Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks
A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection fro...
        Saved in:
      
    
          | Published in | IEEE transactions on green communications and networking Vol. 6; no. 4; pp. 1957 - 1971 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.12.2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2473-2400 2473-2400  | 
| DOI | 10.1109/TGCN.2022.3186841 | 
Cover
| Abstract | A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection from MTCDs is considered. Taking into account the limited energy for both the UAV and MTCDs, a problem of minimizing the total energy consumption subject to completion of the data collection tasks by planning the UAV trajectory is formulated. A Global Optimum (GOP) trajectory can be obtained for a UAV serving all the MTCDs simultaneously if the UAV's flying altitude is larger than <inline-formula> <tex-math notation="LaTeX">\sqrt {3} </tex-math></inline-formula> times its maximum service radius. However, communication energy efficiency drops as the UAV's altitude increases. Clustering-based service strategies and dynamic trajectory planning algorithms, namely clustered GOP (C-GOP) and clustered particle swarm optimization (C-PSO), are proposed to overcome the above issue. The data collection efficiency is maximized by locating the optimal UAV hovering point for each serving MTCD cluster, which is dynamically adjusted with the UAV hovering position until all MTCDs are served. It is shown that the GOP is the optimal strategy for a small number of MTCDs concentrated in a small area. While for large number of MTCDs or task area, the clustered algorithms are more favorable from energy efficiency, complexity and scalability perspectives. | 
    
|---|---|
| AbstractList | A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection from MTCDs is considered. Taking into account the limited energy for both the UAV and MTCDs, a problem of minimizing the total energy consumption subject to completion of the data collection tasks by planning the UAV trajectory is formulated. A Global Optimum (GOP) trajectory can be obtained for a UAV serving all the MTCDs simultaneously if the UAV's flying altitude is larger than <inline-formula> <tex-math notation="LaTeX">\sqrt {3} </tex-math></inline-formula> times its maximum service radius. However, communication energy efficiency drops as the UAV's altitude increases. Clustering-based service strategies and dynamic trajectory planning algorithms, namely clustered GOP (C-GOP) and clustered particle swarm optimization (C-PSO), are proposed to overcome the above issue. The data collection efficiency is maximized by locating the optimal UAV hovering point for each serving MTCD cluster, which is dynamically adjusted with the UAV hovering position until all MTCDs are served. It is shown that the GOP is the optimal strategy for a small number of MTCDs concentrated in a small area. While for large number of MTCDs or task area, the clustered algorithms are more favorable from energy efficiency, complexity and scalability perspectives. A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection from MTCDs is considered. Taking into account the limited energy for both the UAV and MTCDs, a problem of minimizing the total energy consumption subject to completion of the data collection tasks by planning the UAV trajectory is formulated. A Global Optimum (GOP) trajectory can be obtained for a UAV serving all the MTCDs simultaneously if the UAV’s flying altitude is larger than [Formula Omitted] times its maximum service radius. However, communication energy efficiency drops as the UAV’s altitude increases. Clustering-based service strategies and dynamic trajectory planning algorithms, namely clustered GOP (C-GOP) and clustered particle swarm optimization (C-PSO), are proposed to overcome the above issue. The data collection efficiency is maximized by locating the optimal UAV hovering point for each serving MTCD cluster, which is dynamically adjusted with the UAV hovering position until all MTCDs are served. It is shown that the GOP is the optimal strategy for a small number of MTCDs concentrated in a small area. While for large number of MTCDs or task area, the clustered algorithms are more favorable from energy efficiency, complexity and scalability perspectives.  | 
    
| Author | Wang, Ning Chen, Jun Mu, Xiaomin Wong, Kon Max Shen, Lingfeng Zhang, Di  | 
    
| Author_xml | – sequence: 1 givenname: Lingfeng surname: Shen fullname: Shen, Lingfeng organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 2 givenname: Ning orcidid: 0000-0001-9403-3417 surname: Wang fullname: Wang, Ning email: ienwang@zzu.edu.cn organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 3 givenname: Di orcidid: 0000-0001-7190-1621 surname: Zhang fullname: Zhang, Di organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 4 givenname: Jun orcidid: 0000-0002-8084-9332 surname: Chen fullname: Chen, Jun organization: Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada – sequence: 5 givenname: Xiaomin surname: Mu fullname: Mu, Xiaomin organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 6 givenname: Kon Max surname: Wong fullname: Wong, Kon Max organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China  | 
    
| BookMark | eNp9kE1PwjAYxxuDiYh8AOOliedhX_bSHslANEH0MEw8Nd3akeJosRsh-_ZugRjjwdPzHH7_5-V3DQbWWQ3ALUYTjBF_yBbpakIQIROKWcxCfAGGJExoQEKEBr_6KzCu6y1CiPAIx5wOwcfcar9pg-lReg1nrZU7U8DMy60uGudb-FZJa43dwNJ5uJ6-B3Mr80orOJONhKmrqg40zkJj4e4lS-FKN0fnP-sbcFnKqtbjcx2B9eM8S5-C5eviOZ0ug4Jw2gQ8orFiBLOEsDwqS0zjREeRRpEquJJx_06OYpoTVqJS5blmXMUJKvOCKaQUHYH709y9d18HXTdi6w7edisFSSinlKIQdVRyogrv6trrUhSmkf3hjZemEhiJXqXoVYpepTir7JL4T3LvzU769t_M3SljtNY_PGe4U8_pNzepf8U | 
    
| CODEN | ITGCBM | 
    
| CitedBy_id | crossref_primary_10_1016_j_adhoc_2024_103704 crossref_primary_10_1007_s11235_024_01101_0 crossref_primary_10_1109_TITS_2023_3299842 crossref_primary_10_1016_j_heliyon_2024_e26627 crossref_primary_10_1016_j_adhoc_2023_103182 crossref_primary_10_1109_JIOT_2023_3281774 crossref_primary_10_1109_TETCI_2024_3361755 crossref_primary_10_1049_cmu2_12768 crossref_primary_10_1109_LSENS_2024_3487009 crossref_primary_10_1016_j_phycom_2025_102650 crossref_primary_10_1109_MNET_011_2300032  | 
    
| Cites_doi | 10.1109/JIOT.2021.3051370 10.1109/TWC.2020.3029143 10.1109/TSIPN.2020.2986360 10.1109/WCNC45663.2020.9120646 10.1109/ACCESS.2020.2977406 10.1017/CBO9780511804441 10.1109/TWC.2020.3029225 10.1109/JIOT.2021.3102185 10.1109/ACCESS.2020.3010271 10.1109/LWC.2014.2342736 10.1109/JSYST.2020.3019463 10.1109/JSYST.2018.2890039 10.1109/GLOCOMW.2018.8644379 10.1109/TWC.2019.2902559 10.1109/TWC.2019.2930190 10.1109/JIOT.2019.2955732 10.1109/MCOMSTD.001.1900015 10.1109/ICEA.2019.8858305 10.1109/ICC40277.2020.9148990 10.1109/ACCESS.2019.2939616 10.1109/JIOT.2020.3024666 10.1109/EIT51626.2021.9491898 10.1109/JSAC.2019.2906789 10.1109/TSMCB.2009.2015956 10.1109/TSP.2020.2967146 10.1109/TCOMM.2020.3003662  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| DOI | 10.1109/TGCN.2022.3186841 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore digital library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2473-2400 | 
    
| EndPage | 1971 | 
    
| ExternalDocumentID | 10_1109_TGCN_2022_3186841 9810009  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 61771431; 62001423 funderid: 10.13039/501100001809 – fundername: Henan Province Key Science and Technology Project grantid: 202102210328 – fundername: Zhengzhou Major Projects of Scientific and Technological Innovation grantid: 2020CXZX0080  | 
    
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c293t-9536d8218728b5ff1367e55e05dc9da66841b063b28f0fdbbe89d670fbc8d0dd3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2473-2400 | 
    
| IngestDate | Fri Jul 25 07:54:47 EDT 2025 Wed Oct 01 01:53:01 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Wed Aug 27 02:15:11 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c293t-9536d8218728b5ff1367e55e05dc9da66841b063b28f0fdbbe89d670fbc8d0dd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8084-9332 0000-0001-7190-1621 0000-0001-9403-3417  | 
    
| PQID | 2739333040 | 
    
| PQPubID | 4437214 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TGCN_2022_3186841 crossref_primary_10_1109_TGCN_2022_3186841 ieee_primary_9810009 proquest_journals_2739333040  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-12-01 | 
    
| PublicationDateYYYYMMDD | 2022-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE transactions on green communications and networking | 
    
| PublicationTitleAbbrev | TGCN | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref18 doi: 10.1109/JIOT.2021.3051370 – ident: ref16 doi: 10.1109/TWC.2020.3029143 – ident: ref8 doi: 10.1109/TSIPN.2020.2986360 – ident: ref14 doi: 10.1109/WCNC45663.2020.9120646 – ident: ref3 doi: 10.1109/ACCESS.2020.2977406 – ident: ref24 doi: 10.1017/CBO9780511804441 – ident: ref7 doi: 10.1109/TWC.2020.3029225 – ident: ref21 doi: 10.1109/JIOT.2021.3102185 – ident: ref9 doi: 10.1109/ACCESS.2020.3010271 – ident: ref26 doi: 10.1109/LWC.2014.2342736 – ident: ref6 doi: 10.1109/JSYST.2020.3019463 – ident: ref2 doi: 10.1109/JSYST.2018.2890039 – ident: ref20 doi: 10.1109/GLOCOMW.2018.8644379 – ident: ref22 doi: 10.1109/TWC.2019.2902559 – ident: ref10 doi: 10.1109/TWC.2019.2930190 – ident: ref11 doi: 10.1109/JIOT.2019.2955732 – ident: ref4 doi: 10.1109/MCOMSTD.001.1900015 – ident: ref1 doi: 10.1109/ICEA.2019.8858305 – ident: ref15 doi: 10.1109/ICC40277.2020.9148990 – ident: ref23 doi: 10.1109/ACCESS.2019.2939616 – ident: ref17 doi: 10.1109/JIOT.2020.3024666 – ident: ref19 doi: 10.1109/EIT51626.2021.9491898 – ident: ref5 doi: 10.1109/JSAC.2019.2906789 – ident: ref25 doi: 10.1109/TSMCB.2009.2015956 – ident: ref13 doi: 10.1109/TSP.2020.2967146 – ident: ref12 doi: 10.1109/TCOMM.2020.3003662  | 
    
| SSID | ssj0002951693 | 
    
| Score | 2.3245664 | 
    
| Snippet | A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1957 | 
    
| SubjectTerms | Algorithms Altitude Autonomous aerial vehicles Clustering Communication Data collection Data models Dynamic trajectory planning Energy consumption Energy efficiency Energy management Hovering massive machine-type communications Particle swarm optimization Task analysis Trajectory Trajectory planning UAV-enabled data collection Unmanned aerial vehicles  | 
    
| Title | Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks | 
    
| URI | https://ieeexplore.ieee.org/document/9810009 https://www.proquest.com/docview/2739333040  | 
    
| Volume | 6 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2473-2400 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951693 issn: 2473-2400 databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0BJziwI8omHzghUpzdPlZdqJDaU4vKKfIqsaUIUiH4emxnEZsQtxzsyJpxMjNvZt4AnPohY3GgQ0_6EntRyrhHBReerVCQMkyFdjOWRuNkOI2uZvFsCc6bXhillCs-U2376HL5ci4WFiq7oMSi0XQZllOSlL1aDZ4SUJvxCavEpY_pxeSyOzYBYBCYuJQkJPK_mB43S-XHD9hZlcEGjOrzlMUk9-1Fwdvi_RtV438PvAnrlXuJOuV92IIllW_D2ifSwR246bt2P6_zyp4V6pUT6ZGxWXcOwH9D9RwjZPxZNO1ce33XXyVRjxUMOaTBNUOg2xw9jiZdNC5LyV92YTroT7pDrxqw4Alj5QuXupXEGPk0IDzW2tK3qThWOJaCSpZYoXHjw_CAaKwl54pQmaRYc0EkNqrcg5V8nqt9QH6sQ8KkILYxN0o4j9JQhpoqxo2LwlgLcC37TFTs43YIxkPmohBMM6uuzKorq9TVgrNmy1NJvfHX4h0r_mZhJfkWHNUKzqqP8yULLAugxXHwwe-7DmHVvrusWjmCleJ5oY6N71HwE3fpPgAqU9b3 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnBCpDiLE_tYlUJZ2lOL4BR5ldgKglQIvh7bSSs2IW452Io142Rm3sy8AdgLY85JZOJAhQoHScZFwKSQgatQUCrOpPEzljrdtN1Pzq7I1QQcjHthtNa--EzX3aPP5atHOXRQ2SGjDo1mkzBNkiQhZbfWGFGJmMv5xFXqMsTssHfS7NoQMIpsZEpTmoRfjI-fpvLjF-ztyvECdEYnKstJ7urDQtTl-zeyxv8eeRHmKwcTNcobsQQTerAMc59oB1fguuUb_oLGK3_W6KicSY-s1br1EP4bGk0yQtajRf3GZdDyHVYKHfGCI481-HYIdDNAD51eE3XLYvKXVegft3rNdlCNWAiktfOFT94qas18FlFBjHEEbpoQjYmSTPHUCU1YL0ZE1GCjhNCUqTTDRkiqsFXmGkwNHgd6HVBITEy5ktS15iapEEkWq9gwzYV1UjivAR7JPpcV_7gbg3Gf-zgEs9ypK3fqyit11WB_vOWpJN_4a_GKE_94YSX5GmyNFJxXn-dLHjkeQIfk4I3fd-3CTLvXucgvTrvnmzDr3lPWsGzBVPE81NvWEynEjr-AH5XE2kQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Aware+Dynamic+Trajectory+Planning+for+UAV-Enabled+Data+Collection+in+mMTC+Networks&rft.jtitle=IEEE+transactions+on+green+communications+and+networking&rft.au=Shen%2C+Lingfeng&rft.au=Wang%2C+Ning&rft.au=Zhang%2C+Di&rft.au=Chen%2C+Jun&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2473-2400&rft.volume=6&rft.issue=4&rft.spage=1957&rft_id=info:doi/10.1109%2FTGCN.2022.3186841&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2400&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2400&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2400&client=summon |