_primary_10_1016_j_apenergy_2022_119614 crossref_primary_10_1016_j_est_2025_115485 crossref_primary_10_1016_j_coelec_2021_100867 crossref_primary_10_1016_j_est_2023_108083 crossref_primary_10_1016_j_energy_2023_128318 crossref_primary_10_1109_ACCESS_2021_3051986 crossref_primary_10_1016_j_energy_2023_128438 crossref_primary_10_1016_j_est_2023_109056 crossref_primary_10_1016_j_est_2023_110045 crossref_primary_10_1109_TPEL_2023_3323984 crossref_primary_10_3390_en15176265 crossref_primary_10_1002_est2_70073 crossref_primary_10_1109_TTE_2022_3160021 crossref_primary_10_1016_j_etran_2024_100374 crossref_primary_10_1080_15435075_2025_2450621 crossref_primary_10_3389_fenrg_2021_702139 crossref_primary_10_1016_j_apenergy_2023_121949 crossref_primary_10_3390_batteries9030154 crossref_primary_10_3390_wevj13090159 crossref_primary_10_1007_s42835_023_01533_9 crossref_primary_10_1088_1361_6501_ac1b43 crossref_primary_10_3390_en15228458 crossref_primary_10_1016_j_jclepro_2024_142889 crossref_primary_10_1109_TEC_2021_3112950 crossref_primary_10_1016_j_est_2022_104030 crossref_primary_10_32604_cmes_2024_056022 crossref_primary_10_1016_j_est_2024_110874 crossref_primary_10_1109_JSYST_2021_3075088 crossref_primary_10_1109_TPEL_2023_3241938 crossref_primary_10_3233_JCM_247551 crossref_primary_10_1049_pel2_12013 crossref_primary_10_3390_en14185989 crossref_primary_10_1016_j_etran_2024_100364 crossref_primary_10_1109_TTE_2024_3419148 crossref_primary_10_3390_batteries8110219 crossref_primary_10_1016_j_asoc_2022_109554 crossref_primary_10_1016_j_etran_2023_100284 crossref_primary_10_1016_j_psep_2024_08_055 crossref_primary_10_1016_j_est_2023_106811 crossref_primary_10_1109_TTE_2024_3456135 crossref_primary_10_1177_00202940221113588 crossref_primary_10_1021_acsomega_3c06796 crossref_primary_10_23919_JSEE_2022_000078 crossref_primary_10_1002_er_7408 crossref_primary_10_20964_2021_07_29 crossref_primary_10_1080_15435075_2024_2376707 crossref_primary_10_1049_itr2_12267 crossref_primary_10_1016_j_egyr_2022_03_016 crossref_primary_10_1109_TII_2021_3121509 crossref_primary_10_1016_j_est_2025_115944 crossref_primary_10_1016_j_geits_2022_100020 crossref_primary_10_3390_pr10061192 crossref_primary_10_1016_j_conengprac_2023_105738 crossref_primary_10_1109_TASE_2024_3363002 crossref_primary_10_1016_j_est_2024_113234 crossref_primary_10_1109_TVT_2023_3246022 crossref_primary_10_1016_j_est_2023_107210 crossref_primary_10_1109_JIOT_2022_3160298 crossref_primary_10_3390_batteries9010063 crossref_primary_10_1016_j_est_2022_104723 crossref_primary_10_1016_j_energy_2024_134150 crossref_primary_10_1016_j_est_2022_104963 |
| Cites_doi | 10.1109/TIE.2015.2461523 10.1109/ECCE.2017.8096879 10.1109/TPEL.2018.2861730 10.1098/rspl.1895.0041 10.1162/neco.1997.9.8.1735 10.1016/j.jclepro.2018.03.259 10.3390/pr7100703 10.1109/TIE.2018.2881943 10.1016/j.apenergy.2016.12.143 10.1016/j.ensm.2017.05.013 10.1109/ACCESS.2017.2780258 10.1016/j.apenergy.2017.05.139 10.1109/TASLP.2019.2925934 10.1016/j.jhazmat.2019.03.116 10.3390/en12152977 10.1016/j.est.2018.04.020 10.1162/089976600300015015 10.1016/j.apenergy.2015.10.168 10.1038/nature14539 10.1109/ACCESS.2018.2824838 10.1016/j.jpowsour.2016.11.007 10.1109/TVT.2018.2805189 10.3390/pr7010038 10.1016/j.neucom.2019.09.046 10.1016/j.est.2018.01.010 10.4310/SII.2009.v2.n3.a8 10.1016/j.jpowsour.2011.10.013 10.3390/en12163099 10.1016/j.patrec.2017.09.009 10.1016/j.pecs.2019.03.002 10.1007/s10973-017-6888-x 10.1109/TPEL.2018.2873247 10.1016/j.ejor.2017.11.054 10.1016/j.jpowsour.2012.09.015 10.1016/j.applthermaleng.2019.113960 10.1016/j.jpowsour.2017.08.035 10.1016/j.ijheatmasstransfer.2018.03.100 10.1016/j.apenergy.2019.113381 10.1016/j.rser.2019.05.042 10.3390/en4040582 10.1016/j.apenergy.2016.10.026 10.1016/j.rser.2017.05.001 10.1016/j.jpowsour.2019.227275 10.1109/TPEL.2018.2877294 10.1016/j.apenergy.2016.04.016 10.1016/j.jpowsour.2018.10.019 10.1371/journal.pone.0146917 10.3390/en11010136 10.1016/j.measurement.2018.09.007 10.1016/j.neunet.2014.09.003 10.1016/j.jpowsour.2018.07.094 10.1002/er.4666 10.1149/2.1561910jes 10.1016/j.jpowsour.2019.01.058 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
| DOI | 10.1109/TPEL.2020.3008194 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present Consulter via IEEE Xplore CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0107 |
| EndPage | 1315 |
| ExternalDocumentID | 10_1109_TPEL_2020_3008194 9138778 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61703024; U1764258 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2018YFB0105700; 2018YFB0106404 |
| GroupedDBID | -~X 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TAF TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 JQ2 KR7 L7M |
| ID | FETCH-LOGICAL-c293t-9830058546cc276bc0e22ebb54a0712322f197a06b36d6a4f2d263feb14488c53 |
| IEDL.DBID | RIE |
| ISSN | 0885-8993 |
| IngestDate | Mon Jun 30 07:15:58 EDT 2025 Wed Oct 01 03:20:07 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Wed Aug 27 02:31:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-9830058546cc276bc0e22ebb54a0712322f197a06b36d6a4f2d263feb14488c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0591-9641 0000-0001-9702-6888 0000-0002-1763-0397 |
| PQID | 2447552261 |
| PQPubID | 37080 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9138778 proquest_journals_2447552261 crossref_citationtrail_10_1109_TPEL_2020_3008194 crossref_primary_10_1109_TPEL_2020_3008194 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on power electronics |
| PublicationTitleAbbrev | TPEL |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref59 ref15 ref58 ref14 ref52 zhao (ref31) 2019; 159 ref55 ref11 ref10 zhu (ref60) 2009; 2 ref17 ref19 ref18 ref51 kingma (ref56) 2015; abs 1412 6980 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref30 ref33 ref32 ref2 pearson (ref54) 1895; 58 ref1 ref39 pedregosa (ref38) 2011; 12 galton (ref53) 1885; 32 ref24 ref23 lecun (ref37) 2015; 521 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ian (ref57) 2018 gong (ref16) 2016; 52 |
| References_xml | – ident: ref17 doi: 10.1109/TIE.2015.2461523 – ident: ref40 doi: 10.1109/ECCE.2017.8096879 – ident: ref2 doi: 10.1109/TPEL.2018.2861730 – volume: 58 start-page: 240 year: 1895 ident: ref54 article-title: Note on regression and inheritance in the case of two parents publication-title: Proc Roy Soc London doi: 10.1098/rspl.1895.0041 – ident: ref47 doi: 10.1162/neco.1997.9.8.1735 – ident: ref12 doi: 10.1016/j.jclepro.2018.03.259 – ident: ref35 doi: 10.3390/pr7100703 – ident: ref52 doi: 10.1109/TIE.2018.2881943 – ident: ref22 doi: 10.1016/j.apenergy.2016.12.143 – ident: ref5 doi: 10.1016/j.ensm.2017.05.013 – ident: ref43 doi: 10.1109/ACCESS.2017.2780258 – ident: ref20 doi: 10.1016/j.apenergy.2017.05.139 – ident: ref49 doi: 10.1109/TASLP.2019.2925934 – ident: ref29 doi: 10.1016/j.jhazmat.2019.03.116 – ident: ref23 doi: 10.3390/en12152977 – ident: ref11 doi: 10.1016/j.est.2018.04.020 – ident: ref48 doi: 10.1162/089976600300015015 – ident: ref14 doi: 10.1016/j.apenergy.2015.10.168 – volume: 521 start-page: 436 year: 2015 ident: ref37 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 52 start-page: 1759 year: 2016 ident: ref16 article-title: A data-driven bias-correction-method-based lithium-ion battery modeling approach for electric vehicle applications publication-title: IEEE Trans Ind Appl – ident: ref1 doi: 10.1109/ACCESS.2018.2824838 – ident: ref15 doi: 10.1016/j.jpowsour.2016.11.007 – ident: ref55 doi: 10.1109/TVT.2018.2805189 – ident: ref10 doi: 10.3390/pr7010038 – ident: ref46 doi: 10.1016/j.neucom.2019.09.046 – ident: ref8 doi: 10.1016/j.est.2018.01.010 – volume: 2 start-page: 349 year: 2009 ident: ref60 article-title: Multi-class AdaBoost publication-title: Statist Interface doi: 10.4310/SII.2009.v2.n3.a8 – ident: ref58 doi: 10.1016/j.jpowsour.2011.10.013 – ident: ref28 doi: 10.3390/en12163099 – ident: ref39 doi: 10.1016/j.patrec.2017.09.009 – ident: ref6 doi: 10.1016/j.pecs.2019.03.002 – ident: ref30 doi: 10.1007/s10973-017-6888-x – ident: ref4 doi: 10.1109/TPEL.2018.2873247 – ident: ref50 doi: 10.1016/j.ejor.2017.11.054 – ident: ref21 doi: 10.1016/j.jpowsour.2012.09.015 – ident: ref32 doi: 10.1016/j.applthermaleng.2019.113960 – ident: ref34 doi: 10.1016/j.jpowsour.2017.08.035 – ident: ref36 doi: 10.1016/j.ijheatmasstransfer.2018.03.100 – ident: ref41 doi: 10.1016/j.apenergy.2019.113381 – ident: ref25 doi: 10.1016/j.rser.2019.05.042 – ident: ref59 doi: 10.3390/en4040582 – volume: 12 start-page: 2825 year: 2011 ident: ref38 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – year: 2018 ident: ref57 publication-title: Deep Learning – ident: ref9 doi: 10.1016/j.apenergy.2016.10.026 – volume: 32 start-page: 507 year: 1885 ident: ref53 article-title: Section H; Anthropology; Opening address publication-title: Nature – volume: 159 year: 2019 ident: ref31 article-title: Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions publication-title: Appl Thermal Eng – volume: abs 1412 6980 year: 2015 ident: ref56 article-title: Adam: A method for stochastic optimization publication-title: CoRR – ident: ref42 doi: 10.1016/j.rser.2017.05.001 – ident: ref19 doi: 10.1016/j.jpowsour.2019.227275 – ident: ref3 doi: 10.1109/TPEL.2018.2877294 – ident: ref7 doi: 10.1016/j.apenergy.2016.04.016 – ident: ref44 doi: 10.1016/j.jpowsour.2018.10.019 – ident: ref51 doi: 10.1371/journal.pone.0146917 – ident: ref24 doi: 10.3390/en11010136 – ident: ref13 doi: 10.1016/j.measurement.2018.09.007 – ident: ref45 doi: 10.1016/j.neunet.2014.09.003 – ident: ref27 doi: 10.1016/j.jpowsour.2018.07.094 – ident: ref26 doi: 10.1002/er.4666 – ident: ref33 doi: 10.1149/2.1561910jes – ident: ref18 doi: 10.1016/j.jpowsour.2019.01.058 |
| SSID | ssj0014501 |
| Score | 2.6942904 |
| Snippet | Battery fault diagnosis is essential for ensuring safe and reliable operation of electric vehicles. In this article, a novel battery fault diagnosis method is... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1303 |
| SubjectTerms | Batteries Circuit faults Computational modeling Computing time Data acquisition Data models Driver behavior Electric vehicles Electric vehicles (EVs) equivalent circuit model (ECM) Equivalent circuits Fault diagnosis Integrated circuit modeling lithium-ion battery long short-term memory recurrent neural network (LSTM) Machine learning Model accuracy modified adaptive boosting (MAB) Neural networks Recurrent neural networks Reliability Risk assessment Thermal runaway |
| Title | Battery Fault Diagnosis for Electric Vehicles Based on Voltage Abnormality by Combining the Long Short-Term Memory Neural Network and the Equivalent Circuit Model |
| URI | https://ieeexplore.ieee.org/document/9138778 https://www.proquest.com/docview/2447552261 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0107 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014501 issn: 0885-8993 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp3KgpRSx5UNz6KlqlsSxE-dIYVeoYhESC-IWxY4jIlZJC8lh-Tn8UsZOdlUKQr35YEeOZjLzxn55A_CtoKwcy6igsiQXHo-59qTMlScSFRL-DxR3Z7qT8-j0iv-6ETcr8GP5L4wxxpHPzNAO3V1-XuvWHpUdJkEo41iuwio9vvtXa3ljwIVrdUwfjfCohgj7G8zATw6nF6MzqgQZFaguA_IXOcg1VXkViV16GX-EyWJjHavkbtg2aqgf_9Fs_N-df4KNHmfiUecYm7Biqs-w_pf64BY8ddqacxxn7azBk450Vz4g4VgcufY4pcZrc-uYc_iT8l2OdYXX9ayhKIRHqrKA1-J4VHOkyKJctwkkTIlnNQ0ubwnce1MK_jixjN45Wi0Q2tZ5Rz7HrMrd7NGftiSXp3fA4_Jet2WDtknb7AtcjUfT41Ovb9ngacINjZdIK38vBbd07DhS2jeMGaUEzwjLEHpjRZDEmR-RJ-RRxguWsygsKGFQmSi1CLdhraorswNY0MLIiCJQkkpWwk2aaUHlXUzhWeVxMQB_YcRU93rmtq3GLHV1jZ-k1u6ptXva230A35dLfndiHu9N3rJ2XE7sTTiAvYWnpP3n_pAyK5tokWzw9e1Vu_CBWTKMo3vvwVpz35p9QjONOnBu_Ayc0_CU |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2V9gAcoKVULJQyB06IbBPHTpxjKbtaYHeFxLbqLYodR41YJdAmh-Vz-FLGTnZVaIV688GWHM145r34eQbgbUFZOZZRQbQkFx6PufakzJUnEhUS_g8Ud_90Z_NocsY_X4iLLXi_eQtjjHHiMzO0Q3eXn9e6tb_KjpMglHEsH8CO4JyL7rXW5s6AC9fsmI6N8IhFhP0dZuAnx4uvoylxQUYU1eVA_lcWcm1VbsVil2DGT2G23lqnK_k-bBs11L_-qdp4373vwpMeaeJJ5xp7sGWqZ_D4Rv3BffjdVddc4Thrlw1-7GR35TUSksWRa5BTajw3l047hx8o4-VYV3heLxuKQ3iiKgt5LZJHtUKKLcr1m0BClTitafDtkuC9t6DwjzOr6V2hrQZC25p38nPMqtzNHv1sS3J6-gY8La90WzZo27Qtn8PZeLQ4nXh90wZPE3JovETaAvhScCvIjiOlfcOYUUrwjNAM4TdWBEmc-RH5Qh5lvGA5i8KCUgYRRalFeADbVV2ZF4AFLYyMKAIlibQSctJMCyJ4MQVolcfFAPy1EVPdVzS3jTWWqWM2fpJau6fW7mlv9wG82yz50ZXz-N_kfWvHzcTehAM4XHtK2h_465TZwokWywYv7171Bh5OFrNpOv00__IKHjErjXHi70PYbq5a85qwTaOOnEv_AVgc8-E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+Fault+Diagnosis+for+Electric+Vehicles+Based+on+Voltage+Abnormality+by+Combining+the+Long+Short-Term+Memory+Neural+Network+and+the+Equivalent+Circuit+Model&rft.jtitle=IEEE+transactions+on+power+electronics&rft.au=Li%2C+Da&rft.au=Zhang%2C+Zhaosheng&rft.au=Liu%2C+Peng&rft.au=Wang%2C+Zhenpo&rft.date=2021-02-01&rft.issn=0885-8993&rft.eissn=1941-0107&rft.volume=36&rft.issue=2&rft.spage=1303&rft.epage=1315&rft_id=info:doi/10.1109%2FTPEL.2020.3008194&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPEL_2020_3008194 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8993&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8993&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8993&client=summon |